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ABSTRACT 

The top-k shortest path discovery is a key process on graphs to determine k-shortest paths between a two nodes 
with the minimal length. This work precisely holds three processes for ranking the shortest path problem without loop by 
the way of using top-k shortest path join (TKSPJ) in spatial network. First, Construct transformed graph with side cost by 
using of input original graph. Second, structural encoding label is used for loop detection and third to find top k shortest 
path without loop. The main advantage of this work is to reduce the cost and prune the search space. The pre computed 
shortest paths translating the original graph based on the threshold value has also been introduced, to reduce the search 
space in a spatial network. 
 
Keywords: graph, shortest path, top-k shortest path, spatial network. 
 
1. INTRODUCTION 

Location based services are used mainly to find 
the shortest route between the two locations. There may be 
cases, where the user wishes to find a stopover that will 
not introduce significant cost to the trip. A pre-computed 
shortest path to each stop will not produce an overall 
shortest path. Thus, in order to address this problem, a new 
query type has been formulated called the detour query, 
which will use the overall trip distance as the optimization 
measure. Given a starting and an ending location, the 
detour query will return a Minimum Detour Object 
(MDO).  

Graph structured data are used in a growing 
number of applications. A spatial network is a labelled 
graph whose nodes represent basic and complex 
geographic entities such as buildings, road segments, 
routes and spatial groups. The edges represent connections 
between entities and the labels specify the types of the 
connections. Edges with the label include an inclusion of 
an entity in another entity. Directed edge graph with labels 
are used mainly to identify the start and ending routes in 
the road segment for spatial network. By using this spatial 
network/graph as input find the top-k spatial keyword. 

Top-k spatial keyword queries return the k best 
spatio-textual objects ranked in terms of both spatial 
proximity to the query location and textual relevance to 
the query keywords. Euclidean distance [1] restricted to 
processing top-k spatial keyword queries. In this paper, the 
interesting and challenging problem of processing top-k 
spatial keyword queries on road networks. Given a set of 
spatio-textual objects (e.g., banks annotated with a text). 
Spatio-textual object consists of two input parameters such 
as source and destination along with spatial keyword 
parameter. The output of this work results with two major 
methods they are 1) shortest path to the query location, 
and 2) textual relevance to the query keywords. 

The top-k shortest paths problem can be 
classified into two categories [2], the problem of finding 
the top-k general shortest paths (allowing loops) [3], and 
the problem of finding the top-k simple shortest paths 
(without loops) [4, 5]. These two problems face different 

complexities in graphs. In a positive-weighted graph, the 
very shortest path between the given pair of nodes is 
obviously loopless. However, it is possible that the k-th (k 
≥ 2) shortest path has loops. The top-k simple shortest 
paths problem therefore is significantly harder than the 
former one due to additional cost for loop detection as 
well as more search space. 

Consider the graph in Figure-1 (a) which 
represents the nodes along with vertices and edges. The 
side cost has been assigned for each vertex to travel from 
source to destination. The shortest path has to be 
evaluated. 
 

 
(a) 
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(b) 

 

 
(c) 

 

Figure-1. (a, b & c) Sample graphs. 
 

From the Figure-1(b), the start node is A, and the 
final destination is C. The nodes B and D represent an 
intermediate stop. A user wishes to go from the start to the 
end. If the k-shortest path is used, it would return via the 
path ABC. This is because the shortest path from the 
starting node A to the intermediate stop is given by AB 
with a path cost of 2 units. While the other path AD results 
in a path cost of 4 units and hence it will be rejected.  
Now, to reach the final destination, it takes the paths BC. 
The overall cost of this trip is 12 units. 

Now, consider the contour detouring method in 
the Figure-1 (c) that uses the overall path cost as the 
optimization measure. This method would choose the path 
AD instead of AB. Then from D, the path chosen will be 
DC leading to the overall path cost of 9 units. Thus, the 
overall path cost using contour detouring is less, compared 
to the k-shortest path. Hence, this is more effective. 

Support for realistic location based applications is 
provided in two aspects. The first aspect is the ability to 
browse and compare multiple results.  Displaying the ‘k’ 
Minimum Detour Objects (MDO) at a time will allow the 
user to browse and select the most satisfying option. The 
second aspect involves the continuous monitoring of the 
‘k’ MDOs. This monitoring provides users with up to date 
information. The user may browse information without 
any current intention to commit to a particular decision. 

This may cause more time for the users browsing to take 
decisions, than those who are searching for something 
specific. A straightforward approach for solving the 
continuous detour query (CDQ) is evaluating the ‘k’ 
MDOs at each intersection along the trajectory. The CDQ 
solution will incrementally evaluate the ‘k’ MDOs results 
at different intersections, according to the usual measure 
of finding the trip distance. As a result, the repetitive 
evaluation of the network distances is avoided.  
 
2. MATERIALS AND METHODS 

There are several algorithms presently available 
for solving a K-shortest paths problem without loop in a 
network in ascending order of their distance between two 
nodes i.e. Starting and target node. 

Every spatial network can be represented as a 
graph, where all spatial network’s nodes and connections 
are represented as the graph’s vertices and edges 
respectively. Depending on the application this graph may 
be weighted, directed or un-directed. Thus, any spatial 
query into the original network can be executed to its 
corresponding graph representation G. Evidently, the 
performance of such queries is strongly related to the 
number of nodes and edges lying into the region, which is 
a subgraph of G. 

Several query processing techniques in spatial 
networks have been proposed for fundamental query types 
like window and k-nearest-neighbors queries [6]. To 
increase the efficiency of these queries various query 
optimization techniques are used [7]. The classic method 
for the top-k simple shortest paths is Yen’s algorithm [5]. 
This method first computes the very shortest path from the 
source node to the target node as the first path. Then, it 
analyzes each node in the newly discovered shortest path p 
as the deviation node to generate candidates for the next 
shortest path using a single-source shortest path discovery. 
The other shortest path is chosen from all the candidates 
with the minimal cost. The process continues until k 
different shortest paths are finally determined. The total 
time cost of Yen’s algorithm is thus O(kn(m+nlogn)), 
which comes from O(n)single-source shortest path 
discovery for each of the k shortest paths. 

Several attempts have been made to improve the 
performance of Yen’s algorithm. However, the drawback 
of yen’s algorithm is the worst-case complexity cannot be 
reduced. In order to reduce this complexity Ernesto et al 
reduced the cost in candidate path generation by 
discovering the shortest paths incrementally [8].  John 
Hershberger et al generated the candidate paths with the 
edge replacement strategy in O(m+nlogn)  for each of the 
k candidates paths. In his work [8], they used the fast 
replacement algorithm to discover the candidate paths, and 
switch to a slow but correct method when a loop in the 
generated path is detected. 

Top-k spatial keyword queries on road network 
are related to keyword queries on relational   databases [9] 
and graphs with external data [10]. However, in relational 
databases and data graphs, the addressed problem is 
finding rooted trees of connected vertices that are relevant 
for the query keywords. There is also related work in the 
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context of preference queries in road networks and 
relational databases. Mouratidis et al [11] propose 
processing top-k and skyline queries on road networks 
assuming additional costs on the edges of the road 
networks. The results of these queries are used to achieve 
the execution of top-k queries with minimum cost. 
Levandoski et al [12, 13] discussed a framework for 
integrating preference queries in database systems. In the 
context of spatial objects on road networks [14, 15, 16] 
nearest neighbor queries and range queries was discussed 
[16] to store the road network and spatial object. One 
interesting result of this work is the observation that 
network expansion algorithms present better performance 
when compared with algorithms based on Euclidean 
distance heuristics.  Lee et al. [14, 15] performed using 
route overlays to improve the performance of nearest 
neighbor and range queries on road networks. 

In the context of spatial keyword queries, Ian de 
Felipe et al. [17] discussed a new data structure that 
integrates signature files and R-tree. Each node of the R-
tree employs a signature to indicate the keywords present 
in the node sub-tree. Zhang et al [18] performed finding 
the m-closest objects to a given query location that match 
the set of m query keywords. Cao et al [19] introduced 
finding a group of objects that match the query keywords, 
minimizing intra-group distance, and the distance among 
the objects in the group and the query location. These 
issues are limited to boolean keyword queries and 
Euclidean distance. 

Cong et al. [1] and Li et al. [20] augmented the 
nodes of an R-tree with textual indexes such as inverted 
files. These files are used to prune nodes that cannot 
contribute with relevant objects. Recently, Rocha-Junior et 
al. [21] used an indexing structure that associates each 
term to a different data structure (block or aggregated R-
tree) and can process top-k spatial keyword queries more 
efficiently. Finally, Wu et al [22] cover the problem of 
keeping the result set of traditional spatial keyword 
queries updated, while the user is moving on a road 
network, current approaches for processing top-k spatial 
keyword queries are restricted to Euclidean distance and 
rely on R-trees to compute the distance between the 
objects and the query location. Therefore, the techniques 
proposed cannot be applied in the context of road 
networks where the distance between the query location 
and the objects of interest is the shortest path. To 
overcome all these issues, in this paper proposes a Top-k 
Shortest Path Join (TKSPJ) method which ranks the top-k 
spatial keyword and also finds the shortest path then 
minimize the overall distance in detour path for spatial 
network 

Yen’s algorithm [23] is a deviation algorithm that 
determines only loop less paths. The order of analyzing 
the nodes in Yen algorithm starts from the deviation node. 
This gives several changes in the network and provides the 
proper solution to find the shortest path problem. This 
loop less path is characterized by its deviation node and its 
parent node. This yen algorithm is used only for ranking 
the distance in the spatial network. But, in the proposed 
work, the distance and the keyword along with shortest 

path is searched and ranked along with these two 
attributes. 
 
3. INDEXING AND QUERY PROCESSING IN  
    SPATIAL NETWORKS 
 
3.1 Indexing 

In this section, it presents a Top-k Shortest Path 
Join (TKSPJ) approach has been proposed that indexes the 
objects lying on the edges of the spatial network based on 
graph for improving the query processing performance. 
 
3.2 Mapping component 

The mapping component [24] depicts a B-tree 
named map B-tree that maps an edge id to the MBR of the 
edge. The mapping component also points to the polyline 
of the edge. The MBR of the edge is used to find the 
spatio-textual objects lying on the edge through the spatio-
textual component. 
 
3.3 Inverted file component 

The inverted file component [24] is composed by 
inverted list’s file and vocabulary. The inverted file 
contains inverted lists identified by a key, composed by 
the edge id and term id. Each inverted list stores the 
objects lying on the edge (v, v׳) that have a term ‘t’ in their 
description. For each object, the inverted list stores as 
follows. Firstly, the network distance between the object 
and the reference vertex of the edge (e.g., |v, pi|) is stored. 
Secondly, the impact of the term ‘ti’ in the description of 
the object (e.g., λti,pi) are stored together in the inverted 
files to improve the efficiency. The vocabulary file stores 
the general information about each term t, such as the 
document frequency of each term. This information is 
used to compute the textual relevance of the object for a 
given query. 
 
3.4 Query processing in spatial network 

The basic query processing algorithm expands the 
adjacencies of a query location similarly to Dijkstra’s 
algorithm [25]. The k best spatio-textual objects are 
maintained in a heap in decreasing order of score. The 
algorithm stops when the remaining objects cannot have a 
better score than the score of the kthobject already found, 
or the entire network has been expanded. 

The enhanced query processing algorithm [24] 
performs well when the network is populated, the query 
keywords that occur frequently, or the query preference 
parameter gives more weight to the network distance. In 
these cases, ‘k’ objects with good scores are found rapidly, 
which permits the algorithm to terminate earlier. On the 
other hand, it can perform poorly if the ‘k’ objects cannot 
be found rapidly, which can be common in top-k spatial 
keyword queries on road networks. 
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4. MINIMIZATION OF OVERALL TRIP DISTANCE  
    USING CONTINUOUS DETOUR QUERY IN  
    SPATIAL NETWORK 
 
4.1 System overview 

The framework of the top-k shortest path join 
architecture is shown in Figure-2 and it is used to 
construct k- shortest paths from the source node to the 
target node with the transformed graph. 
 

 
 

Figure-2. Framework of the proposed Top-k Shortest Path 
Join (TKSPJ) Technique. 

 
The existing k-shortest path tree (KSPT) has 

overlaps between Short Path Tree (SPT) branches [3]. 
These branches are overlapped in such a way that each 
node appears in the tree exactly k-times in k-different 
branches. The proposed method implements the Top-k 
Shortest Path Join (TKSPJ), which constructs a 
transformed graph with side cost. By using the original 
input graph, where structural encoding labels are used for 
loop detection.  Adaptive determine threshold minimizes 
the search space and reduces the terminated cost in each 
candidate path to find top-k shortest path. It uses the 
transformed graph in the candidate path discovery 
termination earlier, to exploit a special property of the 
Continuous Detour Query (CDQ), where data objects are 
additively weighted based on their distances to the 
destination. 

The proposed work combines the top-k keyword 
and the shortest path in the spatial network. Thus the main 
advantage of this work is to reduce the cost and pruning 
search space. Pre computed shortest paths translating the 
original graph into a new graph, have also been 
introduced; based on the threshold value, which reduces 
the search space in a spatial network. 
 
4.2 Graph preprocessing 

To construct the shortest path tree SPT (t,G) 
using Dijskstra’s algorithm [25], every node is traversed to 
reach the target node. Each node is labelled with the 
distance and the successor of the node in the shortest path 
as given below: 
 

a) To find the possible path from every node to 
the destination in a graph with minimal length for building 
the sidetrack due to candidate’s path generation earlier. 

b) Constructing the transformed graph with side 
cost, can be easily performed on each edge 
e=(u,v)to v.cost+e.weight− u.cost 

c) To encode the shortest path tree SPT(t,G) with 
the structural labels to care for the discovery of 
ancestor/descendant relationship between the nodes 
efficiently. 
 

The interval labels can be assigned to each node 
in one time traversal of the tree. The interval label on node 
u has three attributes such as u.pre, u.post and u.parent, 
where u.pre and u.post are node u’s preorder and postorder 
number respectively with regard to SPT(t,G). In preceding 
top-k shortest path algorithm, redundant computations 
amid candidate path generation is allowed. For example in 
(Figure-3) the first path is 1→ 2 → 3 → 6 and the second 
1→ 2 → 4 → 3 → 6.  While starting from divergent 
deviation nodes, they occur to end with the same path 3 → 
6 to reduce the redundant computation cost with the 
computed Shortest Path Tree (SPT). In order to avoid the 
loops in the discovered path, it utilizes the structural labels 
on each node to detect the loops. 
 

 
 

Figure-3. Candidate path termination. 
 
Algorithm: Construct transformed graph  
 
Input: Graph G(v,e) Start node  S, Destination node T  

Output: Transformed Graph g (v’,e’) with side cost and 
Structural encoding labels      

1: Find SPT(T,G) every node to same  destination 
with  cost;  

2: Generate sidecost For Each edge 
e= (v,e) in G do  
e.sidecost=v.cost+e.weight-u.cost; 

3: Loop detection with three attributes Pre, post 
order and parent on SPT(t,G) each node  

4: Return G; 
 
 The advantage of using the transformed graph 
(Gside) instead of the original graph G is that, the 
candidate path searching can be concluded generally 
earlier on the Gside, with the assistance of the encoded pre 
computed paths. The output of construct transformed 
graph algorithm is the transformed graph with sidecost. 
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The attributes of pre order, post order and parent are used 
to avoid the loop path from start node to target node. The 
sidecost is also called as side track on each deviation node 
to avoid traversal speed for discovery of the shortest path.  
 
4.3 Invention of the shortest path encounter 
 This algorithm is used to discover the shortest 
path between source and target node from the transformed 
graph. 
 
Algorithm: Shortest Path Location Encounter 
Input: Transformed Graph G(v,e)adj list, Source, 

Destination 
Output: Shortest path from start to target node 
1: Initialize: A_1 = shortest-path from source to 

destination  
2: Global ← Local copy of G  
3: for k = 2 → K do  
4: for i = 1 → [len(A_(k−1) ) − 1] do  
5: Current Node ← A(k−1) [i]  
6: Ri ← Sub-path (root) from source till currentnode 

in A_(k−1)  
7: for j = 1 → k − 1 do  
8: Rj ← Sub-path (root) from source till currentnode 

in A_j 
9: if Ri == Rj then  
10: Next Node ← Aj [i+1]  
11: Global (CurrentNode,NextN ode) ← infinity  
12: Current Node ← unreachable 
13: end if  
14: end for 
15: Si ← Shortest-path from current node till 

destination  
16:       Bi ← Ri + Si  
17: end for 
18: A_k ← Shortest-path amongst all paths in B  
19: Restore original graph: Global ← Local copy of 

G  
20: end for 
 

From the given graph Figure-3, this algorithm 
finds the path for every vertex with the shortest path (i.e. 
minimum cost) between the source vertex and the 
intermediate vertex. It can also be used for finding the 
costs of the shortest paths from a single vertex to a single 
destination vertex by stopping the algorithm, once the 
shortest path to the destination vertex has been 
determined. Dijkstra's algorithm works on the principle 
that the shortest possible path from the source has to come 
from one of the shortest paths already discovered. It 
retrieves the possible shortest path from each vertex and 
draws the path to move to the destination vertex. Dijkstra's 
algorithm can be used to find the shortest route between 
one vertex and all other vertices. 

The shortest path encounters algorithm is to 
produce the shortest path between one node and another, 
using Dijkstra's algorithm. Another option is to use a heap 
to keep track of which node should come next, as one 
property of heaps is that, they always have the next 
element at the top (either the minimum or the maximum). 

Since it is possible that in the above algorithm each edge 
may cause a vertex's position in the heap to change, a heap 
may require O(|E|log|V|) time. Finally, Dijkstra's algorithm 
takes O(|E|log|V|) time in this case, as all other terms (such 
as O(|V|log|V|) for finding the nearest vertex and updating 
the heap and the O(|V|) initialization) are dominated 
assuming that there are at least |V| edges in the graph. 
There are a variety of algorithms for solving the "single-
source shortest path" problem for finding the shortest path 
from a single vertex to all the other possible vertices. 
Existing algorithms work only in some special cases with 
less speed. The output of the shortest path encounter 
algorithm is the shortest path that lies between one node 
and another node with minimal length. 
 
4.4 K Shortest path discovery 

The k shortest path discovery algorithm is to 
constructs the k shortest path from the source node to the 
target node in the transformed graph. The top 4 shortest 
paths P4(p1….p4) from left to rightp1(S, 1, 2, 3, 4, T); 
p2(S, 1, 2, 3, T); p3(S, 1, 3, 7, T); p4 (S, 1, 3, 5, 6, T) have 
been shown in Figure-5. 
 
Algorithm: K Shortest Path Location Encounter  
Input: Given a preferred path P from Data set 

D, Graph G (Node N, Edges E), Source, 
Target 

Output:  K Shortest path from start to target node 
1: function ksp(Graph, origin, sink, K):  
2: A[0] = Dijkstra(Graph, origin, sink);  
3: B = [];  
4: for k from 1 to K do 
5: for i from 0 to size(A[k − 1]) – 1 do 
6: sconNode = A[k-1].node(i);  
7: rootPath = A[k-1].nodes(0, i);  
8: for each path p in A do 
9: if rootPath == p.nodes(0, i) then 
10: remove p.edge(i, i + 1) from Graph;  
11: sconPath = Dijkstra(Graph,sconNode, sink);  
12: totalPath = rootPath + sconPath;  
13: B.append(totalPath);  
14: restore edges to Graph;  
15: B.sort();  
16: A[k] = B[0];  
17: return A;   
 

In the given Figure-4 the source S and the target 
T has been defined for the graph G. Initially, the graph 
traversal is done from source to destination and the 
sidecost value is calculated. For the same source to 
destination, find the k-shortest path to reduce the sidecost. 
Therefore, earlier path must be removed and the new path 
should be generated to reach the destination. It is 
represented in the form of a tree as shown in Figure-5. 
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Figure-4. Sample graph of spatial network. 
 

 
 

Figure-5. Top-4 Shortest path join (Using Figure-4). 
 
4.5 Proposed Top-k Shortest Path Join (TKSPJ) 
      with detour 
 
Algorithm: Top-k Shortest Path Join with Detour 

Query 
Input: Transformed Graph G’(v’,e’), Sidecost 

and labels, Source, Target 
Output: Top-k Shortest path from start to target 

node 
1: Initialize each node v in Gside with 

v.cost; 
2: Sort nodes in ignore Node in term of 

their pre; 
3: Initialize active Q’ and insert u 

(deviation node in Active list); 
4:   While (Q’ is not null) 
       If D is terminating node then 
              Sub path 1= S to D; 
                Sub path 2= D to T; 
5: Ranking the sub paths from S to D and 

D to T; 
6:  Return minimal k shortest path;  
 

The top-k shortest path join with detour algorithm 
is used to discover the ‘k’ shortest path with the help of a 
detour to avoid the search space for speeding up the 
extraction process from one node to any node, which 

incrementally retrieves data objects and computes node 
labels as the monitoring process progresses. The 
computation cost of a kSPT can be greatly reduced by 
exploiting the fact that the offset assigned to each object 
‘p’ is the distance from ‘p’ to the destination. Hence, 
objects that are far away from the destination are likely to 
be involved in the computation later, than objects closer to 
the target. Object retrieval is done through monitoring of 
the labelling distance and incremental retrieval of data 
objects. 
 

 
 

Figure-6. Top-k(2) Shortest path with detour (3). 
 

The Figure-6 demonstrates the shortest path with 
detour; Firstly find the shortest path from the start to the 
deviation node and then deviation node assigned as start 
node for finding the distance between the detour to the 
target node. The path from S to 3 is fixed after 
encountering the shortest path and then detects the path 
from the detour to the target without a loopless path. In 
top-k shortest path detour algorithm, consider S as the start 
node, D as the detour node and T declared as the target 
node. The sub path 1 is denoted as the shortest path from S 
to D and the sub path 2 from D to T. Finally, detect the 
overall path from S to T through D, through a loopless 
path, using structural encoding and side cost value, to 
avoid traversal of the entire graph. 

The output of top-k shortest path detour 
algorithm is the shortest path with threshold, due to 
avoiding the whole search from deviation node to target 
node, for the paths in figure 6. The start to endnode in the 
network i.e., 3 → 4 and 3 → 7 help in reducing the surplus 
cost. 
 
5. EXPERIMENTS AND RESULTS 
 
5.1 Statistics of data 

In this chapter, real and synthetic data sets are 
evaluated to find the efficiency and scalability of the 
TKSPJ method. The proposed method is implemented in 
the java platform using netbeans 6.1, with the use of yen k 
shortest path codes, which indicates the extra cost 
compared with the shortest one. Here, initially the query is 
processed in the spatial network to find the shortest path 
distance. For finding the shortest path process, the three 
methods chosen for comparison are the YEN, KSPT and 

S 1 2 

4 

3 

7 

TT 
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the proposed method TKSPJ. These three approaches are 
compared with various factors to process the shortest path.  
The three approaches YEN, KSPT and TKSPJ are 
compared. The three approaches return the same set of 
top-k objects for a given query. Extensive experiments on 
both real and synthetic data sets have been conducted, to 
determine the efficiency and scalability of techniques 
based on the Table-1 with mentioned dataset, nodes, 
edges, loop percentage and loop less average. 

It employs real and synthetic datasets in the 
experimental evaluation. All approaches were 
implemented in the java platform, using netbeans 6.1. In 
the experiments, the response time (total execution time), 
index construction time (time to build the index), index 
size are measured. Table-2 shows the main parameters and 
values used the experiments. 
 
 
 
 
 
 
 
 

Table-1. Comparison of k shortest path algorithms. 
 

Methods Nodes Edges Loop 
Loop 
(null) 

YEN 15,000 20,000 70% 62% 

KSPT 15,000 20,000 80% 74% 

TKSPJ 15,000 20,000 35% 23% 

 
Table-2.  Parameters evaluated in the experiments. 

 

Parameters Values 

Number of results(k) 10,20,30,40,50 

Number of keywords 1,2,3,4,5 

Query preference 
parameter Ω 

2,4,6,8,10 

Construction parameter Ψ 2,4,6,8,10 

Average region cardinality 10,20,30,40,50 

Number of layers 1,2,3 

Real datasets India, South Africa, France 

Synthetic datasets R1,R2,R3,R4,S1,S2,S3,S4 

 
Table-3. Parameters of the spatial datasets. 

 

Attributes India South Africa Italy 

Total size 104 MB 285 MB 59 MB 

Total no.of vertices 50,324 94,124 13,236 

Toalno.of edges 59,697 1,32,406 16,759 

Avg.no.of lines per edge 7.65 10.34 3.56 

Total no.of objects 35,673 52,435 7,456 

Avg.no.of objects per edge 0.16 0.07 0.19 

Total no.of words 1,56,434 2,12,348 45,231 

Total no.of distinct words 13,453 18,321 4,642 

Avg.no. of distinct words per object 3.56 4.43 1.53 

 
5.2 Real datasets 

It takes the real data sets of three countries 
namely, India, South Africa and France. In these countries, 
the map employs the rectangles based on their coordinates 
(latitude, longitude); Most of the regions in the map 
describe buildings or a spatial area.  Consider the graph 
with the road network formed by the largest partition of 
each dataset.  Construct the graph of the spatial network 
and allocate the spatial objects treated as nodes in the road 
network. Table 3represents some characteristics of each 
dataset. 
 
5.3 Synthetic datasets 

In this, the datasets were obtained by combining 
the Indian dataset along with road network. It preserves 
the spatial network structure and the location of the objects 
in the Indian dataset, to create four datasets, named R1, 
R2, R3 and R4. From these four datasets, it composes the 

road network respectively. The synthetic datasets were 
obtained from the Indian network with various objects. It 
generates four datasets named S1, S2, S3 and S4 with the 
values of 300k, 600k, 900k and 1200k.  
 
5.4 Experiments on real datasets 

Query processing is performed using the 
approaches YEN, KSPT and TKSPJ on real datasets. 
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Figure-7. Response time variations with number 
of keywords. 

 
5.4.1 Varying the number of keywords 

Figure-7 presents the response time, while 
varying the number of keywords in the query. The large 
number of keywords in the query and the number of 
objects are relevant. The TKSPJ approach is much better 
in response time than YEN and KSPT. The number of 
edges processed by TKSPJ and KSPT is very small for 
queries with few keywords and increases for queries with 
more keywords. However, it is much smaller than the 
number of edges processed by the YEN approach. Note 
that one single edge of the road network may contain 
several objects. 
 

 
 

Figure-8. Response time varying the query 
preference parameter. 

 
5.4.2 Varying the query preference parameter (Ω) 

In this study, it evaluates the impact of the query 
preference parameter as illustrated in Figure-8. The query 
preference parameter does not present a significant impact 
on response time.  
 

 
 

Figure-9(a). Index size varying with datasets. 
 

 
 

Figure-9(b). Response time varying with datasets 
 
5.4.3 Varying the datasets 

In this experiment, it gives the index size and 
response time for different real datasets, as shown in 
Figure-9 (a) & (b) represents the index size for the 
different approaches. The YEN approach retrieves 123 
dataset and for KSPT technique 107 is retrieved. Compare 
to these two methods, the proposed method TKSPJ 
reduces the index size to 56 as shown in Figure-9(a). The 
response time varying as shown in Figure-9(b). 
 
5.5 Experiments on synthetic datasets 

In this part, it employs synthetic datasets to 
evaluate the impact of increasing the number of keywords 
per object and the number of objects (cardinality) on the 
road network. 
 
5.5.1 Varying the number of keywords per object 

Figure-10 shows the response time for varying 
the number of keywords in the description of the objects 
(Textual Description Length). The YEN approach is not 
affected by increasing the description of the objects. The 
high cost of the YEN approach is in the processing of the 
edges. Since the number of objects in the datasets does not 
vary, the number of edges processed is the same for all 
datasets. However, increasing the description of the 
objects has an impact on the response time of the KSPT 
and TKSPJ approaches. The main reason is that it 
becomes more costly to identify the edges that have 
relevant objects, since more objects can be textually 

0

20

40

60

80

100

1 2 3 4 5

R
es

p
on

se
 t

im
e 

(m
ill

is
ec

on
d

s)

Number of keywords

YEN

KSPT

Proposed
TKSPJ

0

20

40

60

80

2 4 6 8 10

T
im

e 
(m

il
lis

ec
on

d
s)

Query Preference Parameter  (Ω)

YEN

KSPT

Proposed
TKSPJ

0
500

1000
1500
2000
2500
3000

India South
Africa

Italy

In
d

ex
 S

iz
e 

(m
eg

ab
yt

e)

Data Sets

YEN

KSPT

Proposed
TKSPJ

0

50

100

150

200

250

300

India South
Africa

Italy
T

im
e 

(m
ill

is
co

n
d

s)

Data Sets

YEN

KSPT

Proposed
TKSPJ



                                    VOL. 12, NO. 7, APRIL 2017                                                                                                              ISSN 1819-6608 

ARPN Journal of Engineering and Applied Sciences 
©2006-2017 Asian Research Publishing Network (ARPN). All rights reserved. 

 
www.arpnjournals.com 

 

 
                                                                                                                                               2138 

relevant for the query. Consequently, more edges have 
been processed.  
 

 
 

Figure-10. Response time for keyword datasets. 
 
5.5.2 Varying the number of edges expanded 

Basically, this work is evaluated with four 
parameters namely index size, keywords, response time 
and number of edges expanded (top-k keywords not 
specified). Therefore, according to the number of edges 
expanded, the data sets S1, S2, S3, S4 were evaluated and 
the response time was measured. This is shown in the 
Figure-11. 
 

 
 

Figure-11. Time analysis for edges expanded in datasets. 
 

Figure-11 shows the number of edges expanded 
and processed for varying the cardinality of the datasets. 
Increasing the number of objects has a significant impact 
on this approach, since it increases the number of edges. In 
the case of the KSPT and TKSPJ approaches, only the 
edges considered for top-k will be processed. 
 

 
 

Figure-12(a). Index size varying the KSPJ 
construction parameter. 

 

 
 

Figure-12(b). Response time varying the TKSPJ 
construction parameter. 

 
5.5.3 Varying the TKSPJ construction parameter (Ψ) 

This work, gives the advantage of employing text 
similarity in the TKSPJ construction. Figure-12 (a) & (b) 
show the index size and the response time while varying 
construction parameter. The textual similarity and 
grouping of regions are constructed based on the higher 
value of Ψ using the TKSPJ. Figure-12(a) shows the 
TKSPJ index size for varying Ψ. The index sizes are 
varied for small and high values of Ψ. It means 
incorporating the textual similarity and distance which 
reduces the index size because the regions created have 
smaller number of borders. However, only the textual 
similarity has a positive impact on the response time that 
is shown in (Figure-12(b)). For small values of Ψ, the 
index table construction gives more priority to the network 
proximity instead of the textual similarity among the 
objects. Therefore, the regions created when Ψis small, 
containing objects whose text description is dissimilar, 
also impacts the response time. This experiment 
demonstrates the advantage of incorporating text similarity 
during the index construction. 
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Figure-13. TKSPJ construction time during query 
processing by varying the average number of 

entries per region. 
 
5.5.4 Varying the number of entries per region 

Figure-13 shows the overlay index construction 
time and the response time when varying the number of 
entries per region. If the average number of entries per 
region is 20, it means that each region at level one has 
approximately 20 edges; and each region at level two has 
approximately 20 other regions (around 200 edges). 
Figure-13 shows that increasing the number of entries per 
region has a high impact on the index construction time. 
When the number of entries increases, the vertices also 
increase. The number of border vertices has a direct 
impact on the index construction. 
 
5.5.5 Candidate path termination 

In this section, evaluation of the output of the 
proposed method that compared with yen algorithm and 
KSPT in two ways i.e. loop detection and candidate path 
termination is performed has been performed. Figure-14 
shows the variation of the candidate path termination 
which has been highlighted. Depending on the number of 
candidate (intermediate) path, the termination limit 
increases for the other two existing methods (YEN & 
KSPT) that is more the number ‘k’ values the higher the 
termination limit. In case of the proposed TKSPJ, though 
the ‘k’ value increases the termination limit remains 
reduced thus speeding up the process. 
 

 
 

Figure-14. Candidate path termination. 

5.5.6 Loop detection 
Figure-15 illustrates the loop detection 

comparison between YEN, KSPT and proposed TKSPJ. 
The result of the implementation denotes fast discovery of 
the top-k shortest path, compared to the yen algorithm and 
KSPT.  
 

 
 

Figure-15. Loop detection. 
 
5.5.7 Graph travel cost 

Figure-16 shows the variation of the redundant 
cost with the three methods. Finally, the proposed method 
is found to work efficiently to minimize the travel cost and 
reduce the search time with ranking. 
 

 
 

Figure-16. Graph travel cost. 
 
6. CONCLUSIONS 

The main goal of the proposed work is to 
diminish the redundant cost and prune search space in 
each candidate path generation with an adaptively 
determined threshold by using the transformed 
graph/spatial network in the candidate’s path discovery 
termination. These processes are used to speed up the 
discovery of the shortest path in the non-negative directed 
graph and to find the candidate paths on the transformed 
graph more efficiently and diminish the search space with 
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the threshold. This method provides 93.2 % improvement 
for finding the shortest path. 
 
7.  FUTURE WORK 

The top-k shortest path join method is used in the 
spatial network. It minimizes the search time and reduces 
the overall travelling cost from the source to the 
destination. This proposed work is developed for a road 
network. In future, according to the user specification, it 
may be developed for any spatial network application. 
This application can be deployed in the cloud server and 
cloud will provide a service to the user. 
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