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Abstract

In this paper, we introduce the concept of a Pseudo-Complementation* on an Almost Distributive Fuzzy Lattice (PCADFL) as a
generalization of an almost Distributive Fuzzy Lattice (ADFL). It is proved that it is equationally definable on ADFL by using properties of
Pseudo-Complementation on almost Distributive Lattice. We state and prove some results of a PCADFL, too.
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INTRODUCTION

The general development of lattice theory started by G. Birkhoff
[1]. The concept of an Almost distributive lattice (ADL) was
introduced by UM. Swamy and G.C. Rao [2] as a common
abstraction of almost all the existing ring theoretic
generalizations of a Boolean algebra. The structure of pseudo
complemented distributive lattice I and II given by H. Lakser [8,
9] and G. Gratzer [9]. In [4] A. Berhanu, G. Yohannes and T.
Bekalu introduced Almost distributive fuzzy lattice (ADFL). In [5]
K. B. Lee proved that any Pseudo-complementation on a semi-
lattice is equationally definable. The notion of Pseudo-
complementation in an almost distributive lattices was
introduced by U.M. Swamy, G.C. Rao and G.N. Rao in [3] and they
observe that an almost distributive lattices have more than one
pseudo-complementation while it is unique in case of
distributive lattice. Pseudo-complements in semi-lattices
introduced by O. Frink [6] and also by A.F, Lopez and M.LT.
Barrosa [7]. On the other hand, L.A. Zadeh [12] introduced Fuzzy
sets to describe vagueness mathematically in its very
abstractness and tried to solve such problems by assigning to
each possible individual in the universe of discourse a value
representing its grade of membership in the fuzzy set. In [13] N.
Ajmal and K.V. Thomas defined a Fuzzy lattice as a fuzzy algebra
and characterized fuzzy sublattices. I. Chon [14] considering the
notion of fuzzy order of Zadeh, introduced a new notion of Fuzzy
lattices and fuzzy partial order relations.

In this paper, we introduce the concept of Pseudo-
Complementation * on an ADFL and prove that it is equationally
definable in ADFL. We characterized properties of Pseudo-
Complementation on Almost distributive fuzzy lattice (PCADFL)
and we give some preliminary results in PCADFL.

PRELIMINARIES
In this section, we recall certain elementary definitions and
results required.

Definition 2.1. [2] An algebra (R,V,A, 0) of type (2,2, 0) is called
an Almost Distributive Lattice (ADL), if it satisfies the following
axioms:

(L1)av0o=a
(L2)0Aa=0
(L3)Y(avb)Ac=(arnc)V(bAc)
(L4)yan(bvc)=(anb)v(anrc)
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(L5)av(bAc)=(avb)A(aVc)
(L6)(avb)Ab=Db
Foralla,b,c € R
Now we give some basic results.
Lemma 2.2. [2] For any a € R, we have

1. an0=0

2. aha=a

3. ava=a

4. Ova=a.
Lemma 2.3. [2] For any a, b € R, we have

1. (@Ab)vb=>b

2. av(aAb)=a=aA(avb)

3. av(bna)=a=(avb)Aa

4. avb=aifandonlyifaAb=>b

5. avb=bifandonlyifaAb =a.
Definition 2.4. [2] For any a, b € R, we say that a is less than or
equal to b and write a < b isa A b = a or equivalently, av b =
b.
Lemma 2.5. [2] For any a, b, ¢ € R, we have
(D (avb)Ac=(bVa)Ac;
(2) Ais associative in R;
(3)anbAc=bAaAc.
Definition 2.6. [4] Let (R,V,A, 0) be an algebra of type (2, 2,0) and
we call (R, A) is an Almost Distributive Fuzzy Lattice(ADFL) if the
following condition satisfied:
(F1)A(a,av0) =A(av0,a)=1
(F2)A(0,0na) =A(0Aa,0)=1
(F3) A((a Vb)Acg (@A) Vv(bA c))
=A((anc)v(brc),(avb)rc)=1
(F&)A(an(bVv),(anb)v(anc))

A((anb)v(anc),an(bve) =1
(F5)A(av (bAc),(avb)A(aVo))
=A((avb)Aa(ave),av(brc)=1

(F6) A((av b) Ab,b) = A(b,(aVb) Ab) =1,foralla,b,c €R.
Definition 2.7. [4] Let (R,A) be an ADFL. Then for any a,b €
R,a < bifand only if A(a, b) > 0.
Definition 2.8. [3] Let (R,V,A, 0) be an ADL with 0. Then a unary
operation a — a*on R is called a Pseudo-complementation on R
if, for any a, b € R, it satisfies the following conditions:
(P1)aAb=0=a*Ab=b;
(P2)a Aa*=0;
(P3) (a Vv b)*= a* A b*.
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The unary operators * is called Pseudo-complementation on R.
Lemma 2.9. [3] Let R be an ADL with 0 and * a pseudo-
complementation on R. Then, for any a,b € R, we have the
following:
1 0* is maximal;
2. if a is maximal, then a* = 0;
3. 0%*=0;
4, a* ANa=0;
5. a*Aa=a;
6 a* = a**
7 a*= 0 © a** is maximal;
8. a*<o0%
9. a*Ab*=Db*Aa*

10. a<b = b*< a*;

11. a*< (aAb)*and b*< (a A b)*;

12. a* < b* & b** < a*¥;

13. a=0a*=0.
Next, we give some properties and definitions of Fuzzy Partial
Order Relation, Fuzzy Lattice and Fuzzy Distributive Lattice.
Definition 2.10. [14] Let X be a set. A function A : X X X = [0, 1]
is said to be fuzzy partial order relation if it satisfies the
following condition:

1. A(xx) =1, forall xinX. Thatis A is reflexive.

2. A(x,y) > 0 and A(y,x) > 0 implies that - x = y. That is

A is antisymmetric.
3. A(X,z) = supy in x min [A(x,y),A(y,z)] > 0. That is A is
transitive.

If A is a fuzzy partial order relation in a set X, then (X,4) is a
fuzzy partial order relation or fuzzy poset.
Definition 2.11. [14] Let (X, A) be a fuzzy poset. Then (X, A4) is a
fuzzy lattice if and only if x V y and x A y exists for all x,y € X.
Definition 2.12. [14] Let (X, A) be a fuzzy lattice. Then (X, 4) is
distributive if and only if xA(yvz)=(xAy)V(xAz) and
(xvy)A(xvz)=xV(yA2).

PSEUDO-COMPLEMENTATION ON ALMOST DISTRIBUTIVE
FUZZY LATTICE
In this section, we give the definition of Pseudo-complementation
on almost distributive fuzzy lattice (PCADFL) and develop some
properties of a pseudo-complementation on ADL.
Definition 3.1. Let (R, V, A, 0) be an algebra of type (2, 2,0) and
(R,A) be a fuzzy poset. A unary operation a — a* on R. Then
(R,A) is called a Pseudo-Complementation on Almost
Distributive Fuzzy Lattice (PCADFL) for any a,b € R, if the
following conditions are satisfied:
(PF1)A(1,avb) =A(avb,1) =1
(PF2) A(0,aAb) =A(anb,0)=1
(PF3)A(aAna*0) =40, ana*) =1
(PF4) A(a*A b, b) = A(b,a*Ab) =1
(PF5) A((a V b)*,(a*A b*)) = A((a*A b*),(aVb)*) =1
(PF6) A((a*)*, @) = A(a, (a*)") = 1
We can observe that the above six properties are independent.
Example 3.2: Let (R,A) be an ADFL with 0 with at least two
elements, if A(0,0 A @) > 0 and A(0,0*A a) > 0 then A(0, b*) >
0 foralla,b € R.
Example 3.3. Let (R,A) be an ADFL with 0 and (R, +,.0) be a
commutative regular ring. To each a € R, let a® be the unique
idempotent element in R such that aR = a°R,

1. A(a’b,aAb)>0;

2. A(@a+ (1 -a%b,avb)>0;

3. A(l-a%a*)>0;
for any a,b € R, then (R, V, A,0) is an ADFL with 0 and * is a
PCADFL on (R, A).
Lemma 3.4. If (R, A) be a PCADFL for each a,b € RthenaAb =
0 if and only if,
A(anb,0) >0, A(aAb,0) > 0, by antisymmetric property of
A
Lemma 3.5. Let (R, A) be an ADFL with 0 and *on (R,A) is a
PCADFL, for any a,b € R, then A(a*A b,b) > 0, the proof is
trivial if and only if a*A b = b.
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Theorem 3.6. Let (R, A) be a relatively complemented ADFL with
0 and with a maximal element m0. Then * be a PCADFL on (R, A),
for any a, b € R. Then the following condition holds:
(1)A(b,a*Ab) =1
(2)A((av b)Aa*Ab*,0) =1
(3)A((a*Ab*) Vv (aVv b),mov (aV b)) =1
Proof. Let(R,A) be an ADFL for any a,b € R. Since mo is
maximal.
(1) A(b,a*A b) = A(b,(a*V a) A b)
= A(b,(moV a)Ab)
=A(b,mo A b)
= A(b,b)
= 1. (since (a*= a*Vv a))
Hence, mo is maximal element a vV a*= a VvV mo. Also, (moV a =
mo)and (mo A b = b).
Therefore A(b,a*A b) = 1.
(2) A((aV b) A a*A b*,0)
=A(((aVv b) Aa*) A((aV b) A b*),0) (by def 2.1.(3)
=A((ana*)V (a*Ab) A (aAb*)V (b ADb*),0)
= A((a Amyo) V (a*A b) A (a Ab*) V (b A my),0)
= A(((aAmo) vV 0) A (0) V(b Amy),0)
=A((av0)A(0Vb),0)
= A(aAb,0) (bydef3.1.(1))
= A(0,0)
=1.
Since mo is maximal element a A a*= a A my. Also, from the
definition of pseudo complementation on ADL a*A b =0.
Therefore A((a Vv b) Aa*Ab*,0 = 1.
(3) A((a*Ab*) Vv (aV b),meV (aV b))
= A((a*v (aV b)) A (b*v (aV b)), mev (aV b)
=A(((a*v a) v b) A ((b*V b) V a), meV (aV b))
= A(((moV a) vV b) A ((moV b) V @), meV (aV b))
= A((moV (aV b)) A (moV (aV b)), meVv (aV b))
=A(moV (aVv b),meV (aVb)
=1
Since myo is maximal element and also by the properties of ADL
aha=a.
~ A((a*Ab*) v (aV b),mev (aV b)) = 1. Hence * is PCADFL on
(R, A).
Now, we give some properties of PCADFL in the following lemma.
Lemma 3.7. Let (R, A) be an ADFL with 0 and * be a PCADFL on
R.
Then, for any a, b € R, we have the following:
(1) 0*is maximal;
(2) if ais maximal, then 4(0,a*) = 1;
(3) A(0,0%%) =1;
(4) A(a*Aa,0)=1;
(5) A(a,a**Aa) =1;
(6) A(b** b*) =1;
(7) A(0,a*) >0 < a**is maximal;
(8) A(a*,0%)>0;
(9) A(b*A a* a*A b*) =1,
(10) A(b*, a*) > 0;
(11) A(a*, (a A b)*) > 0 and A(b*, (a A b)*) > 0;
(12) A(b**, a**) > 0;
(13) A(0,a**) > 0.
Proof. (1) For any a € R,A(0,0 Aa) >0 and hence, A(a, 0*A
a) > 0 which implies that 0* is maximal.
(2) Suppose a is maximal
A0, a*) =A(0, (aVva*)*) (since a=aVa¥)
A(0,a*) = A(0, (aV a*)*) (sincea = aV a*))
= A(0, a*A a**) (since a*A a**= 0)
= A(0,0)
=1.
Therefore A(0,a*) > 0 ifandonlyifa is maximal.
(3) Follows from (1) and (2) A(0,0**) = 1.
(4) Follows from definition of PCADFL A(a*A a,0) = 1.
(5) Since a Aa*= 0 qwhich implies a*Aa=0=a*Aa=a
(by Lemma 2.9.(5)).
Hence, a < a**A a if and only if A(a, a**A a) > 0 by absorption
law of ADFL.
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(6) A(b***, b*)
= A((b**V b)*, b*) (since b**= b**V b)
= A(b***A b*, b*) (since b***A b*= b*)
= A(b*, b*)
=1
Therefore A(b***, b*) = 1.
(7) Follows from (1), (2) and (6) A(0,a*) > 0 for any a € R if
and only if a** is maximal.
(8) A(a*,0%) = A((aV a*)*,0%) (from (2)
= A(a*A a**, 0%)
= A(0% 0*) (since a*A a**= 0%)
=1>0.
Therefore a*< 0* which implies A(a*, 0*) > 0.
(9) A((b*A a*), (a*A b*))
=A((bV a)* (a*A b*)) (by def 2.8.(3))
= A((a V b)*, (a*A b*))(by lemma
= A(a*A b*, a*A b*)
=1
Therefore A(b*A a*, a*A b*) = 1.
(10) A(b*, a*) = A(a V b)*, a*) (sinceb = aV b)
= A(a*A b* a*) (by def2.8))
= A(a*, a*) > 0.
Hence, a<b  b*<a* if and only if A(b* a*)>0 by
antisymmetric property of A.
(11) Hence a*< (a A b)* which implies A(a*, (a A b)*) > 0 and
similarly we have a A b < b which implies that b*< (a A b)* if
and only if A(b* (a A b)*) > 0 by antisymmetric property of A
for eacha,b € R.
(12) Follows from (6) and (10), A(a* b*) > 0 which implies
A(b**, a**) > 0.
(13) For any a € R, follows from (3) if and only if a** is maximal.
Hence a**< 0 which implies that A(a**,0) > 0.
More generally, we have
Lemma 3.8. Let (R, A) be an ADFL with 0 and * be a PCADFL on
(R, A). Then, for any a, b € R, the following holds:
(14) A(0,aAb) >0andA(aAb,0) > 0;
(15) A(0,a**Ab) > 0 and A(a**A b,0) > 0;
(16) A(0,a**A b**) > 0 and A(a**A b**,0) > 0;
(17) A(0,a Ab**) > 0and A(a A b**,0) > 0.
Using the absorption laws of ADFL, * satisfies the given equations
of PCADFL on (R, 4).
Lemma 3.9. Let (R, A) be an ADFL with 0 and *is a PCADFL on
(R, A). Then, for any a, b € R, the following holds:
(1) A((a Ab)**, a**Ab**) =1
(2) A((anb)*,(brha)*) =1
(3) A((avb)*,(bva)*) =1
Proof. Leta,b € R.
(1) A((aADb)**a**A b**)
= A((a Ab)**, (a*Vv b*)*)
= A((@aAb)** (aAb)**¥)
=1.
Therefore A((a A b)**, a**A b**) = 1.
(2)A((anb)s, (bra)")
= A((a*v b¥*), (b Aa)*)
= A((b*v a¥*),(bAa)*)
=AM Aa)s(bra)¥)

2.5.(1))

=1.
Therefore A((a A b)*, (b Aa)*) = 1.
(3)A((avb)* (bva)®)
= A((aV b)* (b*Aa*)) (by def 2.8.(3))
= A((aVvb)* (a*Ab*)) (by lemma 2.5.(1))
=A((aVvb)* (avb)*)
=1.
Therefore A((a Vv b)*, (b V a)*) = 1.
Theorem 3.10. Let (R, V,A,0) be an ADFL with 0. Then a unary
operation *is a PCADFL on (R, 4), if and only if the following
equations are satisfied:
1. A(bADb*0)>0;
2. A(b**V b),b**) > 0;
3. A((bVa)*b*Aa*) > 0;
4. A((b A @)**, b**A a**) > 0.
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Proof. Let a,b € R. Suppose A(a,b) > 0 which implies a < b,
then (R, A) be an ADFL.
(1) For any (a,b) € R, whenever b A b*< 0 implies that A(b A
b*, 0) >0 by antisymmetric property of A. Since b A b*=
0.Hence A(b A b*, 0) > 0.
(2) A(b** v b), b**) = A(b**, b**)
=1>0.
Since b** is the maximal element, whenever b**v b < b**
implies that A(b** Vv b, b**) > 0.
(3)A((bVva)*, b*Aa*)
= A((b*A a¥), (b*A a*))
=1>0.
Hence (bVa)*< b*Aa* implies that A((bV a)* b*Aa*) >
0 and A((b*A a*), (b V a)*> Oby antisymmetric property of A.
(4) A((b A a)**,b**A a**)
= A((b A a)** (b*v a*)*) (by 3.9.(2))
=A((bAa)**, (bAa)**)
=1>0.
Therefore A((b A a)**, b**A a**) > 0. Hence, (R, A) is a PCADFL
for any (a, b) € R.
Theorem 3.11. Let (R,V,A, 0) be an ADFL. Then a unary operation
* is a PCADFL on (R, A), if and only if, the following equations are
satisfied:
1. A((anb)*Ab,a*Ab) =1
2. A(a,0*Aa) =1
3. A(0*0)=1
4. A((avDb)* (a*Ab*) =1
5. A(anbA(anb)*0)=1
Proof. Let (R, A) is a ADFL for a, b € R, whenever A(a,b) > 0.
(1) A((@Ab)*Ab,a*Ab)
= A((a*v b*) Ab,a*Ab)
= A((@*Ab) v (b*Ab),a*A b)
= A((@*Ab) v (b Ab*),a*A b)
= A((@*Ab) v 0),a*Ab) (by def 2.8.(2))
=A((@*v0)A(bVv0),a*Ab)
= A(a*Ab,a*Ab)
=1
from the definition of pseudo-complemented on ADL (a A b)*=
a*v b*and b A b*=0.
Therefore A((a A b)*A b,a*A b) = 1.
(2)A(a,0*Aa) = A(a,1 A a) (since 0*= 1)
=A(a,a)
=1
Therefore A(a, 0*Aa) = 1.
Hence A(a,0*Aa) > 0. Fora € R.
(3) A(0**,0) = A(0,0) (by lemma 2.9.(3))
=1.
Therefore A(0**, 0)= 1.
(4) A((@vb)*, (a*Ab*))
= A((a*A b*), (@*A b*))
=1.
Therefore ((aV b)* (a*A b*) =1, which implies that A((aVv
b)*, (a*A b*)) > 0 by antisymmetric property of A.
(5)A(@AbA(anb)%0)
=A(aAbA(a*vb*),0) (bylemma 3.9.(2))
= A(0 A (a*v b*),0) (by def2.8.(1))
=A((0Aa*) v (0AD*),0)
= A((0) v (0),0)
=A(0,0)
=1
Hence A(aAnbA(aAb)*0)=1. SimilarlyA(0,aAbA (an
b)*) =1. fora,b € R, Therefore A(aAbA(aAb)*0)=1,
which implies that A(a A b A (a A b)*, 0) > 0 by antisymmetric
property of A. Hence * is a pseudo-complement on R and (R, A)
be a PCADFL.
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