Journal of Critical Reviews PSEUDO-COMPLEMENTATION ON ALMOST DISTRIBUTIVE FUZZY LATTICES

Article · January 2022		
DOI: 10.31838/jcr.07.07.138		
CITATIONS		READS
0		57
2 authors, including:		
	Nasreen Sultana a	
	Vels University	
	4 PUBLICATIONS 0 CITATIONS	
	SEE PROFILE	

PSEUDO-COMPLEMENTATION ON ALMOST DISTRIBUTIVE FUZZY LATTICES

Dr.Sg. Karpagavalli^{1*}, A. Nasreen Sultana²

 $^{1*}Assistant\ Professor,\ Department\ of\ Mathematics,\ Vels\ Institute\ of\ Science,\ Technology\ \&\ Advanced\ Studies.\ India.$

karpagavalli.sbs@velsuniv.ac.in

²Research Scholar, Department of Mathematics, Vels Institute of Science, Technology & Advanced Studies.a.nasreensultana@gmail.com.

Received: 19.02.2020 Revised: 27.03.2020

Accepted: 13.04.2020

Abstract

In this paper, we introduce the concept of a Pseudo-Complementation* on an Almost Distributive Fuzzy Lattice (PCADFL) as a generalization of an almost Distributive Fuzzy Lattice (ADFL). It is proved that it is equationally definable on ADFL by using properties of Pseudo-Complementation on almost Distributive Lattice. We state and prove some results of a PCADFL, too.

Keywords: Almost Distributive Fuzzy Lattice (ADFL), Pseudo-Complementation, Fuzzy Partial Order Relation, Fuzzy Poset, Maximal Element, Pseudo-Complementation on Almost Distributive Fuzzy Lattice (PCADFL).

© 2020 by Advance Scientific Research. This is an open-access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/) DOI: $\frac{http://dx.doi.org/10.31838/jcr.07.07.138}{http://dx.doi.org/10.31838/jcr.07.07.138}$

INTRODUCTION

The general development of lattice theory started by G. Birkhoff [1]. The concept of an Almost distributive lattice (ADL) was introduced by U.M. Swamy and G.C. Rao [2] as a common abstraction of almost all the existing ring theoretic generalizations of a Boolean algebra. The structure of pseudo complemented distributive lattice I and II given by H. Lakser [8, 9] and G. Gratzer [9]. In [4] A. Berhanu, G. Yohannes and T. Bekalu introduced Almost distributive fuzzy lattice (ADFL). In [5] K. B. Lee proved that any Pseudo-complementation on a semilattice is equationally definable. The notion of Pseudocomplementation in an almost distributive lattices was introduced by U.M. Swamy, G.C. Rao and G.N. Rao in [3] and they observe that an almost distributive lattices have more than one pseudo-complementation while it is unique in case of distributive lattice. Pseudo-complements in semi-lattices introduced by O. Frink [6] and also by A.F, Lopez and M.I.T. Barrosa [7]. On the other hand, L.A. Zadeh [12] introduced Fuzzy sets to describe vagueness mathematically in its very abstractness and tried to solve such problems by assigning to each possible individual in the universe of discourse a value representing its grade of membership in the fuzzy set. In [13] N. Ajmal and K.V. Thomas defined a Fuzzy lattice as a fuzzy algebra and characterized fuzzy sublattices. I. Chon [14] considering the notion of fuzzy order of Zadeh, introduced a new notion of Fuzzy lattices and fuzzy partial order relations.

In this paper, we introduce the concept of Pseudo-Complementation * on an ADFL and prove that it is equationally definable in ADFL. We characterized properties of Pseudo-Complementation on Almost distributive fuzzy lattice (PCADFL) and we give some preliminary results in PCADFL.

PRELIMINARIES

In this section, we recall certain elementary definitions and results required.

Definition 2.1. [2] An algebra $(R, \lor, \land, 0)$ of type (2, 2, 0) is called an Almost Distributive Lattice (ADL), if it satisfies the following axioms:

(L1)
$$a \lor 0 = a$$

(L2) $0 \land a = 0$
(L3) $(a \lor b) \land c = (a \land c) \lor (b \land c)$
(L4) $a \land (b \lor c) = (a \land b) \lor (a \land c)$

```
(L5) a \lor (b \land c) = (a \lor b) \land (a \lor c)
(L6) (a \lor b) \land b = b
For all a, b, c \in R
Now we give some basic results.
Lemma 2.2. [2] For any a \in R, we have
      1.
             a \wedge 0 = 0
              a \wedge a = a
      3.
             a \lor a = a
              \mathbf{0} \vee \mathbf{a} = \mathbf{a}.
Lemma 2.3. [2] For any a, b \in R, we have
      1. (\mathbf{a} \wedge \mathbf{b}) \vee \mathbf{b} = \mathbf{b}
      2..
              \mathbf{a} \lor (\mathbf{a} \land \mathbf{b}) = \mathbf{a} = \mathbf{a} \land (\mathbf{a} \lor \mathbf{b})
      3.
              \mathbf{a} \lor (\mathbf{b} \land \mathbf{a}) = \mathbf{a} = (\mathbf{a} \lor \mathbf{b}) \land \mathbf{a}
              \mathbf{a} \vee \mathbf{b} = \mathbf{a} if and only if \mathbf{a} \wedge \mathbf{b} = \mathbf{b}
              \mathbf{a} \vee \mathbf{b} = \mathbf{b} if and only if \mathbf{a} \wedge \mathbf{b} = \mathbf{a}.
Definition 2.4. [2] For any a, b \in R, we say that a is less than or
equal to b and write a \le b is a \land b = a or equivalently, a \lor b = a
Lemma 2.5. [2] For any a, b, c \in R, we have
(1) (a \lor b) \land c = (b \lor a) \land c;
(2) \land is associative in R;
(3) a \wedge b \wedge c = b \wedge a \wedge c.
Definition 2.6. [4] Let (R, \lor, \land, \mathbf{0}) be an algebra of type (\mathbf{2}, \mathbf{2}, \mathbf{0}) and
we call (R, A) is an Almost Distributive Fuzzy Lattice(ADFL) if the
following condition satisfied:
(F1) A(a, a \lor 0) = A(a \lor 0, a) = 1
(F2) A(0,0 \land a) = A(0 \land a,0) = 1
(F3) A((a \lor b) \land c, (a \land c) \lor (b \land c))
  = A((a \wedge c) \vee (b \wedge c), (a \vee b) \wedge c) = 1
(F4) A(a \wedge (b \vee c), (a \wedge b) \vee (a \wedge c))
                        A((a \wedge b) \vee (a \wedge c), a \wedge (b \vee c)) = 1
(F5) A(a \lor (b \land c), (a \lor b) \land (a \lor c))
                     = A((a \lor b) \land (a \lor c), a \lor (b \land c)) = 1
```

(F6) $A((a \lor b) \land b, b) = A(b, (a \lor b) \land b) = 1$, for all $a, b, c \in R$. Definition 2.7. [4] Let (R, A) be an ADFL. Then for any $a, b \in R$.

Definition 2.8. [3] Let $(R, \lor, \land, \mathbf{0})$ be an ADL with 0. Then a unary operation $a \to a^*$ on R is called a Pseudo-complementation on R

if, for any $a, b \in R$, it satisfies the following conditions:

 $R,a \leq b$ if and only if A(a,b) > 0.

(P1) $a \wedge b = 0 \Longrightarrow a^* \wedge b = b$;

(P3) $(a \lor b)^* = a^* \land b^*$.

(P2) $a \wedge a^* = 0$:

The unary operators * is called Pseudo-complementation on R. Lemma 2.9. [3] Let \mathbf{R} be an ADL with 0 and * a pseudocomplementation on R. Then, for any $a,b \in R$, we have the following:

- 1. 0* is maximal; if a is maximal, then $a^* = 0$; 2.
- $0^{**} = 0$;
- 4. $a^* \land a = 0$;
- $a^{**} \wedge a = a$;
- $a^* = a^{***};$ 6.
- $a^* = 0 \Leftrightarrow a^{**}$ is maximal;
- $a^* \leq 0^*$;
- $a^* \wedge b^* = b^* \wedge a^*$; 9.
- 10. $a \leq b \Rightarrow b^* \leq a^*$;
- 11. $a^* \le (a \land b)^*$ and $b^* \le (a \land b)^*$;
- 12. $a^* \le b^* \iff b^{**} \le a^{**}$;
- 13. $a = 0 \Leftrightarrow a^{**} = 0$.

Next, we give some properties and definitions of Fuzzy Partial Order Relation, Fuzzy Lattice and Fuzzy Distributive Lattice.

Definition 2.10. [14] Let X be a set. A function $A: X \times X \rightarrow [0, 1]$ is said to be fuzzy partial order relation if it satisfies the following condition:

- A(x, x) = 1, for all x in X. That is A is reflexive.
- A(x,y)>0 and A(y,x)>0 implies that x=y. That is A is antisymmetric.
- $A(x,z) \ge \sup_{y \text{ in } x} \min [A(x,y), A(y,z)] > 0$. That is A is transitive.

If A is a fuzzy partial order relation in a set X, then (X, A) is a fuzzy partial order relation or fuzzy poset.

Definition 2.11. [14] Let (X, A) be a fuzzy poset. Then (X, A) is a fuzzy lattice if and only if $x \lor y$ and $x \land y$ exists for all $x, y \in X$. Definition 2.12. [14] Let (X, A) be a fuzzy lattice. Then (X, A) is distributive if and only if $x \wedge (y \vee z) = (x \wedge y) \vee (x \wedge z)$ and $(x \lor y) \land (x \lor z) = x \lor (y \land z).$

PSEUDO-COMPLEMENTATION ON ALMOST DISTRIBUTIVE **FUZZY LATTICE**

In this section, we give the definition of Pseudo-complementation on almost distributive fuzzy lattice (PCADFL) and develop some properties of a pseudo-complementation on ADL.

Definition 3.1. Let $(R, \lor, \land, \mathbf{0})$ be an algebra of type $(2, 2, \mathbf{0})$ and (R,A) be a fuzzy poset. A unary operation $a \rightarrow a^*$ on R. Then (R,A) is called a Pseudo-Complementation on Almost Distributive Fuzzy Lattice (PCADFL) for any $a, b \in R$, if the following conditions are satisfied:

- $(PF1) A(1, a \lor b) = A(a \lor b, 1) = 1$
- $(PF2) A(0, a \wedge b) = A(a \wedge b, 0) = 1$
- (PF3) $A(a \land a^*, 0) = A(0, a \land a^*) = 1$
- $(PF4) A(a^* \land b, b) = A(b, a^* \land b) = 1$
- (PF5) $A((a \lor b)^*, (a^* \land b^*)) = A((a^* \land b^*), (a \lor b)^*) = 1$
- (PF6) $A((a^*)^*, a) = A(a, (a^*)^*) = 1$

We can observe that the above six properties are independent.

Example 3.2: Let (R, A) be an ADFL with 0 with at least two elements, if $A(0,0 \land a) > 0$ and $A(0,0^* \land a) > 0$ then $A(0,b^*) > 0$ **0** for all $a, b \in R$.

Example 3.3. Let (\mathbf{R}, \mathbf{A}) be an ADFL with 0 and $(\mathbf{R}, +, .0)$ be a commutative regular ring. To each $a \in R$, let a^0 be the unique idempotent element in **R** such that $a\mathbf{R} = a^0\mathbf{R}$,

- $A(a^{0}b, a \wedge b) > 0;$
- $A(a + (1 a^0)b, a \lor b) > 0;$
- $A(1-a^0, a^*) > 0;$

for any $a, b \in R$, then $(R, \lor, \land, 0)$ is an ADFL with 0 and * is a PCADFL on (R, A).

Lemma 3.4. If (R, A) be a PCADFL for each $a, b \in R$ then $a \land b =$ 0 if and only if,

 $A(a \land b, 0) > 0$, $A(a \land b, 0) > 0$, by antisymmetric property of

Lemma 3.5. Let (R,A) be an ADFL with 0 and * on (R,A) is a PCADFL, for any $a, b \in R$, then $A(a^* \land b, b) > 0$, the proof is trivial if and only if $a^* \land b = b$.

Theorem 3.6. Let (R, A) be a relatively complemented ADFL with **0** and with a maximal element m0. Then * be a PCADFL on (R, A), for any $a, b \in R$. Then the following condition holds:

- $(1) A(b, a^* \wedge b) = 1$
- $(2) A((a \lor b) \land a^* \land b^*, \mathbf{0}) = \mathbf{1}$
- (3) $A((a^* \wedge b^*) \vee (a \vee b), m_0 \vee (a \vee b)) = 1$

Proof. Let(R,A) be an ADFL for any $a,b \in R$. Since m_0 is maximal.

$$(1) A(b, a^* \land b) = A(b, (a^* \lor a) \land b)$$

$$= A(b, (m_0 \lor a) \land b)$$

$$= A(b, m_0 \land b)$$

$$= A(b, b)$$

$$= 1. (since (a^* = a^* \lor a))$$

Hence, m_0 is maximal element $a \lor a^* = a \lor m_0$. Also, $(m_0 \lor a =$ m_0) and $(m_0 \wedge b = b)$.

Therefore $A(b, a^* \wedge b) = 1$.

- (2) $A((a \lor b) \land a^* \land b^*, 0)$
 - $= A(((a \lor b) \land a^*) \land ((a \lor b) \land b^*), 0)$ (by def 2.1.(3)
 - $=A((\boldsymbol{a}\wedge\boldsymbol{a}^*)\vee(\boldsymbol{a}^*\wedge\boldsymbol{b})\wedge(\boldsymbol{a}\wedge\boldsymbol{b}^*)\vee(\boldsymbol{b}\wedge\boldsymbol{b}^*),\boldsymbol{0})$
 - $= A((a \wedge m_0) \vee (a^* \wedge b) \wedge (a \wedge b^*) \vee (b \wedge m_0), 0)$
 - $= A(((\boldsymbol{a} \wedge \boldsymbol{m}_0) \vee \boldsymbol{0}) \wedge (\boldsymbol{0}) \vee (\boldsymbol{b} \wedge \boldsymbol{m}_0), \boldsymbol{0})$
 - $= A((a \lor 0) \land (0 \lor b), 0)$
 - $= A(a \wedge b, 0)$ (by def 3.1.(1))
 - = A(0,0)
- = 1.

Since m_0 is maximal element $a \wedge a^* = a \wedge m_0$. Also, from the definition of pseudo complementation on ADL $a^* \land b = 0$. Therefore $A((a \lor b) \land a^* \land b^*, 0 = 1$.

- (3) $A((a^* \land b^*) \lor (a \lor b), m_0 \lor (a \lor b))$
- $= A((a^* \lor (a \lor b)) \land (b^* \lor (a \lor b)), m_0 \lor (a \lor b)$
- $= A(((a^* \lor a) \lor b) \land ((b^* \lor b) \lor a), m_0 \lor (a \lor b))$
- $= A(((m_0 \lor a) \lor b) \land ((m_0 \lor b) \lor a), m_0 \lor (a \lor b))$
- $= A((m_0 \lor (a \lor b)) \land (m_0 \lor (a \lor b)), m_0 \lor (a \lor b))$
- $= A(m_0 \vee (a \vee b), m_0 \vee (a \vee b)$

Since m_0 is maximal element and also by the properties of ADL $a \wedge a = a$.

 $\therefore A((a^* \land b^*) \lor (a \lor b), m_0 \lor (a \lor b)) = 1$. Hence * is PCADFL on

Now, we give some properties of PCADFL in the following lemma. Lemma 3.7. Let (\mathbf{R}, \mathbf{A}) be an ADFL with $\mathbf{0}$ and * be a PCADFL on

Then, for any $a, b \in R$, we have the following:

- (1) **0*** is maximal;
- (2) if a is maximal, then $A(0, a^*) = 1$;
- (3) $A(0,0^{**})=1$;
- (4) $A(a^* \land a, 0) = 1;$
- (5) $A(a, a^{**} \wedge a) = 1$;
- (6) $A(b^{***}, b^*) = 1;$
- (7) $A(0, a^*) > 0 \Leftrightarrow a^{**}$ is maximal;
- (8) $A(a^*, 0^*) > 0$;
- (9) $A(b^* \wedge a^*, a^* \wedge b^*) = 1;$
- (10) $A(b^*, a^*) > 0$;
- (11) $A(a^*, (a \land b)^*) > 0$ and $A(b^*, (a \land b)^*) > 0$;
- (12) $A(b^{**}, a^{**}) > 0$;
- (13) $A(0, a^{**}) > 0$.

Proof. (1) For any $a \in R$, $A(0, 0 \land a) > 0$ and hence, $A(a, 0 \land A) > 0$ a) > 0 which implies that 0* is maximal.

(2) Suppose a is maximal

 $A(0, a^*) = A(0, (a \lor a^*)^*)$ (since $a = a \lor a^*$))

 $A(0, a^*) = A(0, (a \lor a^*)^*)$ (since $a = a \lor a^*$)) $= A(0, a^* \land a^{**})$ (since $a^* \land a^{**} = 0$)

= A(0,0)

Therefore $A(0, a^*) > 0$ if and only if a is maximal.

- (3) Follows from (1) and (2) $A(0, 0^{**}) = 1$.
- (4) Follows from definition of PCADFL $A(a^* \land a, 0) = 1$.
- (5) Since $a \wedge a^* = 0$ qwhich implies $a^* \wedge a = 0 \Rightarrow a^{**} \wedge a = a$ (by Lemma 2.9.(5)).

Hence, $a \le a^{**} \land a$ if and only if $A(a, a^{**} \land a) > 0$ by absorption law of ADFL.

```
(6) A(b^{***}, b^*)
                                                                                                                                                      Proof. Let a, b \in R. Suppose A(a, b) > 0 which implies a \le b,
           = A((b^{**} \lor b)^*, b^*) \text{ (since } b^{**} = b^{**} \lor b)
                                                                                                                                                      then (R, A) be an ADFL.
          = A(b^{***} \wedge b^*, b^*) (since b^{***} \wedge b^* = b^*)
                                                                                                                                                       (1) For any (a, b) \in R, whenever b \wedge b^* \leq 0 implies that A(b \wedge b)
          =A(b^*,b^*)
                                                                                                                                                      b^*, 0 > 0 by antisymmetric property of A. Since b \wedge b^* =
          = 1.
                                                                                                                                                      0.Hence A(b \land b^*, 0) > 0.
Therefore A(b^{***}, b^*) = 1.
                                                                                                                                                      (2) A(b^{**} \lor b), b^{**}) = A(b^{**}, b^{**})
(7) Follows from (1), (2) and (6) A(0, a^*) > 0 for any a \in R if
                                                                                                                                                       = 1 > 0.
                                                                                                                                                      Since b^{**} is the maximal element, whenever b^{**} \lor b \le b^{**}
and only if a^{**} is maximal.
(8) A(a^*, 0^*) = A((a \lor a^*)^*, 0^*) (from (2)
                                                                                                                                                       implies that A(b^{**} \lor b, b^{**}) > 0.
                         = A(a^* \wedge a^{**}, 0^*)
                                                                                                                                                      (3) A((b \lor a)^*, b^* \land a^*)
                         = A(0^*, 0^*) (since a^* \land a^{**} = 0^*)
                                                                                                                                                       = A((b*\wedge a*), (b*\wedge a*))
                         = 1 > 0.
                                                                                                                                                                                                                  = 1 > 0.
Therefore a^* \le 0^* which implies A(a^*, 0^*) > 0.
                                                                                                                                                      Hence (b \lor a)^* \le b^* \land a^* implies that A((b \lor a)^*, b^* \land a^*) >
(9) A((b^* \land a^*), (a^* \land b^*))
                                                                                                                                                      0 and A((b^* \land a^*), (b \lor a)^* > 0 by antisymmetric property of A.
                                                                                                                                                      (4) A((b \land a)^{**}, b^{**} \land a^{**})
             = A((b \lor a)^*, (a^* \land b^*)) (by def 2.8.(3))
                                                                                                                                                       = A((b \land a)^{**}, (b^* \lor a^*)^*) (by 3.9.(2))
           = A((\boldsymbol{a} \lor \boldsymbol{b})^*, (\boldsymbol{a}^* \land \boldsymbol{b}^*))(by
                                                                                                                          2.5.(1))
                                                                                                                                                       = A((b \land a)^{**}, (b \land a)^{**})
             = A(a^* \wedge b^*, a^* \wedge b^*)
                                                                                                                                                                                                                  = 1 > 0.
                                                                                                                                                      Therefore A((b \land a)^{**}, b^{**} \land a^{**}) > 0. Hence, (R, A) is a PCADFL
Therefore A(b^* \land a^*, a^* \land b^*) = 1.
(10) A(b^*, a^*) = A(a \lor b)^*, a^* (since b = a \lor b)
                                                                                                                                                      for any (a, b) \in R.
                           = A(a^* \wedge b^*, a^*) (by def 2.8.)
                                                                                                                                                       Theorem 3.11. Let (\mathbf{R}, \vee, \wedge, \mathbf{0}) be an ADFL. Then a unary operation
                           = A(a^*, a^*) > 0.
                                                                                                                                                       * is a PCADFL on (R, A), if and only if, the following equations are
Hence, a \le b \Leftrightarrow b^* \le a^* if and only if A(b^*, a^*) > 0 by
                                                                                                                                                       satisfied:
antisymmetric property of A.
                                                                                                                                                               1.
                                                                                                                                                                        A((a \wedge b)^* \wedge b, a^* \wedge b) = 1
(11) Hence a^* \le (a \land b)^* which implies A(a^*, (a \land b)^*) > 0 and
                                                                                                                                                                         A(a, 0* \land a) = 1
                                                                                                                                                               2.
                                                                                                                                                                         A(0^{**},0) = 1
similarly we have a \land b \le b which implies that b^* \le (a \land b)^* if
                                                                                                                                                               3.
and only if A(b^*, (a \land b)^*) > 0 by antisymmetric property of A
                                                                                                                                                                          A((a \lor b)^*, (a^* \land b^*)) = 1
                                                                                                                                                                          A(a \wedge b \wedge (a \wedge b)^*, 0) = 1
for each a, b \in R.
                                                                                                                                                               5.
                                                                                                                                                       Proof. Let (R, A) is a ADFL for a, b \in R, whenever A(a, b) > 0.
(12) Follows from (6) and (10), A(a^*, b^*) > 0 which implies
A(b^{**},a^{**})>0.
                                                                                                                                                      (1) A((a \wedge b)^* \wedge b, a^* \wedge b)
(13) For any a \in R, follows from (3) if and only if a^{**} is maximal.
                                                                                                                                                       = A((a^* \lor b^*) \land b, a^* \land b)
Hence a^{**} \le 0 which implies that A(a^{**}, 0) > 0.
                                                                                                                                                       = A((a*\wedge b) \vee (b*\wedge b), a*\wedge b)
                                                                                                                                                      = A((a*\wedge b) \vee (b \wedge b*), a*\wedge b)
More generally, we have
Lemma 3.8. Let (\mathbf{R}, \mathbf{A}) be an ADFL with \mathbf{0} and * be a PCADFL on
                                                                                                                                                       = A((a*\land b) \lor 0), a*\land b) (by def 2.8.(2))
(R, A). Then, for any a, b \in R, the following holds:
                                                                                                                                                      = A((a*\lor 0) \land (b \lor 0), a*\land b)
         (14) A(0, a \land b) > 0 and A(a \land b, 0) > 0;
                                                                                                                                                       = A(a*\Lambda b, a*\Lambda b)
         (15) A(0, a^{**} \land b) > 0 and A(a^{**} \land b, 0) > 0;
                                                                                                                                                      = 1.
         (16) A(0, a^{**} \land b^{**}) > 0 and A(a^{**} \land b^{**}, 0) > 0;
                                                                                                                                                      from the definition of pseudo-complemented on ADL (a \land b)^*=
         (17) A(0, a \land b^{**}) > 0 and A(a \land b^{**}, 0) > 0.
                                                                                                                                                      a^* \lor b^* and b \land b^* = 0.
Using the absorption laws of ADFL, * satisfies the given equations
                                                                                                                                                      Therefore A((a \land b)^* \land b, a^* \land b) = 1.
of PCADFL on (R, A).
                                                                                                                                                       (2) A(a, 0* \land a) = A(a, 1 \land a) (since 0* = 1)
Lemma 3.9. Let (R, A) be an ADFL with 0 and * is a PCADFL on
                                                                                                                                                                                                                 = A(a,a)
(R, A). Then, for any a, b \in R, the following holds:
                                                                                                                                                                                                                      = 1.
(1) A((a \wedge b)^{**}, a^{**} \wedge b^{**}) = 1
(2) A((a \wedge b)^{*}, (b \wedge a)^{*}) = 1
                                                                                                                                                      Therefore A(a, 0*\land a) = 1.
                                                                                                                                                      Hence A(a, 0* \land a) > 0. For a \in R.
                                                                                                                                                      (3) A(0^{**}, 0) = A(0,0) (by lemma 2.9.(3))
(3) A((a \lor b)^*, (b \lor a)^*) = 1
Proof. Let a, b \in R.
                                                                                                                                                       =1.
(1) A((a \wedge b)^{**}, a^{**} \wedge b^{**})
                                                                                                                                                      Therefore A(0^{**}, 0) = 1.
               = A((a \land b)^{**}, (a^* \lor b^*)^*)
= A((a \lambda b)^{**}, (a \lambda b)^{**})
                                                                                                                                                      (4) A((a \lor b)^*, (a^* \land b^*))
                                                                                                                                                       = A((a*\wedge b*), (a*\wedge b*))
               = 1.
Therefore A((a \land b)^{**}, a^{**} \land b^{**}) = 1.
                                                                                                                                                      Therefore ((a \lor b)^*, (a^* \land b^*) = 1, which implies that A((a \lor b)^*, (a^* \land b^*) = 1)
(2) A((a \land b)^*, (b \land a)^*)
                                                                                                                                                      (a^* \land a^* \land b^*) > 0 by antisymmetric property of (a^* \land b^*) > 0
= A((a*V b*), (b \wedge a)*)
                                                                                                                                                      (5) A(a \wedge b \wedge (a \wedge b)^*, 0)
= A((b*V a*), (b \wedge a)*)
                                                                                                                                                               = A(a \wedge b \wedge (a^* \vee b^*), 0) (by lemma 3.9.(2))
= A(b \wedge a)^*, (b \wedge a)^*)
                                                                                                                                                              = A(0 \land (a^* \lor b^*), 0) (by def 2.8.(1))
                                                                                                                                                              = A((0 \wedge a^*) \vee (0 \wedge b^*), 0)
                                                                = 1.
Therefore A((a \wedge b)^*, (b \wedge a)^*) = 1.
                                                                                                                                                              = A((0) \lor (0), 0)
(3) A((a \lor b)^*, (b \lor a)^*)
                                                                                                                                                              = A(0,0)
= A((a \lor b)^*, (b^* \land a^*)) (by def 2.8.(3))
                                                                                                                                                              = 1.
= A((a \lor b)^*, (a^* \land b^*)) (by lemma 2.5.(1))
                                                                                                                                                      Hence A(a \wedge b \wedge (a \wedge b)^*, 0) = 1. Similarly A(0, a \wedge b \wedge (a \wedge b)^*, 0) = 1.
= A((a \lor b)^*, (a \lor b)^*)
                                                                                                                                                      (b)^*) = 1. for (a, b) \in R, Therefore (a \land b) \land (a \land b)^*, (a \land b) \land (a \land b)^*, (a \land b) \land (a \land b
                                                                                                                                                      which implies that A(a \land b \land (a \land b)^*, 0) > 0 by antisymmetric
Therefore A((a \lor b)^*, (b \lor a)^*) = 1.
                                                                                                                                                      property of A. Hence * is a pseudo-complement on R and (R,A)
Theorem 3.10. Let (\mathbf{R}, \vee, \wedge, \mathbf{0}) be an ADFL with 0. Then a unary
                                                                                                                                                      be a PCADFL.
```

equations are satisfied:

 $A(b \wedge b^*, 0) > 0;$ $A(b^{**} \vee b), b^{**}) > 0;$ $A((b \vee a)^*, b^* \wedge a^*) > 0;$ $A((b \wedge a)^{**}, b^{**} \wedge a^{**}) > 0.$

1.

operation * is a PCADFL on (R, A), if and only if the following

REFERENCES

- G. Birkhoff, Lattice theory, 3rd ed., Amer. Math. Soc. Colloq. Publ., Vol. 25, Amer. Math. Soc., Providence, R. I., (1967), MR 37 #2638.
- U.M. Swamy and G.C. Rao, Almost distributive lattices, Journal of Australian Mathematical Society (Series-A), Vol. 31(1981), 77-91.
- 3. U.M. Swamy, G.C. Rao and G. Nanaji Rao, Pseudocomplementation on almost distributive lattices, Southeast Asian Bulletin of Mathematics, Vol. 24 (2000), 95-104.
- A. Berhanu, G. Yohannes and T. Bekalu, Almost distributive fuzzy lattice, International Journal of Mathematics and its Application, Vol. 5 (1-C) (2017), 307-316.
- K.B. Lee, Equational classes of distributive pseudocomplemented lattices, Can. J. Math., 22(4) (1970), 881-891.
- O. Frink, Pseudo-complements in semi-lattice, J. Duke Math, Vol. 29 (1962), 505-514.
- A.F. Lopez and M.I.T. Barroso, Pseudo-complemented semilattices, boolean algebras and compatible products, Journal of Algebra, Vol. 242 (2001), 60-91.
- H. Lakser, The structure of pseudo complemented distributive lattices I: subdirect decomposition, Transactions of the American Mathematical Society, Vol.156 (1971), 335-342.
- G. Gratzer and H. Lakser, The structure of pseudo complemented distributive lattices II: congruence extension and amalgamation, Transactions of the American Mathematical Society, Vol. 156(1971), 343-358.
- P.V. Venkatanarasimhan, Pseudo-complements in posets, Proceedings of the American Mathematical Society, Vol. 28 (1971), 9-17.
- T. Katrinak and J. Gurican, Finite pseudo complemented lattices: The spectra and the Glivenko congruence, Algebra Universalis, Vol.66 (1-2) (2011), 151-161.
- 12. L.A. Zadeh, Fuzzy sets, Information and control, Vol. 8(1965), 338-353.
- 13. N. Ajmal and K. V. Thomas, Fuzzy Lattices, Information sciences, Vol. 79(1994), 271-291.
- 14. I. Chon, Fuzzy partial order relations and fuzzy lattices, Korean J. Math., Vol. 17(4) (2009), 361-374.
- L.A. Zadeh, Similarity relations and fuzzy orderings, Information Sciences, Vol. 3 (1971), 177-200.
- J.A. Goguen, L-fuzzy set, J. Math. Anal. Appl., Vol. 18(1967), 145-17.