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ABSTRACT:  
Diabetes is one of the most serious metabolic disorders across the world which affects all age groups. World 

Health Organization (WHO) ranked the top diabetic countries in which India was ranked among the top three 

which diagnosed 62 million people. So there is an urgent need for the discovery of novel natural anti-diabetic 

drugs without any side effects. On analyzing the anti-diabetic plants, Momordica charantia exhibited better 

pharmacological properties and its bioactive compounds, which was found to possess good anti-diabetic activity 

were selected through literature for in silico studies. There were 51 bioactive compounds found in Momordica 

charantia, out of which only 13 compounds were carried out for the next step of analysis whose molecular 

properties satisfies to be a new lead for drug molecules. Further literature studies on diabetes showed that the 

enzyme glucokinase involved in the metabolic pathway for the production of energy were mostly responsible for 

causing diabetes in humans. For docking analysis, Arguslab software was used for screening the binding affinity 

between the inhibitors and target protein. The result of docking analysis revealed that compound nerolidol from 

Momordica charantia exhibited best binding interaction with diabetic protein. The nerolidol compound predicted 

from this research could be carried for in vivo analysis in future for the designing of novel potential drugs in the 

treatment of diabetes.   
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INTRODUCTION: 
Diabetes mellitus is an increasing metabolic disorder 

which affects both macro vessels and micro vessels of 

the human body1. Diabetes mellitus is the most common 

and predominant group of endocrinological disorder 

affecting people worldwide and thus has been a subject 

of extensive research for development of number of 

anti-diabetic treatments2,3. It occurs throughout the 

world, especially more in the developed countries like 

India and China4. The presence of diabetes mellitus 

confers increased risk of many devastating 

complications such as cardiovascular diseases, coronary 

artery disease, stroke, neuropathy, renal failure, 

retinopathy amputations and blindness5.  
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It has been estimated that up to one-third of patients 

with diabetes use some form of complementary and 

alternative medicine. One plant that has received the 

most attention for its diabetic properties is Momordica 

charantia, commonly referred to as bitter gourd, karela 

and balsam pear. Its fruit is also used for the treatment 

of diabetes and related conditions amongst the 

indigenous populations of Asia, South America and East 

Africa6. The in vitro studies on Momordica charantia 

reported that the vegetable contains bioactive substances 

with antioxidants, anti-diabetic, antiviral and 

antineoplastic activities7,8. Recent research on 

Momordica charantia determined that it has more 

potential to become a leading component for new 

diabetic drug molecules9.  

 

Plant-based medicine has been used for cost effective 

treatment and even no adverse effects have reported 

during the treatment of diabetes. In fact, many parts of 

the poor countries in the world practices only plant-
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based medicinal therapy to treat diabetic patients. 

Ayurveda and other traditional medicinal systems used a 

number of plant materials for the preparation of herbal 

drugs to treat diabetes. Around the globe, the most 

common traditional plant Momordica charantia is used 

in all forms of plant based medicine to treat diabetes in 

different countries without knowing the actual 

biocompound responsible for treatment. Based on the 

multitude of medical conditions that bitter melon can 

treat, scientists are more interested in studying its 

bioactive compounds and its action in the body10. 

Through phosphorylation, glucokinase is able to 

increase the metabolism of glucose. In the liver it 

increases the synthesis of glycogen and it is the first step 

in glycolysis, the main producer of ATP in the body11. 

Insulin and oral hypoglycemic agents like 

sulphonylureas and biguanides still play a major role in 

the development of more effective anti-diabetic agents. 

A study showed that hypoglycemic activity was shown 

by the compounds of bitter melon and it revealed 

significant lower blood glucose levels12. 

 

Application of cheminformatic techniques has become 

imperative in the field of drug discovery and 

development. These techniques enable efficient 

management and analysis of enormous data generated 

during drug discovery which covers wide chemical and 

biological space. Cheminformatic solutions offered by 

Evolvus are crucially important for hit identification, 

lead identification and lead optimisation13. 

 

Virtual screening which is also called in-silico screening 

is a new branch of medicinal chemistry that represents a 

fast and cost effective tool for computationally screening 

database in search for the novel drug leads. The routes 

for the virtual screening go back to the structure-based 

drug design14. In virtual screening, large libraries of 

drug-like compounds that are commercially available 

are computationally screened against targets of known 

structure, and those that are predicted to bind well are 

experimentally tested15.  

 

The bioactivity plays a very important role for the 

following drug targets: GPCR ligands, kinase inhibitors, 

ion channel modulators, enzymes and nuclear receptors. 

G-protein-coupled receptors (GPCRs) are the largest and 

most diverse group of membrane receptors in 

eukaryotes. These cell surface receptors act like an 

inbox for messages in the form of light energy, peptides, 

lipids, sugars, and proteins16. Nuclear receptors are a 

family of ligand-regulated transcription factors that are 

activated by steroid hormones17. Kinase inhibitors are 

small molecules that interact with multiple members of 

the protein kinase family achieving selective inhibition 

of specific protein kinases18. Ion channels are well 

recognized as important therapeutic targets for treating a 

number of different pathophysiologies however, 

development of drugs targeting this protein class has 

been difficult19. 

 

Hopkins proposed a concept of desirability for the drug 

database - quantitative estimate of drug-likeness based 

on Lipinski’s rule of five and results were generated by 

fitting the distributions of eight properties of the 

compound20. QED helps in understanding the underlying 

features of drug-likeness. The method can also be 

applied to control sets other than oral drugs, such as 

lead-like molecules, compounds that belong to specific 

target and therapeutic classes21. Lipinski’s Rule of Five 

has thus provided medicinal chemists with a simple 

mnemonic for identifying compounds with medicinally 

relevant physical chemical properties22. Lipinski set the 

most famous drug-likeness filter, such as Molecular 

weight ≤400, Log p ≤ 5, Hydrogen bond donor ≤3, 

Hydrogen bond acceptor ≤7 which provides four rules to 

determine whether a molecule could be orally absorbed 

or not23. 

 

The three main properties like mutagenicity, 

carcinogenicity, toxicity play a vital role in drug 

designing and development. Mutagenicity refers to the 

induction of permanent transmissible changes in the 

structure of the genetic material of cells or organisms; 

Carcinogenicity uses toxicological end points posing 

considerable concern for human health whereas toxicity 

is the degree to which a substance can damage an 

organism24. 

 

Docking technique is one of the most important and 

frequently used methods in structural-based drug 

designing, which predict the binding affinity of small 

molecules to their applicable target binding sites there 

by inhibiting the target functions. Computational 

approaches that 'dock' small molecules into the 

structures of macromolecular targets and 'score' their 

potential complementarities to binding sites are widely 

used in hit identification and lead optimization. The 

specific features of small-molecule–protein docking 

methods highlight selected applications and discuss 

recent advances that aim to address the acknowledged 

limitations of established approaches25. Docking can 

execute the outcome and suggest structural hypotheses 

of how target is repressed by ligand that is vital in lead 

optimization26. 

 

MATERIALS AND METHODS: 
In Silico Pharmacokinetic Study of anti-diabetic 

inhibitors: 

Pubchem: 

The Canonical smiles of 51 phytochemical compounds 

were identified from the plant Momordica charantia, 

were retrieved by using the Pubchem database. The two 
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dimensional structure of the best inhibitors were 

retrieved and saved in.sdf format for further analysis27. 

 

Molinspiration: 

Molinspiration server predicts the bioactivity score for 

GPCR ligands, kinase inhibitors, ion channel 

modulators, enzymes and nuclear receptors which was 

consider being the most important drug targets. Drug 

likeliness properties of 51 phytochemical were tested 

against above targets. The bioactivity score of 

phytochemical lies between 0.50 to 0.00, and then the 

phytochemical considered possessing good biological 

activities. If the score was between -0.50 to 0.00, the 

phytochemicals expected to possess moderate active and 

if score was more than -0.50, + 0.50 then the 

phytochemicals predicted to be inactive28. 

 

Quantitative Estimation of Drug Likeness (QED): 

Using QED Database, drug likeness test was carried out 

based on the Lipinski Rule of Five. The rule predicts 

that the selected phytochemicals could be used as the 

oral drug. The rule states that the phytochemical should 

not > 1 rules out of four rules. The Lipinski Rule of Five 

rules were molecular weight ≤ 500, logP, number of 

hydrogen bond donors should be less than 5, and finally 

number of hydrogen bond acceptors ≤ 10. Apart from 

these rule QED database predict other 4 properties also 

they are PSA (polar surface area), number of alerts 

number of aromatic rings and last properties were 

number of rotatable bonds29. 

 

Virtual evaluation of chemical properties and 

toxicity (VEGA): 

VEGA database performs computer-based models to 

evaluate chemical properties and biological activity of 

the phytochemical. The model VEGA includes three 

main properties mutagenicity, carcinogenicity, and 

developmental toxicity. The predicted result enables 

research to evaluate the reliability of query 

phytochemicals and also judge whether the 

phytochemical have the ability to pass through the 

animal experiments30. 

 

Open Babel: 

Open Babel conversion software, helps in converting 

one chemical format into a different format. The 

researchers can use open babel as programming libraries 

to handle chemical files in the field of drug designing, 

cheminformatics, computational chemistry and material 

science31.  

 

In Silico Molecular docking studies: 

Protein Data bank (PDB): 

Glucokinase is a monomeric enzyme which regulates the 

glucose levels in the liver and pancreas and consider to 

be an important target for diabetics. The three 

dimensional crystalline structure of glucokinase with 

PDB ID of 1V4S was retrieved by Protein Data Bank. 

The structure was determined in 2004 through X-Ray 

Diffraction with Resolution of 2.3 Å, R-Value Free: 

0.273, R-Value Work: 0.232 and length of protein 

determined as 455 in single chain32.  

 

Metapocket: 

Metapocket database is used to predict the protein–

ligand binding sites on protein structure which helps in 

the functions of protein. Metapocket predicts the pocket 

depending on the size of protein structure and determine 

the name, position of active site present in the chain with 

available methods: pass11, ligsitecs, q_sitefinder, 

ghecom, pocasa, fpocket, surfnet, concavity33.  

 

ArgusLab: 

ArgusLab is a free docking software that runs under all 

windows. It was first developed by Mark Thompson 

were the ligands were docked with the receptor to inhibit 

the function of the receptor there by curing the disease. 

In ArgusLab, the selected 3D structure of the receptor 

was loaded in pdb format and energy minimization were 

executed to remove water molecules present in the 

protein. The 2D structures of ligand were loaded in mol 

format and hydrogen atoms were added. Docking 

calculation parameter was set as shape-based search 

algorithm and AScore scoring function. The grid box 

was developed between ligand and receptor and scoring 

function evaluate the binding interaction between the 

ligand and the receptors. According to the lowest 

AScore generated the best docking model was predicted 

by ArgusLab and the binding conformation between the 

ligand and receptor near the binding site were analyzed 

by its hydrogen interaction34.   

 

Binding interaction visualization: 

PyMol: 

PyMoL is visualization software which used to visualize 

molecules and protein. The predicted best docking 

interactions were analyzed using PyMoL. The hydrogen 

bonding between the ligands and the receptor can be 

clearly viewed and the distance of hydrogen formation 

revealed the stability of inhibition of ligands which was 

measured in Å5. 

 

RESULTS AND DISCUSSION: 
In Silico Pharmacokinetic Study of anti-diabetic 

inhibitors: 

The Canonical smiles were retrieved for 51 

phytochemical compounds which was identified from 

plant Momordica charantia through literature survey. 

Using Molinspiration server, the above compounds were 

screened for its biological properties Table1. The server 

predicted that only 13 compounds: (Ascorbigen, 

Cucurbitin, Diosgenin, Goyaglycoside C, Goyasaponins, 
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Lauric acid, Nerolidol, Pentadecane, Trans-zeatin, 

Uracil, L-serine, L-alanine and Verbacoside) satisfies all 

biological properties and also form the physiological 

actions by interacting with important drug targets with 

the predicted score which lies between -0.50 to +0.50. 

Further these 13 compounds were tested for its drug 

likeliness properties using QED database. The result of 

QED database showed that only 4 compounds 

(Ascorbigen, Diosgenin, Nerolidol, Trans-zeatin) 

cleared the test of drug likeliness based on Lipinski rule 

of five Table 2. The 4 compounds were further verified 

for its mutagenicity, carcinogenicity and toxicity 

properties using VEGA software Table 3. The software 

identified that out of 4 compounds, Nerolidol and Trans-

zeatin were found to exhibit non mutagenic, non 

carcinogenic and non toxic properties. 
 

Table 1 : Predicted score for biological properties of compounds using Molinspiration 

S. 

no 

Compound Canonical smiles GPCR 

ligand  

Ion 

channel 

modu-

lator 

Kinase 

in-

hibitor   

Nuclear 

receptor 

ligand 

Protease 

inhibitor 

Enzyme 

inhibitor 

1. Cryptoxanthi
n 

CC1=C(C(CCC1)(C)C)C=CC(=CC=CC(
=CC=CC=C(C)C=CC=C(C)C=CC2=C(C

C(CC2(C)C)O)C)C)C 

-0.03 -0.26 -0.20 0.49 0.02 0.24 

2. Cucurbitin C1CNCC1(C(=O)O)N -0.8 -0.50 -1.75 -2.83 -0.71 -0.96 

3. Cucurbitacin CC(=O)OC(C)(C)C=CC(=O)C(C)(C1C(
CC2(C1(CC(=O)C3(C2CC=C4C3CC(C(

=O)C4(C)C)O)C)C)C)O)O 

0.15 -0.21 -0.43 0.35 -0.04 0.52 

4. Cycloartenol CC(CCC=C(C)C)C1CCC2(C1(CCC34C2
CCC5C3(C4)CCC(C5(C)C)O)C)C 

0.21 0.10 -0.40 0.86 0.14 0.66 

5. Diosgenin CC1CCC2(C(C3C(O2)CC4C3(CCC5C4

CC=C6C5(CCC(C6)O)C)C)C)OC1 

0.05 -0.14 -0.57 0.58 -0.06 0.61 

6. Erythrodiol CC1(CCC2(CCC3(C(=CCC4C3(CCC5C
4(CCC(C5(C)C)O)C)C)C2C1)C)CO)C 

0.19 -0.13 -0.30 0.71 0.10 0.55 

7. Galacturonic 

Acid 

C1(C(C(OC(C1O)O)C(=O)O)O)O -0.29 0.03 -1.03 -0.36 -0.38 0.46 

8. Goyaglyco-
side C 

CC(CC=CC(C)(C)OC)C1CCC2(C1(CCC
34C2C=CC5(C3CCC(C5(C)C)OC6C(C(

C(C(O6)CO)O)O)O)OC4OC)C)C 

0.05 -0.81 -0.81 -0.25 0.00  -0.01 

9. Goyasaponin
s 

CC1C(C(C(C(O1)OC2C(C(C(OC2OC3C
(C(C(OC3OC4CC 

5(C(C4(C)CO)CCC6(C5CC=C7C6(CCC

8(C7CC(CC8O)(C)C)C)C)C)C)C(=O)O)
O)O)CO)O)O)O)O)O 

-3.93 -3.98 -4.00 -3.96 -3.90 -3.90 

10. Gypsogenin CC1(CCC2(CCC3(C(=CCC4C3(CCC5C

4(CCC(C5(C)C=O)O)C)C)C2C1)C)C(=O

)O)C 

0.2 -0.03 -0.38 0.72 0.27 0.65 

11. Karounidiol CC1(C(CCC2(C1CC=C3C2=CCC4(C3(C

CC5(C4CC(CC5)(C)CO)C)C)C)C)O)C 

0.1 -0.14 -0.22 0.76 0.04 0.58 

12. Lanosterol CC(CCC=C(C)C)C1CCC2(C1(CCC3=C2

CCC4C3(CCC(C4(C)C)O)C)C)C 

0.18 -0.05 -0.39 0.82 0.06 0.64 

13. Lauric Acid CCCCCCCCCCCC(=O)O -0.27 -0.04 -0.75 -0.24 -0.36 0.04 

14. Linoleic Acid CCCCCC=CCC=CCCCCCCCC(=O)O 0.29 0.17 -0.16 0.31 0.12 0.38 

15. Linolenic 

Acid 

CC/C=C\C/C=C\C/C=C\CCCCCCCC(=O

)O 

0.33 0.23 -0.19 0.35 0.13 0.42 

16. Momordenol CCC(CCC(C)C1C(=O)C=C2C1(CCC3C2

CC=C4C3(CCC(C4)O)C)C)C(C)C 

0.10 -0.08 -0.50 0.89 0.08 0.56 

17. Momordicilin CCC=CC(C)(O)OCC1(C2CCC3(C(C2(C

CC1=O)C)CCC4C3(CCC5(C4C(C(CC5)
C)C)C)C)C)C 

0.08 -0.06 -0.43 0.54 0.07 0.40 

18. Multifloreno CC1(CCC2(CCC3(C4=CCC5C(C(CCC5(

C4CCC3(C2C1)C)C)O)(C)C)C)C)C 

0.22 -0.05 -0.31 0.67 0.11 0.56 

19. Myristic Acid CCCCCCCCCCCCCC(=O)O -0.11 0.03 -0.51 -0.06 -0.19 0.13 

20. Nerolidol CC(=CCCC(=CCCC(C)(C=C)O)C)C -0.17 0.21 -0.64 0.42 -0.43 0.39 

21. Oleanolic 

Acid 

CC1(CCC2(CCC3(C(=CCC4C3(CCC5C

4(CCC(C5(C)C)O)C)C)C2C1)C)C(=O)O

)C 

0.28 -0.06 -0.40 0.77 0.15 0.65 

22. Oleic Acid CCCCCCCCC=CCCCCCCCC(=O)O 0.17 0.07 -0.22 0.23 0.07 0.27 

23. Oxalic Acid C(=O)(C(=O)O)O -3.58 -3.54 -3.73 -3.46 -3.38 -3.31 

24. Pentadecane CCCCCCCCCCCCCCC -0.38 -0.07 -0.53 -0.45 -0.50 -0.13 

25. Petroselinic 

Acid 

CCCCCCCCCCCC=CCCCCC(=O)O 0.17 0.07 -0.22 0.23 0.07 0.27 

26. Rosmarinic 

Acid 

C1=CC(=C(C=C1CC(C(=O)O)OC(=O)C

=CC2=CC(=C(C=C2)O)O)O)O 

0.17 -0.08 -0.18 0.57 0.15 0.24 
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27. Rubixanthin CC1=C(C(CC(C1)O)(C))C=CC(=CC=CC
(=CC=CC=C(C)C=CC=C(C)C=CC=C(C)

CCC=C(C)C)C)C 

-0.02 -0.27 -0.21 0.52 0.01 0.30 

28. Spinasterol CCC(C=CC(C)C1CCC2C1(CCC3C2=CC

C4C3(CCC(C4)O)C)C)C(C)C 

0.18 0.05 -0.30 0.68 0.06    0.53 

29. Stigmasterol CCC(C=CC(C)C1CCC2C1(CCC3C2CC=

C4C3(CCC(C4)O)C)C)C(C)C 

 0.12 -0.05 -0.48 0.74 -0.02 0.53 

30. Taraxerol CC1(CCC2(CC=C3C4(CCC5C(C(CCC5(

C4CCC3(C2C1)C)C)O)(C)C)C)C)C 

 0.21 0.02 -0.20 0.08 -0.01   0.49 

31. Trehalose C(C1C(C(C(C(O1)OC2C(C(C(C(O2)CO)

O)O)O)O)O)O)O 

0.19 0.14 0.08 -0.01   0.23 0.45 

33. Uracil C1=CNC(=O)NC1=O -3.36 -3.47 -3.60 -3.65 -3.62 -2.68 

34. Vicine C(C1C(C(C(C(O1)OC2=C(NC(=NC2=O)
N)N)O)O)O)O 

0.14 0.10 0.16 -0.54 -0.06   0.67 

35. Trans –Zeatin CC(=CCNC1=NC=NC2=C1NC=N2)CO 0.25 0.34 0.47 -1.62 -0.47 0.70 

36. Zeatin 

Riboside 

CC(=CCNC1=NC=NC2=C1N=CN2C3C(

C(C(O3)CO)O)O)CO 

0.94 0.41 0.68 -1.00 0.12 1.04 

37. Zeaxanthin CC1=C(C(CC(C1)O)(C)C)C=CC(=CC=C
C(=CC=CC=C(C)C=CC=C(C)C=CC2=C

(CC(CC2(C)C)O)C)C)C 

-0.08 -0.36 -0.24 0.35 0.01 0.13 

38. Zeinoxanthin CC1=C(C(CC(C1)O)(C)C)C=CC(=CC=C
C(=CC=CC=C(C)C=CC=C(C)C=CC2C(

=CCCC2(C)C)C)C)C 

0.02 -0.25 -0.18 0.54 -0.04 0.31 

39. L-Serine C(C(C(=O)O)N)O -2.66 -2.54 -3.34 -3.34 -2.36 -2.38 

40. Glutamic 
Acid 

C(CC(=O)O)C(C(=O)O)N -0.29   0.25 -1.07 -0.96 -0.16 0.23 

41. L-Alanine CC(C(=O)O)N -3.20 -3.17 -3.69 -3.54 -2.72 -3.12 

42. Ascorbigen C1C(C2C(O1)(C(C(=O)O2)(CC3=CNC4

=CC=CC=C43)O)O)O 

0.52 0.27 0.20 0.40 0.27 0.59 

43. L-Citrulline C(CC(C(=O)O)N)CNC(=O)N -0.17 0.14 -0.74 -1.09 0.04 0.23 

44. Elasterol CCC(CCC(C)C1=CCC2C1(CCC3C2=CC

C4C3(CCC(C4)O)C)C)C(=C)C 

0.18 0.12 -0.47 0.93 0.14 0.60 

45. Flavochrome CC1=CCCC(C1C=CC(=CC=CC(=CC=C
C=C(C)C=CC=C(C)C2C=C3C(CCCC3(

O2)C)(C)C)C)C)(C)C 

0.14 -0.08 -0.11 0.46 -0.05 0.33 

46. Lutein CC1=C(C(CC(C1)O)(C)C)C=CC(=CC=C

C(=CC=CC=C(C)C=CC=C(C)C=CC2C(
=CC(CC2(C)C)O)C)C)C 

0.03 -0.28 -0.25 0.47 -0.03 0.28 

47. Lycopene CC(=CCCC(=CC=CC(=CC=CC(=CC=C

C=C(C)C=CC=C(C)C=CC=C(C)CCC=C
(C)C)C)C)C)C 

0.07 -0.12 -0.06 0.29 -0.06 0.17 

48. Eleostearic 

Acid 

CCCCC=CC=CC=CCCCCCCCC(=O)O 0.20 0.12 -0.18 0.29 0.09 0.31 

49. 6droxytrypta
mines 

C1=CC2=C(C=C1O)C(=CN2)CCN 0.14 0.33 0.14 -0.60 -0.36 0.21 

50. Verbacoside CC1C(C(C(C(O1)OC2C(C(OC(C2OC(=

O)C=CC3=CC(=C(C=C3)O)O)CO)OCC

C4=CC(=C(C=C4)O)O)O)O)O)O 

0.00 -0.54 -0.31 -0.24 0.06   0.00 

51. B-Sitostreol CCC(CCC(C)C1CCC2C1(CCC3C2CC=

C4C3(CCC(C4)O)C)C)C(C)C 

0.14 0.04 -0.51 0.73 0.07 0.51 

 
Table 2 : Drug likeliness Prediction of compounds using QED 

S.no Compound Pubchem ID MW LogP HBA HBD PSA Rotb Prediction 

1. Ascorbigen 3081416 305.283 1.101 6 4 112.010 2 Drug-like 

2. Cucurbitin 442634 130.145 0.516 2 4 75.350 1 Non-druglike 

3. Diosgenin 99474 414.621 4.293 3 1 4.293 0 Drug-like 

4. Goyaglycoside C 101077715 662.893 4.154 9 4 127.070 9 Non-druglike 

5. Goyasaponins 10654046 1379.487 5.102 31 16 485.650 16 Non-druglike 

6. Lauric acid 3893 200.318 3.499 2 1 37.300 0 Non-druglike 

7. Nerolidol 5284507 222.366 4.211 1 1 20.230 7 Drug-like 

8. Pentadecane 12391 212.41 5.768 0 0 0.000 12 Non-druglike 

9. Trans-zeatin 449093 219.243 1.024 4 3 86.720 4 Drug-like 

10. Uracil 1174 112.087 1.352 2 2 65.720 0 Non-druglike 

11. L-serine 5951 105.093 1.453 3 4 83.550 2 Non-druglike 

12. L-alanne 5950 89.093 1.042 2 3 63.320 1 Non-druglike 

13. Verbacoside 3081416 624.587 1.142 15 9 245.290 11 Non-druglike 
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Table 3 : VEGA prediction for selected compounds 

S.no Compound Mutagenicity Carcinogenicity Toxicity 

1. Ascorbigen Non-Mutagenici Carcinogen Toxicant 

2. Diosgenin Non-Mutagenic Carcinogen Toxicant 

3. Nerolidol Non-Mutagenic Non-Carcinogen Non-toxicant 

4. Trans-zeatin Non-Mutagenic Non-Carcinogen Non-toxicant 

 
Table 4: Physiological properties  retrieved from Pubchem 

Physiological properties Nerolidol trans-Zeatin 

Molecular Formula C15H26O C10H13N5O 

Canonical SMILES CC(=CCCC(=CCCC(C)(C=C)O)C)C CC(=CCNC1=NC=NC2=C1NC=N2)CO 

Melting Point < 25 °C 207-208 deg C 

Solubility Not yet predicted In water, 2.24X10+3 mg/L at 25 deg C (est) 

Vapor Pressure Not yet predicted 2.02X10-11 mm Hg at 25 deg C (est) 

2D structure 

 

 

 

In Silico Molecular docking studies: 

Preparation of predicted inhibitors and protein for 

docking studies: 

The two dimensional structure of the inhibitor of 

Nerolidol and Trans-zeatin were retrieved and saved 

in.sdf format from Pubchem with other physiological 

properties Table 4. Further.SDF format of two inhibitors 

were converted into.mol format using Open Babel and 

these two inhibitors in.mol format were set for docking 

analysis.  

 

The three dimensional crystal structure targets protein 

glucokinase with PDB ID: 1V4S were retrieved from 

PDB databases was viewed by PyMol (Table 5). The 

glucokinase protein was determined by X-ray diffraction 

method with a resolution factor of 1.55 Å, R value 

0.186. After procurement, the pdb format of proteins 

was further processed for docking analysis by removing 

native ligand and crystalline water structure present in 

the protein. The prominent active sites of protein 

glucokinase were evaluated using MetaPocket server 

with aavailable methods (Table 5).  In glucokinase, 

totally 80 binding pockets were predicted and revealed 

the position of amino acids involved in configuration of 

an active site ranging from ARG 63-ARG 447. 

 

Table  5: Three dimensional structure and active sites of protein glucokinase 

 
Three dimensional structure of glucokinase (1V4S) 

 
80 active sites of protein glucokinase 

 

Binding interaction of inhibitors with glucokinase: 

The above prepared inhibitors and receptors were all set 

for docking analysis using Arguslab. Docking analysis 

were performed with the grid resolution of 0.400000 Å 

using GAdock algorithm, Calculation Type – Dock, 

ligand – Flexible mode. The docked poses with the 

lowest binding free energy between receptor and 

inhibitors were evaluated and recorded (Table 6). The 

best docking score (lowest binding energy) determined 

the highest inhibitory affinity between ligand and 

receptor.  

 
Table 6:  Molecular Docking score between inhibitors and 

receptor 

S. 

No. 

Docking between Protein and 

Ligands 

Binding Interaction  

1. 1V4S-Nerolidol -13.3575kcal/mol 

2. 1V4S-Trans-zeatin -6.13003kcal/mol 

 

https://pubchem.ncbi.nlm.nih.gov/search/#collection=compounds&query_type=mf&query=C15H26O&sort=mw&sort_dir=asc
https://pubchem.ncbi.nlm.nih.gov/compound/water
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On further analysis of docking result and the pose, it was 

confirmed that the inhibitor Nerolidol exhibited the best 

binding interaction with glucokinase (-13.3575 

Kcal/mol) when compared with Trans-zeatin (-

6.13003kcal/mol). Nerolidol binding interaction with the 

receptor was explored that the 2 active sites of arginine 

played a major role in inhibiting the function of 

glucokinase through 2 hydrogen linkages (Figure1). The 

first hydrogen bond interaction with 3.14Å was formed 

between oxygen atom present in the active site ARG63 

and Nitrogen 6 atom in the ligand followed by hydroxyl 

group present in the active site of ARG 447 bound to the 

Nitrogen 23 atom in the ligand with the hydrogen bond 

interaction of 2.45 Å.  

 

 
Fig.1: Best docking results between Nerolidol and Glucokinase 

 Indicates the active site of the glucokinase 

 Indicates the ligand 

 Indicates the binding area 

 Indicated the hydrogen diatance in Å 

 

Thus in the current study, nerolidol exhibited the least 

binding score against important receptor glucokinase, 

the former study on the nerolidol compound from the 

plant Alpinia calcarata exhibited high level of in vitro 

anti diabetic properties by controlling blood glucose 

level in high rate35. The new active site ARG 63, ARG 

447 was predicted in the protein structure of 

glucokinase. In early research on the protein glucokinase 

different active site were predicted by docking process 

with good binding interaction36. On comparing previous 

studies with the current study, it was confirmed that the 

compound nerolidol possess best binding interaction 

with new active sites of 1V4S.  

 

CONCLUSION: 
Knowledge on the virtual screening and molecular 

interactions of natural compounds of Momordica 

charantia with essential diabetic enzyme glucokinase is 

a potentially useful tool for the identifying, designing 

and developing new anti-diabetic drugs. The current in 

silico research revealed that out of 51 secondary 

phytochemical compounds present in the plant, only one 

phytochemical compound found to exhibit better 

inhibitory activity over the diabetic enzymes. Virtual 

screening of 51 phytochemical present in the 

Momordica charantia resulted that only two compounds 

Nerolidol and Trans-zeatin satisfied all the 

Pharmacokinetic Studies. Further these two compounds 

were examined for its diabetic inhibitory activity using 

Molecular docking. The docking result confirmed that 

Nerolidol compound exhibited best inhibitory activity 

over the enzyme with the least score of -13.3575 

Kcal/mol. Nerolidol compound is expected to increase a 

better vision in diabetic inhibitory activity through in 

vitro animal model studies in future which would pursue 

as novel anti-diabetic drugs. 
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