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Introduction
The Bernoulli polynomials for natural values of the argument were first considered by

J.Bernoulli (1713) in relation to the problem of summation of powers of consecutive natural
numbers. L. Euler studied such polynomials for arbitrary values of the argument, the term
"Bernoulli polynomials" was introduced by J. L.Raabe (1851).

The Bernoulli numbers and polynomials are well studied and find applications in fields of
pure and applied mathematics. Various variants of generalization of the Bernoulli numbers and
polynomials can be found in [5–11]. A generalization to several variables has been considered in
[12]; in this paper definitions of the Bernoulli numbers and polynomials associated with rational
lattice cones were given and multidimensional analogs of their basic properties were proved.

This paper is devoted to generalization of these results to the case of hypercomplex variables.
The Clifford algebra in hypercomplex function theory (HFT) was first used by R. Fueter [1] in
the beginning of the last century. A systematic study of this topic can be found in [2–4]. Also,
the papers [15–18] with further advancement of the Clifford analysis should be noted. The notion
of the Bernoulli numbers and polynomials in this framework were given and studied in [13, 14].
In this paper we give a more genral notion of Bernoulli polynomials than in [13, 14], namely,
in the spirit of [12] we define polynomials in hypercomplex variables associated with a matrix
of integers. In the second section of the paper we formulate and prove basic properties of such
polynomials.
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1. Notation and definitions of the Generalized Bernoulli
Polynomials and Bernoulli Numbers

Let {e1, . . . , en} be an orthonormal base of the Euclidean vector space Rn with a product
according to the multiplication rules

ekel + elek = −2δkl, k, l = 1, . . . , n,

where δkl is the Kronecker symbol. This non commutative product generates the 2n−dimensional
Clifford algebra Cl0,n over R and the set(eA : A ⊆ {1, . . . , n}) with eA = eh1eh2 . . . ehr , 1 6 h1 6
. . . 6 hn, eϕ = e0 = 1, forms a basis of Cl0,n. The real vector space Rn+1 is embedded in Cl0,n
by identifying the element (x0, x1, . . . , xn) ∈ Rn+1 with

z = x0e0 + x1e1 + · · ·+ xnen ∈ A ≡ spanR {e0, . . . , en} ∼= Rn+1.

The natural generalization of the complex Cauchy-Riemann operator

∂

∂z
=

1

2

(
∂

∂x
+ i

∂

∂y

)
is given by the operator

D =
∂

∂x0
+

∂

∂x1
e1 + . . .+

∂

∂xn
en,

and the equation
Df = 0

defines hypercomplex holomorphic (or monogenic ) functions f = f(z) as Clifford algebra valued
functions in the kernel of this generalized Cauchy-Riemann operator (cf. [15]). Since the operator
D can be applied both from the left and from the right hand side of f, it is usual to refer to
it as a left monogenic function or a right monogenic function, respectively. For simplicity, from
now on we only deal with left monogenic functions. The case of right monogenic functions can
be treated completely analogously.

Since Dz = 1 − n it is evident that the function f(z) = z ∈ A is only monogenic if n = 1,
i.e., in the case of A = C. This implies significant differences between the cases n = 1 and
n > 1. Moreover, powers of z, i.e., f(z) = zk, k = 2, . . . , are not monogenic which means that
they cannot be considered appropriate as hypercomplex generalizations of the complex power
zk, z ∈ C. These facts are the reason for generalized power series of a special structure, which
we are going to use in the following subsection.

To overcome the mentioned situation, in [16] has been considered another hypercomplex
structure for Rn+1 and

Hn = {z⃗ : z⃗ = (z1, . . . , zn), zk = x0 − xkek, x0, xk ∈ R k = 1, . . . , n},

whereas the components of the vector z⃗, i.e. the hypercomplex variables zk themselves are
monogenic, their ordinary products zizk, i ̸= k, are not monogenic. But a n-ary operation,
namely their permutational (symmetric) product resolves the problem (cf. [16]).

Definition 1. Let V+ be a commutative or non-commutative ring, ak ∈ V (k = 1, . . . , n), then
the symmetric "×" product is defined by

a1 × a2 × · · · × an =
1

n!

∑
π(i1,...,in)

ai1ai2 · · · ain , (1)

where the sum runs over all permutations of all (i1, . . . , in).
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Additionally, the following convention has been introduced in [16].

Convention. If the factor aj occurs σj times in (1), we briefly write

a1 × · · · × a1︸ ︷︷ ︸
σ1

× · · · × an × · · · × an︸ ︷︷ ︸
σn

= aσ1
1 × · · · × aσn

n = a⃗σ, (2)

where σ = (σ1, . . . , σn) ∈ Nn
0 and set parentheses if the powers are understood in the ordinary

way.

Formula (2) simply allows to work with a polynomial formula exactly in the same way as in
the case of several commutative variables. It holds

(z1 + · · ·+ zn)
k =

∑
|σ|=k

(
k
σ

)
zσ1
1 × · · · × zσn

n =
∑
|σ|=k

(
k
σ

)
z⃗σ, k ∈ N (3)

with polynomial coefficients defined as usual by
(

k
σ

)
=

k!

σ!(k − σ)!
, where σ! = σ1! + · · ·+ σn!

(see [17, 18]).
In [17] it has been shown that the partial derivatives of z⃗σ with respect to xk are obtained as

∂z⃗σ

∂xk
= σkz⃗

σ−τk , (4)

where τk is the multiindex with 1 at place k and zero otherwise.
It is well known that for complex holomorphic functions f : C → C the complex derivative

f ′ =
df

dz
exists and coincides with the complex partial derivative

∂f

∂z
=

1

2

(
∂f

∂x
− i

∂f

∂y

)
.

The analogous situation is true in the hypercomplex case (cf. [18]). A real differentiable function
f(z⃗) is left (right) hypercomplex derivable in Ω ⊂ Hn if and only if f is left (right)monogenic in
Ω ⊂ Hn. In the case of its existence, the hypercomplex derivative is given by

1

2
Df resp.

1

2
fD,

with the conjugated generalized Cauchy-Riemann operator

D =
∂

∂x0
− ∂

∂x1
e1 − · · · − ∂

∂xn
en.

Furthermore, like in the complex case, where the complex derivative satisfies

f ′ =
df

dz
=

∂f

∂x
,

the left(right) hypercomplex derivative of f at z⃗ is exactly

1

2
Df =

1

2
fD =

∂f

∂x0
.

Let a1, . . . , an be vectors with real coordinates aj = (aj1, . . . , a
j
n) and

A =


a11 . . . . . . an1
a12 . . . . . . an2
...

...
...

a1n . . . . . . ann


is a matrix with coordinates of the vectors aj in a column.
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Definition 2. The hypercomplex Bernoulli polynomials Bµ (z) = Bµ1
, . . . , µn(z1, . . . , zn),

µk ∈ N0, k = 1, . . . , n associated with the matrix A are defined as the coefficients of a multiple
power series ordered with respect to the degree of homogenity by the following relation

e<t⃗,z⃗> =

n∏
j=1

( ∞∑
k=0

< aj , t >
k

(k + 1)!

) ∞∑
|µ|=0

Bµ(z)
tµ

µ!
, (5)

where < t, z > = t1z1 + . . .+ tnzn, z = (z1, . . . , zn), tµ = tµ1

1 . . . tµn
n , µ! = µ1! . . . µn!,

| µ |= µ1 + . . . ,+µn.

Applying (3), the formula (5) is equivalent to

∞∑
|σ|=0

1

σ!
zσ1
1 × · · · × zσn

n tσ =
∞∑

|s|=0

1

(| s |+ 1)s!
(ajt)s

∞∑
|µ|=0

Bµ(z)
tµ

µ!
,

where s = (s1, . . . , sn), σ = (σ1, . . . , σn) and (ajt)s = (aj1t1)
s1
. . . . (ajntn)

sn .

Comparing both sides gives the relationship of hypercomplex Bernoulli polynomials to the
generalized powers

∑
α+µ=σ

∑
s1+...+sn=α

(
n∏

j=1

1

(| sj |+1)sj !

)
(a1t)s

1

. . . (ant)s
n Bµ(z)

µ!
=

1

σ!
z1

σ1 ×z2
σ2 ×· · ·×zn

σn , (6)

where α = (α1, . . . , αn), µ = (µ1, . . . , µn), t = (t1, . . . , tn), z = (z1, . . . , zn), σ = (σ1, . . . , σn),
sj = (sj1, . . . , s

j
n) for σk = 0, 1, . . . (k = 1, . . . , n).

Obviously, the set of hypercomplex Bernoulli polynomials contains n copies of the classical

Bernoulli polynomials that are obtained when matrix A =

 1 . . . 1
. . . . . . . . .
1 . . . 1

 and all the indices

µk, k = 1, . . . , n in (6) are equal to zero or only one of them is different from zero.

For example, some hypercomplex Bernoulli polynomials given by (6), for n = 2, are equal to

B0,0(z) = 1,

B1,0(z) = z1 −
1

2

(
a11 + a21

)
,

B0,1(z) = z2 −
1

2

(
a12 + a22

)
,

B1,1(z) = z1 × z2 −
1

2

[
z1
(
a12 + a22

)
+ z2

(
a11 + a21

)]
+

1

4

(
a11a

2
2 + a12a

2
1

)
+

1

6

(
a11a

1
2 + a21a

2
2

)
,

B2,0(z) = z21 − z1
(
a21 + a11

)
+

1

6

(
(a11)

2 + (a21)
2
)
+

1

2
a11a

2
1.

Definition 3. Generalized Bernoulli numbers Bσ1,...,σn
are the values of the Bernoulli polyno-

mials at the origin

Bσ1,...,σn = Bσ1,...,σn(0, . . . , 0).
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For instance, for n = 2 we obtain next values of Bernoulli numbers:

B0,0 =B0,0(0, 0) = 1,

B1,0 =B1,0(0, 0) = −1

2

(
a11 + a21

)
,

B0,1 =B0,1(0, 0) = −1

2

(
a12 + a22

)
,

B1,1 =B1,1(0, 0) =
1

4

(
a11a

2
2 + a12a

2
1

)
+

1

6

(
a11a

1
2 + a21a

2
2

)
,

B2,0 =B2,0(0, 0) =
1

6

(
(a11)

2 + (a21)
2
)
+

1

2
a11a

2
1.

2. Properties of Bernoulli numbers and Bernoulli
polynomials

Property 1. Hypercomplex Bernoulli polynomials and generalized Bernoulli numbers satisfy the
expression

Bσ1,...,σn(1, . . . , 1) = (−1)|σ|Bσ1,...,σn. (7)

Proof. Making use of the definition of hypercomplex Bernoulli polynomials by generating
function

F (⃗t, z⃗) =
∞∑

|σ|=0

1

σ!
Bσ1,...,σn(z1, . . . , zn) t

σ1
1 . . . tσn

n ,

where

F (⃗t, z⃗) =
n∏

j=1

< aj , t >

e<aj ,t> − 1
e<z,t>,

and taking (z1, . . . , zn) = (0, . . . , 0) and (z1, . . . , zn) = (1, . . . , 1) we get

F (⃗t, 0⃗) =
∞∑

|σ|=0

1

σ!
Bσ1,...,σnt

σ1
1 . . . . .tσn

n

and

F (⃗t, 1⃗) =
∞∑

|σ|=0

1

σ!
Bσ1,...,σn(1, . . . , 1) t

σ1
1 . . . . .tσn

n ,

respectively.

Moreover F (⃗t, 1⃗) = F (−⃗t, 0⃗), that is,
∞∑

|σ|=0

1

σ!
Bσ1,...,σn(1, . . . , 1) t

σ1
1 . . . tσn

n =
∞∑

|σ|=0

1

σ!
Bσ1,...,σn (−t1)

σ1 . . . (−tn)
σn =

=

∞∑
|σ|=0

1

σ!
Bσ1,...,σn (−1)|σ| tσ1

1 . . . tσn
n .

Hence,
Bσ1,...,σn(1, . . . , 1) = (−1)|σ| Bσ1.....σn .

2

The equality (7) generalizes the property Bn(1) = (−1)nBn, n ∈ N0, already known in the
classical case.
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Property 2. Hypercomplex Bernoulli polynomials can be expressed by generalized Bernoulli
numbers as

Bσ1,...,σn(z1, . . . , zn) =

σ1∑
j1=0

· · ·
σn∑

jn=0

(
σ1

j1

)
· · ·
(

σn

jn

)
Bj1,...,jnz

σ1−j1
1 × · · · × zσn−jn

n . (8)

Proof. Using the definitions of hypercomplex Bernoulli polynomials and the Bernoulli
numbers, we can write

∞∑
|σ|=0

( ∑
j+k=σ

Bj1,...,jn

zk1
1 × · · · × zkn

n

j1! · · · jn!k1! · · · kn!

)
tσ1
1 · · · tσn

n =
∞∑

|σ|=0

Bσ1,...,σn(z1, . . . , zn)

σ1! . . . σn!
tσ1
1 · · · tσn

n ,

which yields

Bσ1,...,σn(z1, . . . , zn) =

σ1∑
j1=0

· · ·
σn∑

jn=0

Bj1,...,jn

σ1! . . . σn!z
σ1−j1
1 × · · · × zσn−jn

n

j1! . . . jn!(σ1 − j1)! . . . (σn − jn)!
,

that is,

Bσ1,...,σn(z1, . . . , zn) =

σ1∑
j1=0

· · ·
σn∑

jn=0

(
σ1

j1

)
· · ·
(

σn

jn

)
Bj1,...,jnz

σ1−j1
1 × · · · × zσn−jn

n . �

With (8) we found a generalization for another property of the classical Bernoulli polynomials
Bn(z) :

Bn(z) =
n∑

k=0

(
n
k

)
Bkz

n−k, n ∈ N0.

Proposition 2 still allows to introduce a new type of Bernoulli numbers, where one of the ar-
guments is equal to one and the others are equal to zero, which is a situation different from
that one in Proposition 1, which describes the symmetry relation between Bσ1,...,σn(1, . . . , 1) and
Bσ1,...,σn

.

Property 3. Let us call k-Bernoulli numbers, Bk
σ1,...,σn

, those that are obtained by calculating
the hypercomplex Bernoulli polynomials in (0, . . . , 1︸︷︷︸

k

, . . . , 0), k = 1, . . . , n, i.e.,

Bk
σ1,...,σn

= Bσ1,...,σn(0, . . . , 1︸︷︷︸
k

, . . . , 0).

Then these k-Bernoulli numbers can be represented as linear combinations of the generalized
Bernoulli numbers,

Bk
σ1,...,σn

=

σk∑
jk=0

(
σk

jk

)
Bσ1,...,jk,...,σn.

Proof. The proof follows immediately from (8) by taking zk = 1 and zi = 0, i = 1, . . . , n,
i ̸= k. 2

Example.
B1

2,1 ≡ B2,1(1, 0) = 1B0,1 + 2B1,1 + 1B2,1

B1
3,2 ≡ B3,2(1, 0) = 1B0,2 + 3B1,2 + 3B2,2 + 1B3,2

B1
4,3 ≡ B4,3(1, 0) = 1B0,3 + 4B1,3 + 6B2,3 + 4B3,3 + 1B4,3
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. . . . . .

B2
1,1 ≡ B1,1(0, 1) = 1B1,0 + 1B1,1

B2
1,2 ≡ B1,2(0, 1) = 1B1,0 + 2B1,1 + 1B1,2

B2
2,3 ≡ B2,3(0, 1) = 1B2,0 + 3B2,1 + 3B2,2 + 1B2,3

Property 4. We have

∂

∂xk
Bσ1,...,σn(z1, . . . , zn) =

{
σkBσ1,...,σk−1,...,σn(z1, . . . , zn) , σk ̸= 0

0 , σk = 0,
k = 1, . . . , n.

where zk = xk − x0ek, x0, xk ∈ R, k = 1, . . . , n

Proof. The proof follows directly by partial differentiation with respect to xk of both sides of
(8) together with (4). 2

This proposition generalizes for the hypercomplex case the relations B′
n(z) = nBn−1(z),

n ∈ N, used for the differentiation of classical Bernoulli polynomials.

Property 5. For the hypercomplex derivative of Bσ(z) of
1

2
DBσ(z) the next property holds true

1

2
DBσ1,...,σn(z1, . . . , zn) = −

n∑
k=1

σkBσ1,...,σk−1,...,σn(z1, . . . , zn)ek.

Proof. Considering that the hypercomplex Bernoulli polynomials are monogenic, i.e.,

DBσ1,...,σn(z1, . . . , zn) = 0,

we can write
∂

∂x0
Bσ1,...,σn(z1, . . . , zn) = −

n∑
k=1

∂

∂xk
Bσ1,...,σn(z1, . . . , zn)ek,

that is
1

2
DBσ1,...,σn(z1, . . . , zn) = −

n∑
k=1

σkBσ1,...,σk−1,...,σn(z1, . . . , zn)ek.

2

Let δ = (δ1, . . . , δn), δj is a shift operator δjf(z) = f(z1, . . . , zj + 1, . . . , zn).

To formulate the next property we have to introduce some notation. Denote by Q(δ) =
n∏

j=1

(δa
j − 1), the linear operator where δa

j

= δ
aj
1

1 . . . , δ
aj
n

n . Denote by ∂aj = < aj , ∂ > =
n∑

k=1

ajk∂k

the differential operator along the vector aj , and let ∂a = ∂a1 . . . ∂an .

Property 6. Hypercomplex Bernoulli polynomials satisfy the equation

Q(δ)Bσ1,...,σn(z1, . . . , zn) = ∂az
σ1
1 × · · · × zσn

n .

Proof. Note that (δa
j − 1)e<z⃗,⃗t> = (e<aj ,t>,−1)e<z⃗,⃗t>, then

n∏
j=1

(δa
j

− 1)e<z⃗,⃗t> =

n∏
j=1

(e<aj ,t> − 1)e<z⃗,⃗t>.
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It means that operator Q(δ) acts on e<z⃗,⃗t> by the formula

Q(δ)e<z⃗,⃗t> =
n∏

j=1

(e<aj ,t> − 1)e<z⃗,⃗t>. (9)

Now we will show how the operator Q(δ) acts on the generating function F (⃗t, z⃗) of Bernoulli
polynomials.

Q(δ)F (⃗t, z⃗) =
n∏

j=1

< aj , t >

e<aj ,t> − 1
Q(δ)e<z⃗,⃗t>.

Using (9) we obtain

Q(δ)F (⃗t, z⃗) =
n∏

j=1

< aj , t >

e<aj ,t> − 1

n∏
j=1

(e<aj ,t> − 1)e<z⃗,⃗t>.

As a result we have

Q(δ)F (⃗t, z⃗) =
n∏

j=1

< aj , t >e<z⃗,⃗t>.

Since ∂aje
<z⃗,⃗t> = < aj , t >e<z⃗,⃗t>, then

∂ae
<z⃗,⃗t> =

n∏
j=1

< aj , t >e<z⃗,⃗t>.

Using the definition of Bernoulli polynomials and acting by operator Q(δ) on each part, we obtain

Q(δ)

n∏
j=1

< aj , t >

e<aj ,t> − 1
e<z⃗,⃗t> = Q(δ)

∞∑
|σ|=0

Bσ1,...,σn(z1, . . . , zn) t
σ

σ1! . . . σn!
.

Since Q(δ)F (⃗t, z⃗) = ∂ae
<z⃗,⃗t>, then

∂ae
<z⃗,⃗t> =

∞∑
|σ|=0

Q(δ) Bσ1,...,σn(z1, . . . , zn) t
σ

σ1! . . . σn!
.

∞∑
|σ|=0

∂a zσ1
1 × · · · × zσn

n

σ1! . . . σn!
tσ =

∞∑
|σ|=0

Q(δ) Bσ1,...,σn(z1, . . . , zn) t
σ

σ1! . . . σn!
.

Q(δ)Bσ1,...,σn(z1, . . . , zn) = ∂az
σ1
1 × · · · × zσn

n .

2
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В работе рассматривается обобщение чисел и многочленов Бернулли для случая гиперкомплекс-
ных переменных. Доказаны многомерные аналоги основных свойств классических чисел и много-
членов Бернулли.
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