
A Priority-based Approach for Detection of
Anomalies in ABAC Policies using Clustering

Technique

K.Vijayalakshmi
Research Scholar, VISTAS, Chennai, India

Dept. of Computer Science
Arignar Anna Government Arts College, Cheyyar

Email: vijiyuvavelan@gmail.com

V.Jayalakshmi
School of Computing Sciences

Vels Institute of Science, Technology and Advanced Studies
VISTAS, Chennai, India

Email: jayasekar1996@yahoo.co.in

Abstract— Cloud computing offers several computing
services like storage, networks, hardware, and software. The
most beneficial cloud service is cloud storage. The organization
or large industries can store their big data in cloud storage on
pay for usage scheme. As the big data are outsourced in a
distributed cloud environment, securing and protecting the big
data is essential. The various access control models, which consist
of a set of security policies, are used generally to protect the
outsourced data. Anomalies in the security policies dilute the
efficiency of the access security model. Developing an efficient
access control model to protect the data is a challenging and
ongoing process. The primary goal of this paper is to analyze and
detect the important anomalies in Attribute-Based Access
Control-ABAC Policies. This paper presents an approach that
uses Priority-level to avoid the conflict in ABAC Policies. This
approach groups the rules of ABAC policies based on Priority-
level and similarity with the clustering technique, and detect the
anomalies in each cluster rather than all rules, which made this
approach efficient.

Keywords— ABAC Policy, access control model, anomalies, big
data, cloud storage, clustering, priority-level, and security policy.

I. INTRODUCTION
With the growth of the internet and many new

technologies, data sharing is well grown to manage the
business and everything in an easy manner. Cloud, Fog
computing, and other service platforms provide the data
storage and sharing required by many business organizations
and applications. Due to many security risks and threats,
preventing data leakage is an ever-challenging job, and also it
is essential to make the data owners trust the data-sharing
service platforms. In social network environments, protecting
the privacy of data is difficult than traditional data [1]. Data
providers store only encrypted data in the clouds. Using a
hybrid encryption technique may improve the security level
[2]. Cloud and other service platforms use various access
control models to protect data privacy and confidentiality in
the distributed storage environment. The access control model
is an efficient and traditional approach to protect shared data
by allowing only authorized users. The various tasks of access
control models are managing the risk condition when
credential information of the user is lost, managing the
revocation when multiple users are trying to get access to a

single resource, and monitoring and managing the increased
rate of new access rights [3]. In the last few decades, various
access control models have been developed to secure the
outsourced data in the distributed cloud storage environment.
Some models are very good at securing the distributed
outsourced big data, whereas some models have got great
failure. Role-Based Access Control model (RBAC), Attribute-
Based Access Control Model (ABAC), Ciphertext Policy
Attribute-based Encryption (CP-ABE), Discretionary Access
Control (DAC), Mandatory Access Control (MAC) are some
existing access control models. MAC and DAC are good
enough when the size of data, range of resources, and the
number of users are very small. MAC gives its efficiency in
securing multilevel database management systems. The main
logic implemented in Multilevel Secure (MLS) applications is
derived from MAC [4]. But nowadays, all are growing
rapidly, and to manage the high range of resource
requirements from a huge number of users, these approaches
are not suitable, which need an emerging approach. RBAC is
such a model that proved its efficiency in securing the
outsourced data in the distributed storage environment[5].
Most of the access control models use either RBAC or ABAC
or the integrated features of RBAC and ABAC [5].

 RBAC maintains a permanent relationship between
users, objects or subjects, roles, and permissions, whereas
ABAC maintains the changeable mappings between users,
roles, and permissions. RBAC model uses a new mid-layer
called Role in between the user and permission [5]. The access
control model with RBAC is well suited for the environment,
which allows a large amount of data sharing and a large
number of users. But today, emerging technology consists of
cloud computing, mobile computing, Fog computing requires
the access control model to be more efficient. Such access
control models require the conceptual data and security
policies of such an access control model need to be established
with the attributes of objects, subjects, and environmental
conditions [6]. RBAC is inefficient in supporting attribute-
based policies in the huge distributed environment. In this
situation, ABAC has been proposed to overcome the defect of
RBAC and is well in establishing dynamic and attribute-based
security policies. ABAC access control model allow or deny
the operation on object requested by subject based on the valid
attributes of subjects, objects, and environmental condition

Proceedings of the Fourth International Conference on Computing Methodologies and Communication (ICCMC 2020)
IEEE Xplore Part Number:CFP20K25-ART; ISBN:978-1-7281-4889-2

978-1-7281-4889-2/20/$31.00 ©2020 IEEE 897

20
20

 F
ou

rt
h

In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 C

om
pu

tin
g

M
et

ho
do

lo
gi

es
 a

nd
 C

om
m

un
ic

at
io

n
(I

C
C

M
C

)
97

8-
1-

72
81

-4
88

9-
2/

20
/$

31
.0

0
©

20
20

 I
E

E
E

 1
0.

11
09

/I
C

C
M

C
48

09
2.

20
20

.I
C

C
M

C
-0

00
16

6

and rules. The security policies are constructed as a set of
conditions or rules that verify the list of attributes with the
permitted set of values. The anomalies in rules of Policies
decrease the efficiency of the ABAC model.

This paper presents our ongoing research for developing a
new access control model to protect data in a distributed
storage platform. The initial component of our framework is
to find possible anomalies in security policies. This paper
categorizes the possible anomalies, collects the rules of ABAC
policies and clusters rules based on their similarity and
Priority-level. This approach detects anomalies in every
cluster rather than every rule, which may improve the
performance.

II. RELATED WORK
According to the analysis of anomalies, Jonathan et al.

(Moffett and Sloman, 1994) identify the following anomalies
Conflict- in-Modality(action: allow or deny), Conflict-in-
imperative and authority policy, Conflict-in-limited resources
on-demand, Conflict-in-simultaneous tasks of single-subject
[7]. In 2016 Khoumsi et al. framed two types of anomalies
conflicting anomalies and non-conflicting anomalies. Maryem
Ait El Hadj (Meryeme Ayache, Yahya Benkaouz, Ahmed
Khoumsi, and Mohammed Erradi, 2017) proposed an approach
[8] to detect the anomalies in ABAC policies. Maryem Ait El
Hadj uses equal weights for all categories(Subject, Object,
Environmental conditions) to measure the similarity. Maryem
Ait El Hadj and Mohammed Erradi[In 2018] proposed an
approach [9] to detect and correct the anomalies in ABAC
Security policies. This approach uses security policies and
access logs as input to find a suspicious attack. Clustering is
applied to group the security policies of similar concepts. In
my view, this model only detects the anomalies in suspicious
rules, which may lead the incorrect results. Thus anomalies of
other rules(not found as suspicious rules) may not be detected
an corrected. Even it’s a time-consuming process; it is
mandatory to detect and correct anomalies in all rules of
security policies.

Contrary to the above-analyzed approaches, we use
additional parameter Priority-level in each rule and cluster all
rules based on similarity score and priority_level. Because of
using additional parameter Priority_level, this approach avoids
the conflict, makes the perfect clusters of similar rules, and
reduces the computation time. Our proposed approach finds
the anomalies of all rules instead of only suspicious rules to
improve efficiency. Maryem Ait El Hadj and Mohammed
Erradi have not implemented the Map-reduce method for the
parallel distributed environment. Our future work is to use
Map-Reduce to make the approach suitable for a fully
distributed environment.

III. PRELIMINARIES
A. ABAC Model

The traditional authentication system uses the identity of
the user or subject to make the decision (allow or deny) for a
request of operation (read, write) on the object(resource:
database, file). This access control is not enough to manage
security in a large, distributed environment. This emerging

technology needs additional information or attributes to trust
or allow the user for data sharing. ABAC is such a model to
protect the outsourced data in a distributed environment.
ABAC access control model, shown in figure Fig. 1, contrasts
with the traditional authentication system.

Fig. 1. Attribute-Based Access Control System

ABAC access control model allow or deny the operation
on object requested by subject based on the valid attributes of
subjects, objects , and environmental condition and rules. The
security policies are constructed as a set of conditions that
verify the list of attributes with the permitted set of values.
The ABAC model is described in the following important
jargon.

Subject: The term subject denotes an organization or a user
who requests the resource.

Object: Resources such as file, software, database are
called objects.

Attributes: Attributes describe the properties or
characteristics of the subject or object. They are a collection of
information defined as a pair of values(name of the attribute,
the value of the attribute).

Operation: It is a function of request on the object is being
executed (read, write, etc.)

Policy: It is a set of conditions or rules established to make
a decision based on the values of the attributes.

Environmental conditions: They describes the
characteristics of environmental conditions such as date of
request, current time

B. Problem statement

 Previous approaches use only similarity values to group
all similar rules. Our proposed approach uses additional
parameter Priority-level to cluster the rules. With the use of
additional parameter, our approach avoids that the conflict
occurs when demand on limited object or resource, is avoided
and also make the perfect clusters. Contrary to some existing
approaches which detect the anomalies in all rules which
require more computation time, Our approach detects
anomalies in clusters rather than all rules to reduce the
computation time.

Object

Users/Organizations

Request

Subject

Resources
(File,Database,
Software etc.,) Security Policy

Rules

ABAC Model

Subject
Attributes,

Object
Attributes,

Environment
Attributes,

Priority-level

Proceedings of the Fourth International Conference on Computing Methodologies and Communication (ICCMC 2020)
IEEE Xplore Part Number:CFP20K25-ART; ISBN:978-1-7281-4889-2

978-1-7281-4889-2/20/$31.00 ©2020 IEEE 898

C. Security Policy

The security policy is a set of rules. Extensible Access
Control Markup Language (XACML) is mostly used language
to construct the Security Policy because of its simplicity and
expressive power [10][11]. Each rule is constructed with
categories Subject, Object, and Environmental conditions. In
our approach, we use additional parameter Priority-level to
construct the rule. The security policy SP is

SP= {R1, R2,…, Rn}

Each Rule R is expressed as

R= {Xop | PR}

The decision X (allow, deny) is made for a request of
operation (read, write) based on the predicate PR.

PR= {atr1 € Vatr1, atr2 € Vatr2, …., atrn € Vatrn ^ Priority-
level=non-empty-integer-value}

So rule R can be written as

R= {Xop | atr1€Vatr1, atr2€Vatr2,…, atrn€Vatrn ^ Priority-
level=non-empty-integer-value}

 atr1,atr2,…,atrn are the list of attributes belonging to any
category(Subject, Object, Environmental Conditions)

Vatr1, Vatr2, Vatrn are the set of permitted values of the
attributes atr1,atr2,…,atrn respectively

Example of a rule:

R= {allowread | Designation={Manager, Admin},
Department={Loan}, FileName={Customer_Savings},
Time={08.00-18.00}^Priority-level=1}

In this above rule, Designation and Department are
attributes of Subject, Filename is the attribute of Object, and
Time is the attribute of Environmental conditions. This rule
has the priority 1.

D. Measuring Similarity Value

According to the previous research [12], the similarity
value (SV) of two rules (Ri, Rj) is measured using the
following formula-1

The notations S, O, E are used to specify categories

Subject, Object, and Environment respectively

The similarity value of the two rules is calculated by
summing the product of probability P and similarity value SV
of each category(S, O, and E). Hence the formula-1 can be
expressed as

The probability of each category can be assigned based on
application-taken. Our approach assigns equal probability to
all three categories. As the number of categories is three, the
equal probability of each category is 1/3.

The similarity value of each category (C) is calculated

using the following formula-3

The similarity value of two rules for each category is
calculated by summing the probability (Patr) and similarity
value (SVatr) of every attribute (atr), where atr is common to
both two rules Ri, Rj) of category C. ATc(Rj) is the set of
attributes of the category C in rule Rj

The similarity value of an attribute of a category C is
calculated using the following formula-4. Let NSV be the
number of values the same for every common attribute in both
Ri and Rj, and NDV be the number of distinct values for every
common attribute in both Ri and Rj.

Example for calculating similarity value:

 R1={allowread | Designation = {Manager,Admin},
Departmnet = {Loan}, FileName={Customer_Savings},
Time={08.00-18.00}^Priority-level=1}

R2={allowread | Designation ={Admin},
Departmnet={Loan}, FileName={Customer_Savings},
Time={08.00-18.00}^Priority-level=2}

The similarity value of the categories Subject, Object, and
Environmental conditions are calculated using formula-3

The similarity value of category Subject (Designation and
Department are the attributes common to both R1 and R2) is

 SVS(R1,R2)= ∑atr€ {Designation,Department} Patr SVatr(R1,R2)

There are two common attributes in the category Subject
(SVS), and if equal probabilities are used, then the probability
of every attribute is 1/2.

The similarity value of rules R1 and R2 for the category
Object SVO (FileName is the only attribute of Object) is

SVO(R1,R2)=P FileNameSV FileName(R1,R2)
As the probability P FileName=1,
 SVO(R1,R2)=SV FileName(R1,R2)
The similarity value of rules R1 and R2 for the category

Environmental Condition (Time is the only attribute and the
probability PTime =1) is

SVE(R1,R2)=PTimeSV Time(R1,R2) = SV Time(R1,R2)

SVR(Ri,Rj)=∑ t €{S,O,E}PtSVt(Ri,Rj) ------(1)

SVR(Ri,Rj)=PSSVS(Ri,Rj) + POSVO(Ri,Rj) + PESVE(Ri,Rj)

SVc(Ri,Rj) = ∑ atr € {ATc(Ri) ∩ ATc(Rj)} Patr SVatr(Ri,Rj) ----- (3)

SVR(Ri,Rj) = SVS(Ri,Rj)+ SVO(Ri,Rj)+ SVE(Ri,Rj) ------(2)

SVS(R1,R2) = PDesignationSVDesignation(R1,R2)
 + P Department SV Department (R1,R2)
 = SV Designation(R1,R2)

 + SV Department(R1,R2)

 SVatr(Ri,Rj)= ------ (4)

Proceedings of the Fourth International Conference on Computing Methodologies and Communication (ICCMC 2020)
IEEE Xplore Part Number:CFP20K25-ART; ISBN:978-1-7281-4889-2

978-1-7281-4889-2/20/$31.00 ©2020 IEEE 899

The similarity value of rules R1 and R2 for the attributes
Designation, Department, FileName, and Time are calculated
using the formula-4

�

�

�

�

�

�

�

�

�

�

�

By substituting the above similarity values, we calculate
the followings

�

�

�

�

�

The similarity value of rules (R1, R2) is

�

�

�

IV. PROPOSED APPROACH
Many Clustering techniques such as the KNN(K-Nearest

Neighbouring) algorithm, K-means algorithm, Hierarchical
clustering algorithm, Density-based clustering algorithm are
good in forming clusters [13]. Our approach cluster rules
based on similarity value and Priority-level. We develop a
new algorithm that clusters the rules with two parameters

similarity value and priority-level. All previous research of
clustering with similarity value [14] uses the threshold value is
0.8. They cluster the two rules if the similarity value is above
0.8. But our approach groups the two rules , if the similarity
value of the two rules is greater than the threshold value 0.8
and the priority-level of two rules, is equal. Otherwise, they
are not considered as similar rules. The Priority-level is used
to avoid the conflict that occurs when two or more requests of
the same operation (read) upon the limited object (File:
Customer).

A. Algorithm
Our Proposed Algorithm:
Input:
 SP={R1,R2,….,Rn} /* SP is security policy

 contains set of Rules*/
Output:
C={C1,C2,…,Ck} // C is a Set of Clusters

Priority-Similarity-based Algorithm:
1. k=0;
 /* Initialize that all rules are not

clustered */
2. For i=1 to n do
3. clustered[i]=false;
4. first_similarity[i]=false;
5. Next i
6. i=0;
7. For Rule1=Ri to Rn-1 do
8. i=i+1;
9. j=i+1;
10. For Rule2=Ri+1 to Rn do
11. sv=SVR(Rule1,Rule2);
12. pl1= Priority-level (Rule1);
13. Pl2= Priority-level (Rule2);
14. pdiff=|pl1-pl2|;
15. If sv>0.8 and pdiff=0 then

 //find the first similar rule for Rule1
16. If first_similarity[i]=false then

 // Initialize the Cluster Ck
17. k=k+1;
18. Ck= {Rule1, Rule2};
19. first_similarity[i]=true;
20. else
/* The similar rule Rule2 is joined with the

cluster Ck */
21. Ck=Ck U {Rule2};
22. End If
 // Rule1 and Rule2 are clustered
23. clustered[i]=true;
24. clustered[j]=true;
25. End If
26. j=j+1;
27. Next Rule2
// One Rule may be in more than one cluster

28. If clustered[i]=false then
29. Ck= {Rule1};
30. clustered[i]=true;

 /* Every rule must be contained in at
least one Cluster */

31. End If
32. Next Rule1

 SV Designation(R1,R2) = NSV (Designation)

NDV (Designation)

 = | Admin |

| Manager,Admin |

 =

SV Department(R1,R2) = NSV (Department)

NDV (Department)

 = | Loan |

| Loan |

 = 1

SV Time(R1,R2) = NSV (Time)

NDV(Time)

 = | 8.00:18.00 |

| 8.00:18.00 |

 = 1

SVS(R1,R2) = SV Designation(R1,R2) + SV Department(R1,R2)

 = + = +
 = 0.25 + 0.5 = 0.75

SVO(R1,R2) = SV FileName(R1,R2) = 1
SVE(R1,R2) = SV Time(R1,R2) = 1

SVR(R1,R2) = SVS(R1,R2) + SVO(R1,R2)

 + SVE(R1,R2)

 = × 0.75 + × 1 + × 1
 = 0.25 + 0.33 + 0.33 = 0.91

 SV FileName(R1,R2) = NSV (FileName)

NDV (FileName)

 = | Customer_Savings |

| Customer_Savings |

 = 1

Proceedings of the Fourth International Conference on Computing Methodologies and Communication (ICCMC 2020)
IEEE Xplore Part Number:CFP20K25-ART; ISBN:978-1-7281-4889-2

978-1-7281-4889-2/20/$31.00 ©2020 IEEE 900

// Check whether the last rule is clustered
33. If clustered[n]==false then
34. K=k+1;
35. Ck= {Rulen};
36. clustered[n]=true;
37. End If
38. End.

Our proposed algorithm takes the set of rules SP={R1,
R2,…., Rn} as input and produces a set of clusters of rules
C={C1, C2,…, Ck} as the output. clustered[i]is a
boolean value and used to verify that the rule Ri is contained
in at least one cluster, and first_similarity[i]is also
a boolean value and used to initialize every new cluster.
Priority-level (Ri)is the Priority-level of rule Ri, and
SVR(Rule1, Rule2)is the similarity value calculated by
using the formula-1 mentioned above.

Our proposed algorithm uses similarity value and the
priority-level of two rules to cluster similar rules. In contrary
to the other existing approaches, we use priority level to avoid
the conflict. Even the two rules are similar, making the
decision (Allow, Deny) may vary depending on the priority-
level. Our approach solves the conflict that occurs the
simultaneous access of the same request of operation (read,
write) on the same object(file, database). In the above
example, The similarity value of rules R1 and R2 is 0.91which
is greater than the threshold value 0.8. But the Priority-level of
R1 and R2 are not equal (1! =2). Hence R1 and R2 are not
grouped as the same cluster. If the similarity value of two
rules is above 0.8 and the Priority-level of the two rules are
equal, then those two rules can be contained in the same
cluster.

TABLE I. SIMILARITY VALUES AND PRIORITY DIFFERENCE
OF RULES

Pair of Rules Similarity value The absolute
difference of
Priority-level

(R1, R2) 0.9 2

(R1, R3) 0.93 0

(R1, R4) 0.5 1

(R1, R5) 0.4 0

(R2, R3) 0.5 1

(R2, R4) 0.5 1

(R2, R5) 0.7 0

(R3, R4) 0.6 0

(R3, R5) 0.52 1

(R4, R5) 0.9 0

Consider the set Security Policy SP={R1,R2,R3,R4,R5}.

Our proposed algorithm makes ten combinations of pair of
rules. The above table Table-1 shows the similarity value and
priority-level of each pair of rules. The proposed algorithm
made the clusters C1={R1, R3}, C2={R2}, and C3={R4, R5} for
the above example. The set of pairs of rules {(R1, R2), (R1,
R3), (R4, R5)} has the similarity value above the threshold

value 0.8. But the Priority-levels of (R1, R2) are not equal; they
are not clustered as the same group. The two pair of rules (R1,
R3) and (R4, R5) is clustered because their Priority-levels of
these pair of rules are equal.

B. Flowchart of our proposed algorithm

Figure Fig. 2 shows the flowchart of our proposed

algorithm.

Fig. 2. Flowchart for Priority-Similarity-based Algorithm

C. Trace out of our proposed approach

START

Extract Rules
SP={R1,R2,….,Rn}

Select pair of rules (R1, R2)
Compare every Rule Ri (R1) in SP with Ri+1 to Rn (R2)

Find Similarity value of two rules SV(R1,R2)
Find the difference of priority-level pdiff(R1,R2)

Is
SV(R1,R2)
> 0.8 and
pdiff(R1,R2)

=0

If R2 is
the first
similar

rule of R1

New cluster is created
with R1 and R2 R2 is added in the

existing cluster

If any rule R1 is
not contained in
in any cluster

Create new cluster
with R1

Next pair

Stop

True

False True
False

True

False

Proceedings of the Fourth International Conference on Computing Methodologies and Communication (ICCMC 2020)
IEEE Xplore Part Number:CFP20K25-ART; ISBN:978-1-7281-4889-2

978-1-7281-4889-2/20/$31.00 ©2020 IEEE 901

Consider the following the security policy SP which
contains three rules SP={R1, R2, R3}

 R1={allowread | Designation = {Chief Doctor, Duty
Doctor}, Departmnet = {Pediatric}, FileName={Blood-
Reports}, Time={08.00-18.00}^Priority-level=1}

R2={allowread | Designation ={Duty Dcotor},
Departmnet={Pediatric}, FileName={Blood-Reports},
Time={08.00-18.00}^Priority-level=1}

R2={allowread | Designation ={Duty Doctor, Nurse},
Departmnet={Pediatric}, FileName={Blood-Reports},
Time={08.00-18.00}^Priority-level=2}

The following tables Table II, Table III and Table IV show
the similarity value of each attribute, similarity value of the
each category and the similarity value of rules respectively.
The similarity value of each attribute is calculated using the
fomula-4. The similarity value of each category is measured
using formula-3 and the similarity value of two rules is
determined using the formula-2.

TABLE II. SIMILARITY VALUE OF ATTRIBUTES

Pair of Rules R1, R2 R1, R3 R2, R3

Similarity value of the
attribute Designation

1/2 1/3 1/2

Similarity value of the
attribute Department

1 1 1

Similarity value of the
attribute File

1 1 1

Similarity value of the
attribute T ime

1 1 1

TABLE III. SIMILARITY VALUE OF CATEGORIES

Pair of Rules R1, R2 R1, R3 R2, R3

Similarity value of the
category Subject

0.75

0.66 0.75

Similarity value of the
category Object

1 1 1

Similarity value of the
category Environment

1 1 1

TABLE IV. SIMILARITY VALUE OF RULES

Pair
of

Rules

Similarity
value of

Rules

Difference
between
Priority-
level of
Rules

Clusters
formed in
existing

approaches

Clusters
formed in

our
proposed
approach

R1, R2 0.91 0 C1={ R1, R2} C1={R1, R2}

R1,R3 0.88 1 C1={ R1, R2,
R3}

-

R2,R3 0.91 1 C2={ R2,R3 } C2={ R3 }

Our proposed algorithm verifies the similarity value and
Priority-level of each pair of rules (R1, R2), (R1, R3) and (R2,
R3). As the similarity of (R1, R2) is 0.91(above the threshold
value 0.8) and the difference of priority-level is zero, these
two rules are grouped as a new cluster C1={ R1, R2}. Even the
similarity of (R1, R3) is 0.9, the difference of priority-level is
not zero, they are not grouped. Then the rule R2 is compared
with the rule R3; These rules are also not clustered according

to our proposed clustering-criteria. Then finally, the last rule
R3 is not contained in any cluster which is notified by the
boolean array clustered[n]. The rule R3 is stored in a new
cluster C2={ R3}. Our approach makes two cluster C1={ R1,
R2}, and C2={ R3}. If the previous approach is used to cluster
the above rules, it forms several clusters that require more
processing time. Our approach with the use of priority-level
reduces the redundant clusters and also avoids the conflict on
demand.

V. ANOMALIES
This paper classifies the anomalies into three categories,

namely Redundancy-Anomaly, Conflict-Decision-Anomaly,
and Conflict-Demand-Anomaly.

Redundancy-Anomaly will occur when the request of
operation (on the same object) is the same (X=Y) in both rules
(Ri, Rj), and Ri is a subset of Rj or Rj is a subset of Ri.

Redundancy (Ri, Rj) = true | Ri is a subset of Rj or Rj
is a subset of Ri and
X=Y

 false | Otherwise

 Conflict-Decision-Anomaly will occur when the decision
made for two rules are varied if the two rules are similar.

 Conflict-Decision-Anomaly (Ri, Rj)

 = true| Xop (Ri)!=Xop(Rj) and
 Ri is a subset of Rj or
 Rj is a subset of Ri,

false | Otherwise

 Conflict-Demand-Anomaly will occur when more than
one request of the same operation upon the same object is
made. This conflict will occur if there is more demand for the
limited object.

Conflict-Demand-Anomaly (Ri, Rj)

 = true | Operation(Ri) = Operation(Rj) and
Object(Ri)= Object(Rj) and Ri!=Rj

 false | Otherwise

�

VI. ANALYSIS OF PRIORITY-SIMILARITY-BASED
ALGORITHM

We used JAVA to implement our proposed algorithm with
various sizes of security policies. The rules consist of
attributes of categories Subject, Object, Environmental
Conditions, and an additional parameter Priority-level. The
time complexity of the existing algorithm ABAC-PC is
O (n2). The time complexity of the Priority-Similarity-based
algorithm is O (nm), where n is the number rules, and m is
n-1. Each rule Ri is paired with the rule Rj which is not
already combined with Ri. Each rule Ri is combined with rules
Ri+1 to Rn. Hence the redundant combination of two rules is
avoided to improve the performance of the algorithm.
Clustering is made not only based on similarity value, but it
also involves the Priority-level to avoid the conflict of demand

Proceedings of the Fourth International Conference on Computing Methodologies and Communication (ICCMC 2020)
IEEE Xplore Part Number:CFP20K25-ART; ISBN:978-1-7281-4889-2

978-1-7281-4889-2/20/$31.00 ©2020 IEEE 902

of the same resource.

VII. CONCLUSION
 In the emerging digital world, data generation is

increased exponentially. Data and all resources are outsourced
and distributed to make available to everyone who needs
them. Developing an efficient access control model to secure
the outsourced data in a large distributed environment is an
essential and ever going challenging task due to various
security threats. Detecting anomalies in the security policies
made the access control model to provide high security of
data. Our proposed approach collects all rules of policy and
group similar rules based on similarity value and Priority-
level. Our approach avoids the conflict of demand on limited
objects by using additional parameter Priority-level. Detecting
anomalies only in clusters rather than all rules improves the
performance of the approach. This paper represents only three
classifications of anomalies , and we aim to classify more
possible anomalies. Our future work is to use Data
aggregation and Map_Reduce techniques to make our
approach to provide security of data in a large distributed
environment.

REFERENCES

[1] A. Praveena and D. S. Smys, “Anonymization in Social Ne tworks: A

Survey on the issues of Data Privacy in Social Network Sites,” Int. J.
Eng. Comput. Sci., vol. 5, no. 3, pp. 15912–15918, 2016, doi:
10.18535/ijecs/v5i3.07.

[2] D. K. Anguraj and S. Smys, “T rust-Based Intrusion Detection and
Clustering Approach for Wireless Body Area Networks,” Wirel. Pers.
Commun., vol. 104, no. 1, 2019, doi: 10.1007/s11277-018-6005-x.

[3] Y. Imine, A. Lounis, and A. Bouabdallah, “AC SC,” 2018, doi:
10.1016/j.jnca.2018.08.008.

[4] E. Sahafizadeh, “Survey on Access Control Models,” pp. 1–3, 2010.
[5] H. Qi, X. Di, and J. Li, “Journal of Information Security and

Applications Formal definition and analysis of access control model
based on role and attribute,” vol. 43, pp. 53–60, 2018, doi:
10.1016/j.jisa.2018.09.001.

[6] V. C. Hu et al., “Guide to attribute based access control (abac) definition
and considerations,” NIST Spec. Publ., vol. 800, p. 162, 2014, doi:
10.6028/NIST.SP.800-162.

[7] J. D. Moffett and M. S. Sloman, “Policy conflict analysis in distributed
system management,” J. Organ. Comput., vol. 4, no. 1, pp. 1–22, 1994,
doi: 10.1080/10919399409540214.

[8] M. A. El Hadj, M. Ayache, Y. Benkaouz, A. Khoumsi, and M. Erradi,
“Clustering-based approach for anomaly detection in XACML policies,”
ICETE 2017 - Proc. 14th Int. Jt. Conf. E-bus. Telecommun., vol. 4, no.
Icete, pp. 548–553, 2017, doi: 10.5220/0006471205480553.

[9] M. Ait, E. Hadj, M. Erradi, and A. Khoumsi, “Validation and Correction
of Large Security Policies : A Clustering and Access Log Based
Approach,” 2018 IEEE Int. Conf. Big Data (Big Data), no. 1, pp. 5330–
5332, 2018, doi: 10.1109/BigData.2018.8622610.

[10] F. Deng et al., “Establishment of rule dictionary for efficient XACML
policy management,” Knowledge-Based Syst., vol. 175, pp. 26–35, 2019,
doi: 10.1016/j.knosys.2019.03.015.

[11] C. D. P. K. Ramli, H. R. Nielson, and F. Nielson, “The logic of
XACML,” Sci. Comput. Program., vol. 83, pp. 80–105, 2014, doi:
10.1016/j.scico.2013.05.003.

[12] D. Lin, P. Rao, R. Ferrini, E. Bertino, and J. Lobo, “A similarity
measure for comparing XACML policies,” IEEE Trans. Knowl. Data
Eng., vol. 25, no. 9, pp. 1946–1959, 2013, doi:
10.1109/TKDE.2012.174.

[13] G. Ahalya and H. M. Pandey, “Data clustering approaches survey and

analysis,” 2015 1st Int. Conf. Futur. Trends Comput. Anal. Knowl.
Manag. ABLAZE 2015, pp. 532–537, 2015, doi:
10.1109/ABLAZE.2015.7154919.

[14] S. Guo, “Analysis and Evaluation of Similarity Metrics in Collaborative
Filtering Recommender System,” 2014.

�
�
�

Proceedings of the Fourth International Conference on Computing Methodologies and Communication (ICCMC 2020)
IEEE Xplore Part Number:CFP20K25-ART; ISBN:978-1-7281-4889-2

978-1-7281-4889-2/20/$31.00 ©2020 IEEE 903

