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Plant disease recognition using 
residual convolutional enlightened 
Swin transformer networks
Ponugoti Kalpana 1*, R. Anandan 1, Abdelazim G. Hussien 2,13*, Hazem Migdady 3 & 
Laith Abualigah 4,5,6,7,8,9,10,11,12

Agriculture plays a pivotal role in the economic development of a nation, but, growth of agriculture is 
affected badly by the many factors one such is plant diseases. Early stage prediction of these disease 
is crucial role for global health and even for game changers the farmer’s life. Recently, adoption 
of modern technologies, such as the Internet of Things (IoT) and deep learning concepts has given 
the brighter light of inventing the intelligent machines to predict the plant diseases before it is 
deep-rooted in the farmlands. But, precise prediction of plant diseases is a complex job due to the 
presence of noise, changes in the intensities, similar resemblance between healthy and diseased 
plants and finally dimension of plant leaves. To tackle this problem, high-accurate and intelligently 
tuned deep learning algorithms are mandatorily needed. In this research article, novel ensemble 
of Swin transformers and residual convolutional networks are proposed. Swin transformers (ST) 
are hierarchical structures with linearly scalable computing complexity that offer performance and 
flexibility at various scales. In order to extract the best deep key-point features, the Swin transformers 
and residual networks has been combined, followed by Feed forward networks for better prediction. 
Extended experimentation is conducted using Plant Village Kaggle datasets, and performance 
metrics, including accuracy, precision, recall, specificity, and F1-rating, are evaluated and analysed. 
Existing structure along with FCN-8s, CED-Net, SegNet, DeepLabv3, Dense nets, and Central nets are 
used to demonstrate the superiority of the suggested version. The experimental results show that in 
terms of accuracy, precision, recall, and F1-rating, the introduced version shown better performances 
than the other state-of-art hybrid learning models.

Keywords Swin transformer, Deep learning model, Residual convolutional networks, Hierarchical 
transformers, Internet of things

Within the framework of sustainable agriculture, smart and proper farming methods for crop planting land 
management are genuinely fantastic exercises for increasing food yield, protection, and environmental safety. 
However, those farming buildings need to be improved in order to protect the plants from the abnormalities of 
many environmental conditions. Plant pathogens are constantly sensitive to a wide range of biotic factors as well 
as many environmental factors. It is essential to keep in mind that plant diseases can be triggered by a number 
of factors, which results in the plant behaving  abnormally1.

As a result, eliminating plant diseases—which is considered to be the most difficult challenge in precision 
agriculture—requires the development of cutting-edge software and potent data processing  techniques2.
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In order to achieve high yield and production, a number of favored tactics are applied to help with early 
disease prognosis. Environmental health indicators including pollution, tainted water, and unhealthy vegetation 
are taken into account as the collateral damage that affects human  fitness3–5. Deep learning (DL) and machine 
learning (ML) have become more popular, and green techniques are intended to help farmers correctly diagnose 
plant diseases based on the severity of symptoms. The prevalence of plant disease diagnosis has changed as a result 
of the advancement of deep learning (DL) processes such as convolutional neural networks (CNN)6, recurrent 
neural networks (RNN)7, and deep notion networks (DBN)8. DL-based totally algorithms are able to automati-
cally discover the deeper key elements of the plant life when used to localize items that may be  observed9–11.

But while developing effective deep learning algorithms that can detect and analyze the plant disease effec-
tively, researchers help identify important issues and hurdles. Some of them are as follows

1. High resolution camera is required for an efficient capture of Images
2. Environmental and device noises affects the leaf samples
3. More training time to diagnose the multiple-class detection in multiple plants
4. Classification of severity of symptoms in the plant disease remains to be real challenge
5. Complexity still prevails in achieving the best classification rate of diseases in the plants.

According to the challenges discussed above, this work proposes the novel ensemble of residual convolutional 
block with the Swin transformers to provide the better accuracy of detection with any circumstances of environ-
ment. The man contribution of this research work is concises as follows:

1. Develop an intelligent system for expertly identifying the diseases in the plant leaves using the novel residual 
Swin transformer networks (RST-Nets) which can be used as an early trigger for the plant disease recogni-
tion.

2. Create the complexity aware residual networks with transformer to improve the network’s ability to focus on 
both local and global aspects with contextual data that supports an efficient multiple-classification of plant 
diseases.

3. Extensive experimentation is conducted using PlantVillage Datasets and performance metrics are calculated. 
Results shows that the developed model is applicable for overcoming the above mentioned challenges.

The remaining of the essay is structured as follows: in “Associated works”, the linked works were displayed. 
The dataset description, suggested technique, and background information on residual networks and Swin 
transformers are included in Sect. 3. In Sect. 4, the experiment, its findings, and its assessment are described. In 
"Conclusion and its future enhancement", the study concludes with a discussion of future directions.

Associated works
Kumar et al.12 introduced the IoT-based leaf development estimation framework, gCrop using system learning, 
and computer vision approaches. For platforms with low resource availability, low-powered training models 
are used. The framework first determines the leaf ’s aspect, then it calculates how long the leaves will last. The 
results show that, depending on the stage of the leaves, the suggested framework can achieve accuracy levels of 
98–100%. Additionally, those suggest that the flora has much improved and there has been a moderate settling. 
The main limitation of this methodology is that it cannot capture the improvement over longer time periods 
because suitable datasets are not readily  available12.

Understanding flora anomalies in nurseries or other herbal environments is the main objective of investi-
gations by Shima Ramesh Maniyath. The received picture frequently wonders about a simple past to remove 
barriers. The technique is modified from current AI models for precision. A Random forest classifier was used 
to generate the model, which was built using 160 images of papaya leaves. The model could want to place an 
order with a 70% accuracy prediction. The precision can be accelerated by preparing with a huge range of photos 
and the usage of several local additives identical to the global ones, such as SURF (Speed Up Robust Features), 
and DENSE with BOVW (Bag Of Visual Word). The main disadvantage is that it can only be utilized for small 
datasets and is best suited for controlled  harvests13.

A clear definition of plant diseases and the prevalence of pests is provided by Liu et al. in 2021, and they 
further a connection with traditional methods of plant infection and pest detection. This framework investigated 
plant diseases, pest detection techniques, and the advantages and disadvantages of segmenting the community. 
The results of the present research are contrasted with those from conventional databases. This evaluation, based 
on this premise, looks at capacity issues in typical applications of plant illnesses and pest identify dependent on 
DL. In addition, advice on how to resolve the problems is provided, along with some ideas and potential remedies. 
Finally, the review presents the test and the potential for future samples of plant diseases and bugs that will be 
discovered based on in-depth  learning14.

A real-time selection aid machine linked to a camera sensor module was designed and planned by Parama-
sivam Alagumariappan et al.15 to identify plant disease evidence. Additionally, three ML calculations, includ-
ing the extreme learning machine (ELM) with direct and polynomial kernels and the support vector machine 
(SVM), were demonstrated and investigated. The ELM presentation is superior to the widely used SVM classifier, 
according to the findings. When compared to other classifiers, it can be demonstrated that the SVM approach’s 
polynomial component’s sensitivity is superior. Due to real-time electronics that can detect various plant illnesses, 
this artwork gives off the impression of being of high pleasant pertinence. The drawback of this structure is that 
it requires a lot of time for  schooling15.
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In 2020, Ramya et al. introduced a tool to assist farmers in identifying the types of ailments that are affecting 
their crops. The shot was altered using MATLAB, and the leaf situation was connected to NN classification assis-
tance. Then, it was checked how the climate was faring in terms of temperature, wetness, and humidity. After han-
dling the photo, the product sends an SMS to the customer using global system for mobile (GSM) technology. The 
SMS contains information on the leaf kingdom, a particular treatment, and environmental factors. The siphon 
will turn on in the event that the botanical scenario is odd. This suggested framework provides a summary of 
the class and an AI-based system for fully detecting plant leaf diseases. A group of artificial neurons are scattered 
across at least three layers in the ML space to form the foundation of the subclass of calculations known as NN.

This device’s drawback is that it increases the complexity of the device and calls for a lot of memory to handle 
the plant  images16.

Chowdhury et al.17 issued a warning regarding the usage of 18,161 pictures of plain and dissected tomato 
leaves with a DL design that was built mostly on a unique CNN called EfficientNet to learn about tomato dis-
eases. The division fashions for the U-net and Modified U-net are taken into consideration for the department 
of leaves. With the modified U-internet division model, the division of leaf images produced precision, IoU, 
and dice ratings of 98.66%, 98.5%, and 98%, respectively. Using divided pictures, EfficientNet B4 completed 
ten-magnificence characterisation with a precision of 99%. All of the structures were thought to perform better 
at diagnosing the illnesses when they were developed with deeper networks using divided snapshots. A snapshot 
can typically only contain one type of lesion since lesions need to reflect a specific volume in the image, despite 
the fact that their characteristics are conveniently related  out17.

It is possible to continuously forecast 25 different disease categories in tomatoes, Apple, Grape, Peach, Potato, 
and Strawberry using the deep model developed by Khan et al.18 and implemented on AWS DeepLens. The accu-
racy for the real-time environment for this structural version was 98.78%. By utilizing it as soon as the primary 
issue of plant (leaf) ailments may be detected, this pragmatic approach could benefit society, professionals in the 
field of agriculture, and the agri-economic system. This technique is flexible and might be used as a web-based 
database for organizing and classifying plant leaf disease differentiating evidence. Additionally improved with 
this gadget is computational complexity. On the off chance that the location accuracy is guaranteed, the model 
needs to unquestionably improve the picture quality and increase the computing load, which will inevitably 
result in sluggish identity speed and an inability to handle real-time  issues18.

A system for detecting plant leaf illnesses was developed in 2022 by Varshney et al. It is based on deep learn-
ing algorithms. CNN is used as a characteristic extractor, and SVM is used for type. The benchmark dataset 
PlantVillage was used as a comparison in order to contrast the recommended approach. Accuracy is increased to 
88.77% using this framework. The main weakness of this system, however, is its enormous processing  burden19.

Latif et al. (2022) advanced a modified model of a VGG-19 positioned switch researching system in order 
to accurately recognize and diagnose six training, including the healthy rice leaf. Using images of leaves, this 
method can precisely identify five rice disorders. The dataset for rice leaves includes both healthy leaves and those 
suffering from the five distinct diseases black spots, bacterial leaf blight, leaf blasts, and thin brown spots. When 
using the modified encouraged technique, the non-normalized more appropriate dataset has the highest average 
accuracy (96.08%). 0.9620, 0.9617, 09.921, and 0.9616 appear to have been the equivalent values for accuracy, 
recall, specificity, and F1-rating. When combined with IoT technology and set up on a drone, the system can 
quickly identify rice fever. The main issue with this device, however, is that performance suffers as dataset sizes 
increase, leading to poor  performance20.

For the purpose of identifying plant diseases, Gosai et al. added the ResNet approach in 2022. To address 
disappearing or inflating gradient issues, the ResNet approach includes a residual block. Along with gradient 
clipping, time table studying fee, and weight decay, the ResNets algorithms used a number of the parameters. This 
paradigm has better results when it comes to properly diagnosing plant diseases. The extended training duration 
is this framework’s primary drawback,  but21. Table 1 also provides a quick summary of the literature review.

Proposed methodology
Figure 1 shows the proposed framework for classification of multiple diseases from the multiple plant. The three 
main parts of the suggested methodology are type, characteristic extraction, and facts augmentation. The whole 
set of skills are shown in Fig. 1. Records series and argumentation is the name of the first component. The second 
component is the characteristic extraction portion, and the class element makes up the final component. The 
number of plant images that may be employed in the information preprocessing process is increased, while the 
suggested model’s characteristic extraction method and the type layer’s dense extreme learning machines are 
both constructed.

Dataset description
Regarding training and testing purposes in this study, PlantVillage, an open-access resource of photos on plant 
health to facilitate the creation of mobile diagnostic testing collected from  source22, was utilized. The 54,306 
photos in the PlantVillage dataset are from 14 distinct plants. There are a total of 38 classes, of which 26 show 
distinct plant diseases and 12 show varieties of plants with healthy leaves. Figure 2 illustrates the visual repre-
sentation of healthy and disease sample plants such as (a) Healthy Apple (b) Pepper bell-bacterial Spot (c) Apple 
Black rot and (d) Tomato Diseases. Table 2 contains information about the entire dataset.

Data augmentation process
The process of improving networks by utilizing better information to increase type accuracy is known as data 
augmentation. The updated version is more entertaining and may provide more image data for each plant institu-
tion. Each of the plant picture categories is expanded by the statistics augmentation method utilized in this study. 
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As photo enhancement techniques, brightness adjustment, rotational adjustment, and offline transformation 
have been used in this investigation.

Feature extraction
This section details about the proposed hybrid model used for the feature extraction process.

Residual Swin transformers
ResNet was used to evolve the proposed structure because it had a solid foundation. After the 16th layer, swin 
transformers were shielded inside the 20-layer ResNet architecture. By reducing the overall network character-
istics and simplifying the ResNET, the proposed community is designed to be lighter and more transportable. 
Using batch normalization, a LeakyReLU activation layer, and a median pooling layer, the first convolution layer 
includes sixteen kernel filters as a result. These transformers, which are then followed by a Swin Transformer, 
take deeper capabilities from the inputs and feed them to the leftover block. The convolutional block is a compo-
nent of the residual block, which produces residual blocks 2 and 3 and is observed by the average pooling layer 
and converts the 2D images into 1D functions. Because Fig. 3 shows the same location, the swin transformer is 
incorporated into the suggested network.

Swin transformers. The Swin transformer architecture is summarized in Fig. 4, which also shows how multi-
headed self attention (MHSA) is used. The supplied RGB photo is split into distinct, non-overlapping patches 
by the patch splitting module first. Every patch is viewed as a token, and each patch’s feature is a concatenation 
of the RGB values from its raw pixels. In this study, the patch size is 3 × 3, and the function dimension for each 
patch is 3 × 3 × 3, or 9. A linear embedding layer is used to project this uncooked-valued characteristic to any 
scale. The transformer frames with MHSA are put into use to get more functionality out of those patches. Patch 
merging layers narrow the range of tokens in a hierarchical representation as the community grows deeper. The 
first phase uses a patch merging layer to concatenate each institution’s features, and the second uses the swin 
transformer with MHSA to convert the functions. To produce a more comprehensive depiction of hierarchical 
functions, this procedure is repeated twice. The Stage1, Stage2, and Stage three are taken into account because of 
these processes. To create the lossless features that result in a superior type mechanism, all the various capabili-
ties are combined. Sliding window-based MHSA layers are introduced in order to obtain the additional non-
overlapping features. Each transformer is made up of the two sequential blocks, modified attention layers, and 
moving window areas, as shown in Fig. 4.

(1)Y2 = W −MHDA(LN(Y1))+ (Y1− Y2)

(2)Y1 = MLP(Y1)+ (Y1)

(3)Y1 = W −MHDA(LN(Y2))+ (Y1+ Y2)

(4)Y2 = MLP(Y2)+ (Y2)

Table 1.  Quick summary of literature survey.

Authors Techniques used Merits Demerits

Kumar et al. (2019)12 gCrop using machine learning and com-
puter Vision techniques

Many of the parameters were used by the 
ResNets techniques, including gradient 
trimming, schedule learning rate, and 
weight decay

The results, however, do not adequately 
depict the stage of growth of longer 
durations due to the absence of sufficient 
datasets. It should be remembered that the 
device will actually be handed, and that a 
collection of identical leaves may complicate 
the procedure when taking the photograph

Praveena et al. (2023)13 Feature extraction High precision utilized distinctly for the limited harvests 
and supports to small size of

Liu et al. (2021)14 Reviews ML and DL techniques
Studied plant diseases, pest detection 
methodologies, segmentation network with 
its advantages and disadvantages

Concludes that inadequate datasets are 
available and it does not covered real time 
frameworks

Paramasivam Alagumariappan et al. 
(2020)15 ELM Real time framework with high accuracy More time required for training

Ramya et al. (2020)16 NN High accuracy on prediction High memory requirement

Chowdhury et al. (2021)17 CNN Better performance in terms if precision, 
IoU and dice score High time complexity

Khan et al. (2021)18 Deep CNN High accuracy High computational complexity

Varshney et al. (2022)19 CNN Better accuracy High computational overhead

Latif et al. (2022)20 VGG19-based transfer learning Real-time rice disease detection is possible 
with the system

Poor performance when dataset is when 
increased

Gosai et al. (2022)21 ResNet High accurate detection on plant disease Required more time for training the 
network
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Classification layers
The very last layer of the suggested model modifies the classification of dense neural communities utilizing the 
quick severe mastering machines suggested by  Huang23. A type of neural network known as an ELM employs a 
single hidden layer and functions on the principle of auto-tuning resources. When compared to other master-
ing models like Support vector machines (SVM), Bayesian Classifier (BC), K-Nearest Neighborhood (KNN), 
or even Random Forest, ELM exhibits higher performance, high speed, and minimum computing overhead.

This kind of neural community has a hidden layer that does not always need to be tweaked. ELM makes use 
of the kernel feature to deliver accurate data and improved speed. The main advantages of the ELM are improved 
approximation and less training error. The specific functioning mechanism of the ELM is extensively discussed 
 in24. The ELM’s (after Capsule Network) input features maps are represented by

where X—features from Transfer Capsule network, P is the features from the different type of capsule networks.
The symbol for the output ELM function is

ELM’s general training is provided by

(5)X = f (P)

(6)Y(n) = X(n)β = X(n)XT (
1

C
XXT )−1O

Figure 1.  New classification framework for plant diseases.

Content courtesy of Springer Nature, terms of use apply. Rights reserved



6

Vol:.(1234567890)

Scientific Reports |         (2024) 14:8660  | https://doi.org/10.1038/s41598-024-56393-8

www.nature.com/scientificreports/

Finally the softmax activation layers are applied for the above feedforward layers to achieve the best accuracy.
Pseudocode for the proposed algorithm

(7)S = α(

N∑

n=1

(Y(n),B(n),W(n))

Figure 2.  Visual representation of healthy and disease sample plant (a) healthy apple, (b) pepper bell-bacterial 
spot, (c) apple black rot, (d) tomato diseases.
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Table 2.  Plants diseases categorization with its annotated labels.

Plant name Types of the plants Class label No. of samples

Tomato

Bacterial spot 1

28,226

Early blight 2

Healthy 3

Late blight 4

Leaf Mold 5

Septoria leaf spot 6

Spider Mites 7

Target spot 8

Mosaic virus 9

Yellow leaf curl virus 10

Apple

Apple scab 11

3173Black rot 12

Cedar apple rust 13

Blueberry Healthy 14 1502

Cherry

Healthy 15

7029Healthy 16

powdery mildew 17

Corn

Gray leaf spot 18

4089
Common rust 19

Healthy 20

Northern leaf blight 21

Grape

Black rot 22 12,890

Esca black measles 23

26,782Healthy 24

Leaf blight 25

Orange Haunglonbing 26 1201

Peach
Bacterial spot 27

902
Healthy 28

Pepperbell Bacterial Spot 29
2503

Healthy 30

Potato

Early blight 31

12,901Healthy 32

Late blight 33

Raspberry Healthy 34 1290

Soyabeans Healthy 35 890\

Squash

Powdery Mildew 36

5690Healthy 37

Leaf scorch 38

Figure 3.  Proposed block diagram for the Swin transformer enabled ResNet topology.
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Inputs : (f1, f2 ,f3,f4,,,,,,,,,,,,,,,,,,,,fn)  f ˗ Input Features
Output :  Disease catagorization
Epochs count :  50
Randomly distribute the input bias & weights
 While yes
    Measure ELM cell output using equation(7)
 If (S> Tsh

                           Start the loop from 1 to 50
*Declare  bias weights and source layers 

                        Measure ELM cell output using equation (7)
                                     If (S== Tsh)
                                                Go to **
                                      Else   
                                                 Go to *
Stop
Stop
    **If (output.Measurement <=1)
     / Normal Data traces /   No traces found
  Else check if(output.Measurement <=2 & out.value >1)
/  Detection of plant disease 
Otherwise check if (output.Measurement<=3 & out. value >2)
     /plant disease stage 1 
otherwise if(output.Measurement <=4 & out. value >3)
     /Plant disease stage 2
  Otherwise if (output.Measurement <=2 & out. value >1)
/  Plant disease stage 3 
End 

)

Results and its discussions
This section details the proposed model’s performance after significant experimentation. This part also includes 
the thorough comparison of the different algorithms.

Figure 4.  Proposed MHSA and shifting window based Swin transformer module.
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Experimentation
The entire test is run on a computer with a clock speed of 3.2 GHz, an Intel I9CPU, a 256 GB NVIDIA (Titan 
GPU), and 16 GB of RAM. This arrangement acts as the baseline station for validating and testing the suggested 
model. The model that is recommended is trained using Google Co-lab. For the development and implementa-
tion of the suggested version, special bundles of the libraries are utilized in addition to Tensorflow 2.10, Keras 
5.Five.8, OpenCV1.10, and Capsnet (Table 3).

During the education of our counseled model, the ADAM optimizer is used as an optimizer. The teach-
ing parameters for the cautious model are displayed in table three. To evaluate the efficacy of the proposed 
model, additional metrics were developed in addition to accuracy, precision, recall, specificity, and F1-rating. 
The equations in Table 4 are examples of how the model’s performance signs were calculated. Several iterations 
were conducted to fix the hyper parameters and finally early stopping method is adopted to stop the over fitting 
during the training process. The parameters mentioned in Table 3 has been fixed based on the several experi-
mentations. After the several iterations, batch size is fixed to 30, epochs is 120 with the learning rate of the model 
is fixed 0.0001. To reduce the complexity of the model, cross entropy is fixed for the loss function. Further to 
reduce the complexity and to increase the performance, the drop-out is finalized to 0.1 and optimizer is fixed 
to ADAM. To reduce the complexity and to increase the performance of the model, these hyperparameters are 
selected and fixed ().

The final parameters used for training the proposed network is shown in Table 3.
10% of the records are used to analyze the advised version, 20% are used for validation, and roughly 70% are 

used for training. Although trained models over 50, 100, 150, and 200 epochs were also taken into considera-
tion for assessment purposes, the recommended model is educated over 120 epochs. In an effort to prevent the 
over-fitting issue, an early halting strategy started to be utilized around epoch 100.

Performance evaluation
Tables 5, 6, 7, 8, 9, 10, 11, 12 and 13 presents the performance of the proposed model in classifying the multiple 
diseases from the various plant types. Each table illustrates the performance of the model using the 30% of testing 
data and its performance in classifying the plant diseases from the multiple plants. From the tables, it is evident 
that the proposed model has produced the best average performance that ranges from 99.9% accuracy, precision 

Table 4.  Training hyper indicators used in proposed model.

Serial no. Hyper parameters Values

1 Batch sizes 30

2 No of epochs 120

3 Learning rate 0.0001

4 Loss function employed Cross-entropy

5 Momentum for ADAM optimizer 0.01

6 Drop-out 0.1

Table 3.  Performance indicators utilized for evaluation. TPo and TNe true positive and negative, FPo and FNe 
false positive and negative.

Serial no. Performance indicators Expressions

01 Accuracy
TPo+TNe

TPo+TNe+FPo+FNe

02 Recall
TPo

TPo+FNe
 ×100

03 Specificity
TNe

TNe+FPo

04 Precision
TNe

TPo+FPo

05 F1-Score
Precison∗Recall
Precision+Recall

Table 5.  Performance evaluation of the developed model in detecting the diseases in apple plant.

Plant and disease type

Performance evaluation parameters

Accuracy (%) Precision (%) Recall (%) Specificity (%) F1-Score (%)

Healthy apple 99.96 99.91 99.91 99.96 99.91

Apple scab 99.94 99.92 99.92 99.95 99.96

Blackrot 99.95 99.93 99.92 99.95 99.92

Ceder apple rust 99.96 99.93 99.93 99.93 99.96
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of 99%, recall of 99%, specificity of 99.0% and f1-score is 99.92% respectively. Moreover, the performance of the 
proposed model has shown the uniform performance of classifying the multiple diseases from the multiple plants.

Comparative analysis
The overall results of the suggested device demonstrate its superiority over the available deep transfer learning 
and tablet networks, such as ResNets-5025, ResNet-a  hundred26,  GoogleNets27,  AlexNets28, Inception  version29, 
VGG-1930,  CapsuleNetworks31, and  CAPSNETS32.

Table 6.  Performance evaluation of the developed model in detecting the diseases in strawberry plant.

Plant and disease type

Performance evaluation parameters

Accuracy (%) Precision (%) Recall (%) Specificity (%) F1-Score (%)

Healthy apple 99.97 99.93 99.92 99.95 99.96

Unhealthy scab 99.96 99.95 99.92 99.95 99.92

Table 7.  Performance evaluation of the developed model in detecting the diseases in corn plant.

Plant and disease type

Performance evaluation parameters

Accuracy (%) Precision (%) Recall (%) Specificity (%) F1-Score (%)

Healthy apple 99.97 99.93 99.92 99.95 99.96

Unhealthy scab 99.95 99.96 99.96 99.95 99.92

Table 8.  Performance evaluation of the developed model in detecting the diseases in squash plant.

Plant and disease type

Performance metrics

Accuracy (%) Precision (%) Recall (%) Specificity (%) F1-Score (%)

Healthy apple 99.96 99.92 99.92 99.94 99.96

Unhealthy scab 99.95 99.93 99.96 99.95 99.92

Table 9.  Performance evaluation of the developed model in detecting the diseases in squash plant.

Plant and disease type

Performance evaluation parameters

Accuracy (%) Precision (%) Recall (%) Specificity (%) F1-Score (%)

Healthy apple 99.95 99.92 99.92 99.95 99.96

Unhealthy scab 99.96 99.92 99.92 99.95 99.92

Table 10.  Performance evaluation of the developed model in detecting the diseases in soyabean plant.

Plant and disease type

Performance evaluation parameters

Accuracy (%) Precision (%) Recall (%) Specificity (%) F1-Score (%)

Healthy apple 99.95 99.92 99.92 99.95 99.96

Apple scab 99.94 99.93 99.92 99.96 99.92

Table 11.  Performance evaluation of the developed model in detecting the diseases in squash plant.

Plant and disease type

Performance evaluation parameters

Accuracy (%) Precision (%) Recall (%) Specificity (%) F1-Score (%)

Healthy potato 99.96 99.96 99.92 99.95 99.96

Light blight 99.95 99.93 99.92 99.95 99.92

Early blight 99.95 99.93 99.92 99.95 99.92
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Figures 5 and 6 presents the comparative evaluations of the different algorithms in detecting the multiple 
plant diseases. The advantage of the proposed model is clearly visualized since it produces the best uniform 
performance of classifying the multiple diseases from the multiple plants. The major advantage of the proposed 
model is the integration of residual connected swin transformers that enriches the feature extraction process 
by extracting the deeper features that aids for the better classification of plant diseases. Though the capsule 
networks and CAPSNET has produced the average performance of 99% and 98% respectively but the proposed 
model edged over these models in the classification of multiple plant diseases. Though the proposed model 
has produced the best performance, computational overhead may create light of complexity in deploying these 
models in the hardware.

Conclusion and its future enhancement
In this research article, novel ensemble of Swin transformers and residual networks integrated with feed forward 
networks are proposed. In the first stage, Swin and residual networks are used to extract the more deeper features 
to achieve the better extraction performances, whereas feed forward networks are adopted in the second stage 
to achieve the best prediction of multiple plant diseases. The extensive experimentation is carried out using 
the plant village datasets and performance metrics are calculated and compared with the existing hybrid deep 

Table 12.  Performance evaluation of the developed model in detecting the diseases in potato plant.

Plant and disease type

Performance evaluation parameters

Accuracy (%) Precision (%) Recall (%) Specificity (%) F1-Score (%)

Healthy potato 99.96 99.95 99.92 99.95 99.96

light blight 99.94 99.93 99.92 99.95 99.92

Early blight 99.95 99.93 99.92 99.95 99.92

Table 13.  Performance evaluation of the developed model in detecting the diseases in tomato plant.

Plant and disease type

Performance evaluation parameters

Accuracy (%) Precision (%) Recall (%) Specificity (%) F1-Score (%)

Healthy tomato 99.96 99.96 99.96 99.96 99.96

light blight 99.94 99.94 99.94 99.94 99.94

Early blight 99.95 99.95 99.95 99.95 99.95

Bacterial spot 99.96 99.96 99.96 99.96 99.96

Leaf spot 99.94 99.94 99.94 99.94 99.94

Target spot 99.95 99.95 99.95 99.95 99.95

Yellow leaf virus 99.96 99.96 99.96 99.96 99.96

Mosoic virus 99.94 99.94 99.94 99.94 99.94

Spider mates 99.95 99.95 99.95 99.95 99.95

Figure 5.  Comparative investigation of the distinct algorithms in detecting healthy plant diseases.
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learning models. The results show that the recommended architecture outperformed other cutting-edge solu-
tions, achieving accuracy levels of 99.95% with a 99.95% accuracy, a recall of 99.96%, a specificity of 99.95%, and 
a high-quality f1score of 99.95%. Although, the proposed model has produced the better performances still it is 
not suitable for resource constraint energy consuming devices due to its computational overhead.

As the future scope, proposed model needs its improvisation in reducing the computational complexity which 
can be deployed in the IoT-Edge devices to handle the more real time datasets.

Ethical approval
This article does not contain any studies with human participant and Animals performed by author. The article 
uses the benchmark datasets available in the kaggle to evaluate the proposed model.

Data availability
The PlantVillage data set is available at the following link: https:// github. com/ spMoh anty/ Plant Villa ge- Datas et/ 
tree/ master/ raw (accessed on 21 November 2022).
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