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Power Domination Parameters in
Honeycomb-Like Networks

J. Anitha and Indra Rajasingh

Abstract A set S of vertices in a graph G is called a dominating set of G if every
vertex in V (G)\S is adjacent to some vertex in S. A set S is said to be a power
dominating set of G if every vertex in the system is monitored by the set S following
a set of rules for power system monitoring. The power domination number of G is
the minimum cardinality of a power dominating set of G. In this paper, we obtain the
power domination number for triangular graphs, pyrene networks, circum-pyrene
networks, circum-trizene networks, generalized honeycomb torus and honeycomb
rectangular torus.

1 Introduction

Definition 1 ([1]) For v ∈ V (G), the open neighbourhood of v, denoted as NG(v),
is the set of vertices adjacent with v; and the closed neighbourhood of v, denoted
by NG[v], is NG(v) ∪ {v}. For a set S ⊆ V (G), the open neighbourhood of S

is defined as NG(S) = ⋃

v∈S

NG(v), and the closed neighbourhood of S is defined

as NG[S] = NG(S) ∪ S. For brevity, we denote NG(S) by N(S) and NG[S]
by N [S].
Definition 2 ([1]) For a graph G(V,E), S ⊆ V is a dominating set of G if every
vertex in V \S has at least one neighbour in S. The domination number of G, denoted
by γ (G), is the minimum cardinality of a dominating set of G.
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Definition 3 ([2]) Let G(V,E) be a graph, and let S ⊆ V (G). We define the sets
Mi(S) of vertices monitored by S at level i, i ≥ 0, inductively as follows:

1. M0(S) = N [S].
2. Mi+1(S) = Mi(S) ∪ {w : ∃v ∈ Mi(S), N(v) ∩ (V (G)\Mi(S)) = w}.
If M∞(S) = V (G), then the set S is called a power dominating set of G. The
minimum cardinality of a power dominating set in G is called the power domination
number of G written γp(G).

The power domination has been well studied for trees [1], product graphs [4], block
graphs [3], interval graphs and so on. In fact, the problem has been shown to be
NP-complete even when restricted to bipartite graphs and chordal graphs [1].

2 Main Results

In this section, we solve the power domination problem for triangular graphs, pyrene
network, circum-pyrene network, circum-trizene network, generalized honeycomb
torus and honeycomb rectangular torus. In 2013 Ferrero et al. [5] proved the
following lemma which shows the power domination number for honeycomb mesh
network HM(n).

Lemma 1 If G is the honeycomb mesh network HM(n) of dimension n, then

γp(G) ≥
⌈

2n
3

⌉
.

The following lemma establishes a critical subgraph H of G in the sense that H

contains at least one vertex of any power dominating set.

Lemma 2 Let G be a graph and H as shown in Fig. 1a be a subgraph G with
degH wi = degGwi = 2, ∀i, i = 1, 2, 3, 4, 5, 6, 7, 8. Then H is a critical
subgraph of G.

Proof Neither u nor v, when monitored, can further monitor any of wi, i =
1, 2, 3, 4, 5, 6, 7, 8, as degH u = degH v = 3.

Definition 4 ([8]) Let n be a non-negative integer. A triangle graph of order
n, T Gn, is defined in the following way: T G1 is a hexagon. When n ≥ 2, T Gn is
built according to the following step:

Draw n rows of regular hexagons of the same size within an equilateral triangle
(which is called the framework of T Gn) so that the first row consists of one hexagon,
the second row consists of two hexagons and the nth row consists of n hexagons.
Set all the vertices of these hexagons to be the vertices of T Gn, and set all the sides
of these hexagons to be the edges of T Gn.

Lemma 3 Let G be a triangle graph T Gn, n ≥ 2. Then γp(G) ≥ ⌈
n
2

⌉
.

Proof In T Gn, there are
⌈

n
2

⌉
critical subgraphs, each isomorphic to H as described

in Lemma 2.2. Therefore, γp(G) ≥ ⌈
n
2

⌉
.
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Fig. 1 (a) Circled vertices indicate a power dominating set of critical subgraph H induced by
G (b) power dominating set of T G4

Power Domination Algorithm in Triangular Graph

Input Triangular graph T Gn, n ≥ 2.

Algorithm Name the vertices of T Gn, n ≥ 2 as 1 to n2 +4n+1 sequentially from
left to right, row wise beginning with the top most row.

(i) Select S2 = {4} in T G2.
(ii) Let S3 = {9, 11} in T G3.

(iii) Inductively select Sn = ⋃
 n
2 �

k=1 n2 + 2(k − 1) in T Gn.

Output γp(T Gn) = ⌈
n
2

⌉
.

Proof of Correctness S4 is a power dominating set of T G4 with |S4| = 2. Now
M0(S4) = N [S4] = {16, 20, 21, 12, 18, 22, 23, 14}. See Fig. 1b. At least one vertex
v ∈ M0(S4) satisfies |N [v]\M0(S4)| = 1. Proceeding inductively, for every vertex
v ∈ Mi(S4), |N [v]\Mi(S4)| = 1, i ≥ 1, at every inductive step i, i ≥ 1. Now

Sn = ⋃
 n
2 �

k=1 n2 + 2(k − 1) is a power dominating set of T Gn. This implies that
γp(T Gn) = ⌈

n
2

⌉
, hence the proof.

Theorem 1 Let G be a triangle graph T Gn. Then γp(G) = ⌈
n
2

⌉
.
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2.1 Power Domination in Pyrene Network

Pyrene is an alternante polycyclic aromatic hydrocarbon (PAH) and consists of
four fused benzene rings, resulting in a large flat aromatic system. It is a colourless
or pale yellow solid which forms during incomplete combustion of organic materials
and therefore can be isolated from coal tar together with a broad range of related
compounds. In the last four decades, a number of research works have been
reported on both the theoretical and experimental investigation of pyrene concerning
its electronic structure, UV -vis absorption and fluorescence emission spectrum.
Indeed, this polycyclic aromatic hydrocarbon exhibits a set of many interesting
electrochemical and photophysical attributes, which have resulted in its utilization
in a variety of scientific areas. Like most PAHs, pyrene is used to make dyes, plastics
and pesticides. Figure 2b depicts the graph of circum-pyrene (1). Circum-pyrene(2)

is obtained by adding a layer of hexagons to the boundary of circum-pyrene
(1). Inductively, circum-pyrene (n) is obtained from circum-pyrene(n − 1) by
adding a layer of hexagons around the boundary of circum-pyrene (n − 1). Similar
construction follows for circum-trizene (n) [6]. See Fig. 3b.
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Fig. 2 (a) Power dominating set of PY(4), (b) power dominating set of circum-pyrene(1)
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Fig. 3 (a) Circled vertices constitute a power dominating set of circum-trizene(1), (b) critical
subgraph H of G

Lemma 4 Let G be a pyrene network PY(n), n ≥ 4. Then γp(G) ≥ ⌈
n
2

⌉
.

Proof In PY(n), there are
⌈

n
2

⌉
critical subgraphs, each isomorphic to H as

described in Lemma 2.2. Therefore, γp(G) ≥ ⌈
n
2

⌉
.

Power Domination Algorithm in Pyrene Network

Input Pyrene network PY(n), n ≥ 4.

Algorithm Name the vertices of PY(n), n ≥ 4 as 1 to 2n2 + 4n sequentially
from left to right, row wise beginning with the topmost row. Let P ∗ denote the
path induced by the edges of the hexagons that are not boundary edges of any other
hexagon. Select

⌈
n
2

⌉
vertices of degree 3 in P ∗, which are at distance 4 apart on P ∗.

See Fig. 2a.

Output γp(PY (n)) = ⌈
n
2

⌉
.

Proof of Correctness S4 is a power dominating set of PY(4) with |S4| = 2. Now
M0(S4) = N [S4] = {4, 6, 7, 2, 16, 20, 21, 12}. See Fig. 2a. At least one vertex
v ∈ M0(S4) satisfies |N [v]\M0(S4)| = 1. Proceeding inductively, for every vertex
v ∈ Mi(S4), |N [v]\Mi(S4)| = 1, i ≥ 3, at every inductive step i, i ≥ 1. Now Sn =
⋃
 n

2 �
i=1 (2i)2 is a power dominating set of PY(n). This implies that γp(PY (n)) =⌈

n
2

⌉
, hence the proof.

Theorem 2 Let G be a pyrene network PY(n), n ≥ 4. Then γp(G) = ⌈
n
2

⌉
.
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Lemma 5 Let G be a circum-pyrene(n), n ≥ 1. Then γp(G) ≥ n + 1.

Proof In circum-pyrene(n), there are 2n + 2 critical subgraphs, each isomorphic to

H as described in Lemma 2.2. Therefore, γp(G) ≥
⌈

2n+2
2

⌉
= n + 1.

Power Domination Algorithm in Circum-Pyrene

Input Circum-pyrene(n), n ≥ 1.

Algorithm Name the vertices of circum-pyrene(n), n ≥ 1 as 1 to 6n2 + 20n +
16 sequentially from left to right, row wise beginning with the first row. Consider
2n + 2 hexagons in the outer most layer of the circum-pyrene(n). Let P ∗ denote
the path induced by the edges of the hexagons that are not boundary edges of any
other hexagon. Select n + 1 vertices of degree 3 in P ∗, which are at distance 5
apart on P ∗.

Output γp(circum−pyrene(n)) = n + 1.

Proof of Correctness S(1) is a power dominating set of circum-pyrene(1) with
|S(1)| = 2. Now M0(S(1)) = N [S(1)] = {1, 2, 4, 7, 13, 17, 18, 9}. See Fig. 2b.
At least one vertex v ∈ M0(S(1)) satisfies |N [v]\M0(S(1))| = 1. Proceeding
inductively, for every vertex v ∈ Mi(S(1)), |N [v]\Mi(S(1))| = 1, i ≥ 1, at
every inductive step i, i ≥ 2. Now S(n) = n + 1 is a power dominating set of
circum-pyrene(n). This implies that γp(G) = n + 1, hence the proof.

Lemma 6 Let G be a circum-trizene(n), n ≥ 1. Then γp(G) ≥ n + 1.

Proof In circum-trizene(n), there are 2n + 2 critical subgraphs, each isomorphic to

H as described in Lemma 2.2. Therefore, γp(G) ≥
⌈

2n+2
2

⌉
= n + 1.

Power Domination Algorithm in Circum-Trizene

Input Circum-trizene(n), n ≥ 1.

Algorithm Name the vertices of circum-trizene(n), n ≥ 1 as 1 to 6n2 + 18n +
13 sequentially from left to right, row wise beginning with the first row. Consider
2n + 2 hexagons in the outer most layer of the circum-trizene(n). Let P ∗ denote
the path induced by the edges of the hexagons that are not boundary edges of any
other hexagon. Select n + 1 vertices of degree 3 in P ∗, which are at distance 5
apart on P ∗.

Output γp(circum−trizene(n)) = n + 1.

Proof of Correctness S(1) is a power dominating set of circum-trizene(1) with
|S(1)| = 2. Now M0(S(1)) = N [S(1)] = {6, 2, 3, 10, 8, 4, 12, 13}. See Fig. 3a.
At least one vertex v ∈ M0(S(1)) satisfies |N [v]\M0(S(1))| = 1. Proceeding
inductively, for every vertex v ∈ Mi(S(1)), |N [v]\Mi(S(1))| = 1, i ≥ 1, at
every inductive step i, i ≥ 2. Now S(n) = n + 1 is a power dominating set of
circum-trizene(n). This implies that γp(G) = n + 1, hence the proof.
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Theorem 3 Let G be a circum-pyrene(n) or a circum-trizene(n), n ≥ 1. Then
γp(G) = n + 1.

3 Ladderlike Honeycomb Networks

Lemma 7 Let H be as shown in Fig. 3b. Then γp(H) = 1.

Proof Let S be a power dominating set of H . We claim that |S| = 1. Suppose not,
let H be the subgraph that does not contain any member of S. If any vertex of H

is monitored, then v is adjacent to two unmonitored vertices of H , a contradiction.
See Fig. 3b.

3.1 Honeycomb Rectangular Torus

Definition 5 ([7]) Assume that m and n are positive even integers. The honeycomb
rectangular torus HReT (m, n) is the graph with the node set {(i, j)\0 ≤ i <

m, 0 ≤ j < n} such that (i, j) and (k, l) are adjacent if they satisfy one of the
following conditions:

1. i = k and j = l ± 1(mod n); and
2. j = l and k = i − 1(mod m) if i + j is even.

Definition 6 ([7]) Assume that m and n are positive integers where n is even. Let
d be any integer such that (m − d) is an even number. The generalized honeycomb
rectangular torus GHT (m, n, d) is the graph with the node set {(i, j)\0 ≤ i <

m, 0 ≤ j < n} such that (i, j) and (k, l) are adjacent if they satisfy one of the
following conditions:

1. i = k and j = l ± 1(modn)

2. j = l and k = i − 1 if i + j is even and
3. i = 0, k = m − 1, and l = j + d(modn) if j is even.

Obviously, any GHT (m, n, d) is a three-regular bipartite graph. We can label those
nodes (i, j) white when i + j is even or black otherwise.

Lemma 8 Let G be a HReT (m, n),m, n are even m ≥ 6, n ≥ 8 and m ≤ n. Then
γp(G) ≥ n

2 .

Proof In HReT (m, n), there are n
2 critical subgraphs, each isomorphic to H as

described in Lemma 3.1. Therefore, γp(G) ≥ n
2 .

Power Domination Algorithm in Honeycomb Rectangular Torus

Input The honeycomb rectangular torus HReT (m, n),m, n is even m ≥ 6, n ≥ 8
and m ≤ n.
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(a)
(1,1)

(b)

(1,2) (1,3) (1,4) (1,5) (1,6) (1,7) (1,8)

(2,1) (2,2) (2,3) (2,4) (2,5) (2,6) (2,7) (2,8)

(3,1) (3,2) (3,3) (3,4) (3,5) (3,6) (3,7) (3,8)

(4,1) (4,2) (4,3) (4,4) (4,5) (4,6) (4,7) (4,8)

(5,1) (5,2) (5,3) (5,4) (5,5) (5,6) (5,7) (5,8)

(6,2) (6,3) (6,4) (6,5) (6,6) (6,7) (6,8)(6,1)

(1,1) (1,2) (1,3) (1,4) (1,5) (1,6) (1,7) (1,8)

(2,1) (2,2) (2,3) (2,4) (2,5) (2,6) (2,7) (2,8)

(3,1) (3,2) (3,3) (3,4) (3,5) (3,6) (3,7) (3,8)

(4,1) (4,2) (4,3) (4,4) (4,5) (4,6) (4,7) (4,8)

(5,1) (5,2) (5,3) (5,4) (5,5) (5,6) (5,7) (5,8)

(6,2) (6,3) (6,4) (6,5) (6,6) (6,7) (6,8)(6,1)

Fig. 4 Circled vertices constitute a power dominating set. (a) Honeycomb rectangular torus
HReT (6, 8). (b) Honeycomb rectangular torus GHT (6, 8, 2)

Algorithm Name the vertices in the ith row, j th column position as (i, j), 1 ≤ i ≤
m, 1 ≤ j ≤ n, and select the vertices

⋃n−1
j=5(2, j) ∪ {(2, 2), (3, 4), (4, 1)} in S.

Output γp(HReT (m, n)) = n
2 + 1.

Proof of Correctness Let S be a power dominating set of HReT (m, n) with |S| =
n
2 + 1. Then M0(S) = N [v] = {(i, j), (2, k), (2, 2), (1, 2), (3, 2), (2, 3), (3, 4),

(4, 4), (4, 1), (5, 1), (3, 1), (4, n)}, i = 1, 2, 3, j = 5, 7, . . . , n − 1, k =
4, 6, . . . , n − 2. See Fig. 4a. At least one vertex v ∈ M0(S(1)) satisfies
|N [v]\M0(S(1))| = 1. Proceeding inductively, for every vertex v ∈
Mi(S), |N [v]\Mi(S)| = 1, i ≥ 1, at every inductive step i, i ≥ 1.
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Now S = ⋃n−1
j=5(2, j) ∪ {(2, 2), (3, 4), (4, 1)} is a power dominating set of

(HReT (m, n)). This implies that γp(G) = n
2 + 1, hence the proof.

Lemma 9 Let G be a generalized honeycomb rectangular torus GHT (m, n, d),

m ≥ 6, n ≥ 8, m ≤ n. Then γp(G) ≥ n
2 .

Proof In GHT (m, n, d), there are n
2 vertex-disjoint copies of H as described in

lemma 3.1. Therefore, γp(G) ≥ n
2 .

Theorem 4 Let G be a honeycomb rectangular torus HReT (m, n) or a general-
ized honeycomb rectangular torus GHT (m, n, d), m ≥ 6, n ≥ 8,m ≤ n. Then
n
2 ≤ γp(G) ≤ n

2 + 1.

4 Conclusion

In this paper, we have obtained the power domination number for triangular graphs,
pyrene networks, circum-pyrene networks, circum-trizene networks, honeycomb
rectangular torus and generalized honeycomb torus network.
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