\sim	

Login

Automotive Journal Article

Response Surface Optimization of Brake Thermal Efficiency and Specific Fuel Consumption of Spark-Ignition Engine Fueled with Gasoline-Pyrooil and Gasoline-Pyrooil-Ethanol Blends

SAE International Journal of Fuels and Lubricants

04-18-01-0001

07/18/2024

Features

Authors

K. Manickavelan	S. Sivaga
Vels Institute of Science,	Vels Inst
Technology & Advanced	Technolo

2025, https://doi.org/10.4271/04-18-01-0001.

Studies, India

anesan titute of Science, ogy & Advanced Studies, India

S Sivamani

Saveetha Institute of Medical and Technical Sciences, India Mithun V. Kulkarni

Vijaya Vittala Institute of Technology, India

Abstract

The present study explores the performance of high-density polyethylene (HDPE) pyrooil and ethanol blends with gasoline in SI engine using statistical modeling and analysis using response surface methodology (RSM) and the Anderson-Darling (AD) residual test. The pyrooil was extracted from HDPE through pyrolysis at 450°C and then distilled to separate the liquid fraction. Two blends were prepared by combining pyrooil and gasoline, and pyrooil-ethanol mixture (volume ratio of 9:1) and gasoline, both at volumetric concentrations ranging from 2% to 8% to evaluate brake thermal efficiency (BTE) and specific fuel consumption (SFC) in a SI engine. An experimental matrix containing speed, torque, and blend ratio as independent variables for both blends were designed, analyzed, and optimized using the RSM. The results show that a 4% blend of pyrooil with gasoline (P4) and a 6% blend of pyrooil-ethanol mixture with gasoline (P6E) were optimum for an SI engine. Also, the experimental findings show that the P6E blend exhibits 11% higher BTE and 11.82% lower SFC compared to base fuel (pure gasoline), and 7.55% higher BTE and 6% lower SFC than P4. From the AD test, the residuals for BTE and SFC follow a normal distribution. The results conclude that distilled HDPE pyrooil could be used in SI engines at concentrations of P4 and P6E without requiring engine modification.

Meta Tags

Topics						
Spark ignition engines	Fuel consumption	Gasoline	Ethanol	Engine efficiency	Combustion and combustion processe	3
Statistical analysis						
Affiliated or Co-Author						
Vels Institute of Science, Technology & Advanced Studies, India			Saveetha Institute of Medical and Technical Sciences, India			
Vijaya Vittala Institute of To	echnology, India					
Details						
DOI					Pages	
https://doi.org/10.4271/04	1-18-01-0001			Citations	1 34	
Citation					C	5
Manickavelan, K., Sivagane	esan, S., Sivamani, S., ai	nd Kulkarni, M	., "Response	Surface Optimization	of Brake Thermal Efficiency and Spe	\checkmark

Consumption of Spark-Ignition Engine Fueled with Gasoline-Pyrooil and Gasoline-Pyrooil-Ethanol Blends," SAE Int. J. Fuels Lubr. 18(1).

Additional Details

Publisher

SAE International

Content Type Journal Article

SAE International Journal of Fuels and Lubricants

Volume 18, Issue 1

Volume 18, Issue 1

Published Jul 18, 2024

Language English Product Code 04-18-01-0001