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Abstract: This study presents the concept of a computationally efficient machine learning (ML) 

model for diagnosing and monitoring Parkinson’s disease (PD) using rest-state EEG signals (rs-

EEG) from 20 PD subjects and 20 normal control (NC) subjects at a sampling rate of 128 Hz. Based 

on the comparative analysis of the effectiveness of entropy calculation methods, fuzzy entropy 

showed the best results in diagnosing and monitoring PD using rs-EEG, with classification accuracy 

(ARKF) of ~99.9%. The most important frequency range of rs-EEG for PD-based diagnostics lies in the 

range of 0–4 Hz, and the most informative signals were mainly received from the right hemisphere 

of the head. It was also found that ARKF significantly decreased as the length of rs-EEG segments 

decreased from 1000 to 150 samples. Using a procedure for selecting the most informative features, 

it was possible to reduce the computational costs of classification by 11 times, while maintaining an 

ARKF ~99.9%. The proposed method can be used in the healthcare internet of things (H-IoT), where 

low-performance edge devices can implement ML sensors to enhance human resilience to PD. 

Keywords: Parkinson’s disease; EEG; diagnosis; entropy; machine learning; monitoring; smart IoT 

environment; edge device; human resilience 

 

1. Introduction 

By 2030, experts predict that every sixth person on Earth will be over 60 years of age 

due to an increasing life expectancy [1]. It is estimated that 1.4 billion people will be over 

60 by 2050. Age-related neurodegenerative diseases are a major risk factor for mortality 

and morbidity caused by neurodegenerative diseases [2–4]. The symptoms of neuro-

degenerative disease may begin as early as middle age [5], followed by overt signs and 

symptoms. By diagnosing and treating patients early, irreversible damage to the nervous 

system can be reduced, improving their quality of life and length of life. 

In addition to diagnostics, a personalized approach to neurodegenerative disease 

treatment using IoT-enabled environments is essential to improving patients’ quality of 

life [5–7], such as smart homes and healthcare [8], smart spaces for mHealth applications 

[9], and smart healthcare [8]. The healthcare IoT (H-IoT) [10] is also known as IoMT [11] 

and is one of the most efficient tools for this purpose. The key point is that a sensor (within 

an IoT edge device) participates in making the device smart. In particular, machine learn-
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ing (ML) methods can be used to analyze the sensed data for diagnosis, e.g., see our con-

cept of an ML sensor for diagnosing COVID-19 [12]. The problem is that IoT edge devices 

are of low performance, and new effective ML algorithms are required. 

Presently, some methods are available for detecting neurodegenerative diseases. Us-

ing data collected from question assessments [13], blood biomarkers [14], eye-tracking pa-

rameters [15], kinematic gait parameters [16], electroencephalograms (EEG) [17], and 

other tests, conclusions are drawn regarding the presence or high risk of developing PD. 

Among the disease indicators presented, EEG is one of the most promising because 

of its non-invasive nature, wide distribution, low cost, and ability to be integrated into the 

internet of things (IoT) [18]. In addition to diagnosing diseases, the use of portable per-

sonal devices for recording EEG can be used to continuously monitor the patient’s current 

condition and the effectiveness of the selected treatment method outside of the medical 

institution through the development of intelligent devices with IoT technology. Usually, 

EEG signals can be analyzed in time, frequency, and time–frequency domains [19]. A 

time–frequency analysis can be performed by applying a short-time Fourier transform 

[20] and wavelet transform [21] to examine the local temporal effects that occur under 

specific bands of EEG frequencies. Generally, five different frequency bands are investi-

gated in EEG signals depending on their application. These bands are delta (0–4 Hz), theta 

(4–8 Hz), alpha (8–13 Hz), beta (13–30 Hz), and gamma (30–49 Hz) [22]. 

Electrical signals from the brain are highly non-stationary and complex. They are 

susceptible to disturbances caused by external and internal noises. To characterize EEG 

signal behavior in each class, different types of features are needed, such as statistical, 

spectral, and entropy characteristics [23–25]. Various machine learning methods are then 

used to determine the presence and type of neurodegenerative diseases [26–31]: artificial 

neural network (ANN), probabilistic neural network (PNN), support vector machine 

(SVM), neural network (NN) including deep learning neural network (DNN), decision 

tree (DT), random forest (RF), Bayesian model (NB), k-nearest neighbor method (KNN), 

etc. 

Rest-state EEG signals can be used to detect a variety of neurodegenerative diseases, 

including Alzheimer’s disease [32], Parkinson’s disease (PD) [28–31,33–35], frontotem-

poral dementia [36], dementia with Lewy bodies [37], and epilepsy [38]. In the field of 

neurodegenerative diseases, Parkinson’s disease is one of the most studied. As a result of 

Parkinson’s disease, a person will have impaired motor functions (slowness of movement, 

tremors, rigidity, and loss of balance) and impaired non-motor functions (decreased cog-

nitive functions, mental disorders, sleep disturbances, pain, and sensory problems) [39]. 

As part of PD diagnostics, the EEG signal of the patient is compared to the EEG signal of 

a healthy control group. Depending on the metric, changes can be determined either by 

comparing signals directly [34] or by quantifying them using entropy metrics, spectral 

power metrics, cross-correlation metrics, statistical values, etc. [28–31,33,35]. In [34], con-

volutional neural networks are used to classify PD using a deep learning approach, in 

which the elements of the filtered signal are fed into the neural network as input. A clas-

sification accuracy of 88.2% was achieved by this approach. However, using calculated 

features usually yields better results. A principal component analysis of the filtered signal, 

correlation coefficients, and linear predictive coefficients is used to calculate features for 

the SVM classifier [35] that achieved a maximum mean classification rate of 99.1% in di-

agnosing PD. Due to the fact that EEG changes can occur at certain frequency ranges (cor-

responding to alpha, beta, gamma, theta, and delta waves), translating the signal from the 

time domain (Fourier transform) or frequency–time domain (wavelet transform) is a com-

mon method of analyzing EEG signals. In [30], spectral features (such as wavelet coher-

ence and relative wavelet energy) were used to detect PD-related dementia, AD, and a 

control group. Spectral energy differences were found between the control group and the 

rest of the patients at both low and high frequencies. They were able to determine PD with 

an accuracy of 79.1% and AD with an accuracy of 81.2% using linear discriminant analysis. 

By using the tunable Q wavelet transform, statistical signal metrics were extracted from 
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the frequency subbands of the rest-state EEG signal (minimum, Hurst exponent, Higuchi 

fractal dimension, Hjorth complexity, mobility). There are four types of classifiers used to 

distinguish PD from healthy controls (ANN, SVM, KNN, and RF) based on the above-

mentioned statistical features. As a result, the mean classification accuracy for healthy 

controls and PD patients (with or without medical treatment) was 96.1% and 97.7%, re-

spectively. 

Several works have focused on the differences in the entropy of signals in different 

frequency ranges between patients with PD and the control group [28,31,33]. In [33], rela-

tive spectral powers and wavelet packet entropy were used to identify PD. Although en-

tropy features allow for better separation of two classes, relative spectral power (especially 

in the beta band) can also be useful. Higher-order spectral features, like bispectral entro-

pies and mean magnitude, were used for PD diagnosis [28] based on five different types 

of classification algorithms such as DT, KNN, NB, PNN, and SVM. The SVM classifier 

reported a maximum mean accuracy of 99.6% compared to other classifiers in diagnosing 

PD. The authors of [31] used the KNN and SVM classifiers to diagnose PD based on energy 

and entropy features extracted from reconstructed wavelet signals. Accordingly, KNN 

and SVM classifiers achieved 99.5% and 99.9% mean accuracy, respectively. 

Although the presented results prove a high classification accuracy (more than 99%), 

most of the approaches used to calculate features are limited. Also, the hyperparameters 

used when calculating entropy can significantly affect the calculation result. To obtain 

high accuracy, a number of studies have used many features [30,31,33,34], which compli-

cates the implementation of these methods in low-performance IoT devices. This paper 

attempts to address these deficiencies by comparing various entropy methods, carefully 

selecting their parameters, and analyzing EEG signal frequency ranges for diagnosing PD. 

By analyzing EEG data collected from normal control (NC) and Parkinson’s disease (PD) 

patients using wireless Emotiv EPOC headsets, we have developed a novel method for 

detecting PD which can be used in a smart IoT environment to enhance human resilience 

to PD. 

The major contributions of this paper are: 

• A comparative analysis of the effectiveness of various methods for calculating en-

tropy for identifying PD was carried out; 

• The most significant frequency ranges and EEG channels were identified, as well as 

their combinations; 

• A study was conducted to reduce computational costs by selecting the most signifi-

cant features and reducing the length of the EEG segments analyzed; 

• A method of monitoring a patient’s condition based on entropy values was devel-

oped; 

• We propose a machine learning model for monitoring the health status of Parkinson’s 

patients using an IoT environment based on low-performance sensors. 

The remainder of this paper is organized as follows. Section 2 provides an overview 

of the datasets, proposed methods, and performance evaluation. Section 3 presents a com-

parison of classification accuracy using different EEG channels and frequency bands. Sec-

tion 4 describes options for optimizing the classification model by reducing the length of 

the EEG segment and the number of features. Section 5 outlines our further research on 

the smart IoT environment concept for patient health monitoring and enhancing human 

resilience. Section 6 summarizes the key findings and limitations of our study. 

2. Materials and Methods 

2.1. Dataset 

This study was conducted using an EEG dataset consisting of 20 patients with Par-

kinson’s disease and 20 age-matched normal control subjects without a history of psycho-

logical disorders or neurological disorders. This dataset was collected at the Hospital Uni-
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versiti Kebangsaan Malaysia in Malaysia. The entire data acquisition protocol at the Hos-

pital Universiti Kebangsaan Malaysia was approved by the Institutional Ethical Review 

Board Committee as part of the hospital’s ethical review process. An Emotiv EPOC wire-

less headset with a total of 14 channels (Figure 1a) was used for recording EEG signals 

from both NCs and PDs in the rest-state condition with the eyes closed for a period of 5 

min during this study. In accordance with the international standard 10–20 system, the 14 

channels (AF3, F7, F3, FC5, T7, P7, O1, O2, P8, T8, FC6, F4, F8, AF4) were placed on the 

subject’s scalp (Figure 1b). With a sampling rate of 128 Hz, the data collected for each of 

the channels were converted into digital signals. Using the Hoehn and Yahr scales, a total 

of seven patients were classified as having Parkinson’s disease stage III, eleven patients as 

having Parkinson’s disease stage II, and two patients as having Parkinson’s disease stage 

I. A complete description of the dataset, acquisition, and preprocessing of the dataset can 

be found in [40–42]. 

Figure 2 shows the workflow diagram of the proposed classification method. It con-

sists of three separate steps: signal preprocessing (Section 2.2), feature generation (Section 

2.3) and classification (Section 2.4). 

  

(a) (b) 

Figure 1. Emotiv EPOC wireless headset (a). Location of the electrodes on the head (b) [43]. 

 

Figure 2. The workflow diagram of the proposed classification method. 
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2.2. Signal Preprocessing 

Considering the wide spectral range of EEG signals (0–64 Hz) and the fact that most 

brain activity information is contained in relatively narrow frequency subranges [44,45], 

it is possible that the entropy of the original signal gives a poor indication of its separation 

capability. Filtering the initial data and decomposing the signal into separate frequencies 

using the wavelet transform can increase EEG signals’ information content. A fifth-order 

Butterworth filter with a cut-off frequency of 0.5–32 Hz was applied to all acquired signals 

to remove low- and high-frequency noise, while amplitude thresholding of ±85µV was 

applied to remove artifacts (eye blinking, eyeball rotation, and eye movements) during 

the acquisition process. Since the number of patients was relatively small, each EEG record 

was divided into 5 non-overlapping segments, each of which represented an independent 

observation within the framework of this study. The duration of all segments was the 

same and varied from 150 (~1.2 s) to 1000 (~7.8 s) samples. A discrete wavelet transform 

(DWT) was performed on the signal using the db4 wavelet [46]. After decomposing into 

wavelet approximation coefficients (A1–A4) and details (D1–D4), each of them was uti-

lized to reconstruct the signals, with each signal (cA1–cA4 and cD1–cD4) being recon-

structed with only one of the coefficients. A similar method was used in [31]; however, a 

different frequency band was chosen. 

Using the original dataset, 9 variants of different signal types were obtained: 

• Original (O) signal; frequency ranges: (0–64 Hz); 

• Signals reconstructed based on approximation coefficients (cA1–cA4); frequency 

ranges: (cA1 (0–32 Hz), cA2 (0–16 Hz), cA3 (0–8 Hz), cA4 (0–4 Hz)); 

• Signals reconstructed based on detail coefficients (cD1–cD4); frequency ranges: (cD1 

(32–64 Hz), cD2 (16–32 Hz), cD3 (8–16 Hz), cD4 (4–8 Hz)); 

2.3. Feature Generation 

Entropy features were calculated from EEG signals after applying DWT and concat-

enated to form the feature vector for each class (NC and PD). Later, these feature vectors 

were used in classifying patients using different machine learning methods. This entropy 

model comprises several features such as singular value decomposition entropy (SVDEn) 

[47], permutation entropy (PermEn) [48], sample entropy (SampEn) [49], cosine similarity 

entropy (CoSiEn) [50], fuzzy entropy (FuzzyEn) [51], phase entropy (PhaseEn) [52], and 

attention entropy (AttnEn) [53]. A method for calculating entropy was implemented using 

the EntropyHub (version 0.2) [54] software package, except for SVDEn and PermEn. The 

Antropy (version 0.1.6) [55] software package was used to calculate SVDEn and PermEn. 

The range of hyperparameters used for computing each type of entropy is shown in Table 

1. There are no hyperparameters associated with AttnEn. 

Table 1. Ranges of parameters used to create entropy features. 

Entropy Name Parameter Range 

SVDEn order m = 2…10, delay = 1 

PermEn order m = 2…10, delay = 1 

SampEn order m = 1…3, tolerance r = 0.05…0.5×std 

CoSiEn order m = 2…3, tolerance r = 0.05…0.5 

FuzzyEn 
order m = 1…2, tolerance r = 0.05…0.5 × std,  

exponent membership function of order r2 = 1…5 

PhaseEn K = 2…10 

AttnEn no parameters 

Below are descriptions of these methods for calculating entropy (Sections 2.3.1–2.3.7). 
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2.3.1. SVDEn 

To calculate SVDEn for a time series X = [x1, x2, … xi, … xN] of length N, an embedding 

matrix A is created as follows: 

( 1)( ) [ , ,..., ]

[ (1), (2),..., ( ( 1) )]

i i delay i m delay

T

a i x x x

A a a a N m delay

+ + − =

= − − 
 (1) 

where m—length of the embedding dimension and delay—time series sample bias. 

Singular value decomposition is the factorization of matrix A into the product: 

TA USV=  (2) 

Matrix U contains the left singular vectors of A, and matrix V contains the right sin-

gular vectors. Matrix S is always diagonal, and its coefficients are non-negative real num-

bers 𝜆1, …, 𝜆k, located on the main diagonal of the matrix, which are called singular values. 

The dispersion of singular values λk also provides an indication of the complexity of 

signal dynamics [47]. Singular values can be normalized as: 

k
k

k





=
  

(3) 

Singular value decomposition entropy is defined with the Shannon formula applied 

to the elements of singular values of the matrix, and calculated as follows [47]: 

SVDEn lnk k = −   (4) 

After that, the SVDEn values are normalized in the range from 0 to 1: 

2

SVDEn
SVDEn

log m
=  (5) 

2.3.2. PermEn 

PermEn is a complexity measure for time series based on the comparison of neigh-

boring values. The permutation entropy PermEn of a one-dimensional data series X is: 

2PermEn logi ip p= −   
(6) 

where pi—the frequency of occurrence of the i-th permutation in embedded matrix A, 

which is defined in the same way as (1). 

After that, PermEn values are normalized in the range from 0 to 1: 

2

PermEn
PermEn

log !m
=  (7) 

2.3.3. SampEn 

The SampEn calculation of time series X = [x1, x2, … xN] of length N contains several 

stages. First, the series is divided into template vector 𝑋𝑖
𝑚 = [xi, xi+1, … xi+m−1] of length m 

(m < N). Then, the number C (m, r) of pairs of vectors 𝑋𝑖
𝑚 and 𝑋𝑗

𝑚 (i ≠ j) for which the 

Chebyshev distance ChebDist[𝑋𝑖
𝑚, 𝑋𝑗

𝑚] does not exceed r is calculated. 

SampEn for one-dimensional data series X is defined as: 

( 1, )
SampEn ln( )

( , )

C m r

C m r

+
= −

 
(8) 
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2.3.4. CoSiEn 

The CoSiEn calculation of time series X = [x1, x2, … xN] of length N contains several 

stages. First, the series is divided into template vector 𝑋𝑖
𝑚 = [xi, xi+1, … xi+m−1] of length m 

(m < N). Then, the number B (m, r) of pairs of vectors 𝑋𝑖
𝑚 and 𝑋𝑗

𝑚 (i ≠ j) for which the 

angular distance AngDist[𝑋𝑖
𝑚, 𝑋𝑗

𝑚] does not exceed r is calculated. 

Angular distance between two vectors is calculated as follows: 

11
cos( )

||

m m

i j

m m

i j

X X
AngDist

X X

−


=   (9) 

CoSiEn for one-dimensional data series X is defined as: 

 2 2CoSiEn ( , ) log ( , ) (1 ( , )) log (1 ( , ))B m r B m r B m r B m r= −  + −  −  (10) 

2.3.5. FuzzyEn 

For a vector of time series T of length N, it is possible to compose N − m + 1 vectors 

𝑋𝑖
𝑚 of length m, consisting of normalized successive segments of the original series T. The 

normalization procedure consists of subtracting 𝑇𝑖
𝑎𝑣𝑔

 from each element of the series: 

1 1 1 1{ , ,... } { , ,..., }m avg

i i i i m i i i m iX x x x T T T T+ + − + + −= = −  (11) 

where i = 1…N − m + 1 and 𝑇𝑖
𝑎𝑣𝑔

 is calculated as follows: 

1

0

1 m
avg

i i j

j

T T
m

−

+

=

=   (12) 

For any pair of vectors 𝑋𝑖
𝑚 and 𝑋𝑖

𝑚 (i ≠ j), one can determine the distance 𝑑𝑖𝑗
𝑚 be-

tween them equal to the maximum absolute difference between the vector components: 

(0, 1)
maxm

ij i k j k
k m

d x x+ +
 −

= −  (13) 

The similarity between vectors is determined using the fuzzy function 𝐷𝑖𝑗
𝑚: 

2( )
exp( )

rm

ijm

ij

d
D

r
= −  (14) 

The FuzzyEn entropy value is calculated based on the average similarity of vectors. 

For a finite series T it can be expressed as: 

1FuzzyEn ln( ) ln( )m m  += −  (15) 

where the function ϕm is expressed through: 

1,

1 1
( )

1

N m N m
m m

ij

i j j i

D
N m N m


− −

= 

=
− − −

   (16) 

2.3.6. PhaseEn 

In order to calculate PhaseEn of time series X = [x1, x2, … xN] of length N, it is necessary 

to first construct vectors Y and W, which are the coordinates of the points on the second-

order difference plot, defined as follows: 

3 2 4 3 1

2 1 3 2 1 2

[ , ,..., ]

[ , ,..., ]

N N

N N

Y x x x x x x

W x x x x x x

−

− −

= − − −

= − − −
 (17) 

Then, a vector containing the slope angles of each point (in the range of 0–2π) is cal-

culated as follows: 
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1tan ( )
Y

W
 −=  (18) 

Then, the entire range (2π) is divided into K equal sectors, for each of which the total 

slope angle Si (i = 1…K) is calculated: 

1

( 1) 2 2
, ,

N

i j j

j

i i
S if

K K

 
 

=

−   
=  

 
  (19) 

After that, probability distribution pi is calculated for each of the K sectors: 

1

i
i K

j

j

S
p

S
=

=


 

(20) 

PhaseEn is computed as: 

1

1
PhaseEn log

log

K

i i

i

p p
K =

= −   (21) 

2.3.7. AttnEn 

The AttnEn calculation of time series X = [x1, x2, … xN] of length N contains several 

stages. First, it is necessary to calculate the positions of local minima and maxima within 

the time series. By local minimum, we mean point xi for which the inequalities xi < xi−1 and 

xi < xi+1 hold, and by local maximum, we mean point xj for which the inequalities xj > xj−1 

and xj > xj+1 hold. Then, the intervals between two successive peak points (minima and 

maxima) are calculated. In this case, 4 variants of such intervals are considered: between 

two maximums (Imax-max), between two minimums (Imin-min), between the maximum and the 

subsequent minimum (Imax-min), between the minimum and the subsequent maximum (Imin-

max). 

After calculating 4 sets of intervals (Imax-max, Imin-min, Imax-min, Imin-max) for each set, the fre-

quency of occurrence of each interval within the set is calculated, on the basis of which 

Shannon entropy values are calculated (ShEnmax-max, ShEnmin-min, ShEnmax-min, ShEnmin-max). 

The AttnEn value is the average of these entropies: AttnEn = (ShEnmax-max + ShEnmin-min + 

ShEnmax-min + ShEnmin-max)/4. 

2.4. Assessment of Classification Accuracy 

The accuracy of the classifications was assessed using support vector classifiers 

(SVCs) implemented using scikit-learn. Two stages were involved in the classification ac-

curacy assessment. In the first step, hyperparameters were selected by means of repeated 

K-fold cross-validation (RKF) [56]. This was performed by dividing the estimated datasets 

into K = 10 blocks in various ways, with N = 10. For each of the N variants of partitions, 

the K-blocks were filled with different samples, resulting in a uniform distribution of clas-

ses. Sets of samples were created based on K-blocks for training and validating the classi-

fier, with each K-block being validated once and the remaining K − 1 = 9 being used in 

training. 

The classifier hyperparameters were then selected at the maximum average accuracy 

achieved on the validation set. K-block cross-validation allows for the selection of hy-

perparameter values that do not require retraining the model because many training and 

validation sets are used. Due to the optimization of hyperparameters on a fixed set of 

samples, it is possible that the average cross-validation accuracy is too optimistic. Conse-

quently, after determining the optimal hyperparameters, the next step was taken. During 

the second stage, optimal values of hyperparameters were used and cross-validation was 

performed on other N = 30 partitions divided into K = 10 blocks, which was different from 
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the first stage. Classification accuracy was measured based on the average ARKF accuracy 

across the new partitions. 

3. Experimental Results and Discussion 

In this section, we present the results of assessing classification accuracy using all 

features, one signal type, all channels, one channel, and one feature. 

3.1. Classification Accuracy Using One Method for Calculating the Entropy 

In both NC and PD, the entropy feature was computed using all nine types of input 

EEG data (original signal and eight reconstructed signals based on detail and approxima-

tion coefficients) across 14 channels (126 features in total). A model was developed to cat-

egorize NC and PD based on the features extracted from NC and PD pairs. Based on Per-

mEn, SampEn, CoSiEn, FuzzyEn, PhaseEn, BubbleEn, and SVDEn, Figure 3 shows the 

classification accuracy (ARKF) of each entropy feature with different hyperparameters. 

These entropy features were computed with varying hyperparameter values in this study. 

Using five non-overlapping segments of 40 subjects (20 PDs and 20 NCs), we extracted 

entropy features from 200 datasets. In this task, the optimal parameters for each of the 

entropy calculations were determined. 

The best classification result ARKF = 99.9% was demonstrated for FuzzyEn with pa-

rameters (m = 1, r = 0.15 × std, r2 = 5). The influence of the r parameter in this case is insig-

nificant. It was observed that the ARKF value increases as the r2 parameter increases from 1 

to 5. The next most accurate entropy method was AttnEn (ARKF = 97.9%). This method has 

no hyperparameters. Acceptable accuracy was achieved for PermEn (ARKF = 95% for m = 

5) and SVDEn (ARKF = 93.6% for m = 3). Both curves have a maximum at intermediate val-

ues of the m parameter. The worst results were obtained using the SampEn (ARKF = 91.5% 

for m = 2, r = 0.25 × std), PhaseEn (ARKF = 81.5% for K = 6), and CoSiEn (ARKF = 81.3% for m 

= 3, r = 0.05) methods. 

  

(a) (b) 

  

(c) (d) 
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(e) (f) 

Figure 3. Dependence of classification accuracy ARKF on entropy parameters using all 126 features 

for PermEn (a), PhaseEn (b), SampEn (c), CoSiEn (d), FuzzyEn (e), and SVDEn (f). 

3.2. Classification Accuracy Using One Type of Signal 

Furthermore, we wished to identify which type of EEG data is most effective among 

the nine types of data, as described in Section 2.2, based on different entropy measures. 

Through this investigation, the computational complexity (memory and computation 

time) of the proposed PD diagnosis system can be reduced. This section presents the re-

sults of calculating classification accuracy ARKF using each type of nine signals (O, cA1–

cA4, cD1–cD4) for each of the 14 channels (14 features in total). The values of the optimal 

entropy parameters correspond to those presented in Section 3.1. Figure 4 shows the de-

pendence of ARKF on the type of signal. 

 

Figure 4. Dependence of classification accuracy ARKF on signal type for different entropy calculation 

methods: PhaseEn (K = 6), SVDEn (m = 3), PermEn (m = 5), AttnEn, CoSiEn (m = 3, r = 0.05), SampEn 

(m = 2, r = 0.25 × std), and FuzzyEn (m = 1, r = 0.15 × std, r2 = 5). 

According to the experimental results, FuzzyEn has higher accuracy than other types 

of entropy features for all types of signals. According to the presented data, it can be noted 

that the use of only one type of signal (14 features) generally reduces the accuracy of the 

ARKF classification compared to using all 126 features. When using FuzzyEn, the ARKF value 

had high values for the following signals: cD2 (ARKF = 98.9%), cA3 (ARKF = 98.2%), cA4(ARKF 

= 98%). For other entropies, high ARKF values were observed for signals O, cA1, cA2, cA3, 

cA4. Perhaps this is due to the presence of a low-frequency component in the range from 

0 to 4 Hz in these signals, namely O (0–64 Hz), cA1 (0–32 Hz), cA2 (0–16 Hz), cA3 (0–8 

Hz), and cA4 (0–4 Hz), while cD1 (32–64 Hz), cD2 (16–32 Hz), cD3 (8–16 Hz), and cD4 (4–

8 Hz) signals contain higher frequency components. Low-frequency rhythms (delta and 
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theta) are usually prominent while the eye is closed and in a resting state compared to 

waking and alert states (while the eye is open and focused). People with neurological dis-

orders, particularly those with delta and theta rhythms, tend to have these rhythms dom-

inate more than healthy individuals. Due to this, low-frequency rhythms (alpha to 

gamma) are more accurate in diagnosing Parkinson’s disease than high-frequency 

rhythms. 

The decrease in accuracy when using only one type of signal is quite significant: clas-

sification error ERKF = 1 − ARKF increased by 11 times compared to the result achieved when 

using all features (Section 3.1). Thus, the use of one frequency range is not enough to 

achieve maximum classification accuracy ARKF = 99.9%. 

3.3. Classification Accuracy Using a Single Channel 

In this section, we present the results of classification accuracy ARKF using all nine 

signal types (nine features in total) corresponding to one of the 14 channels (AF3, F7, F3, 

FC5, T7, P7, O1, O2, P8, T8, FC6, F4, F8, AF4). The values of the optimal entropy parame-

ters are specified in Section 3.1. In Figure 5, ARKF is shown in relation to the channel num-

ber. 

 

Figure 5. Dependence of classification accuracy ARKF on the channel number for different entropy 

calculation methods: PhaseEn (K = 6), SVDEn (m = 3), PermEn (m = 5), AttnEn, CoSiEn (m = 3, r = 

0.05), SampEn (m = 2, r = 0.25 × std), and FuzzyEn (m = 1, r = 0.15 × std, r2 = 5). 

Analyzing the results presented in Figure 5, it can be noted that the highest ARKF value 

for most channels was obtained using FuzzyEn for the P8 (ARKF = 90.8%) and F8 (ARKF = 

88.8%) channels. It is not possible to find pronounced dependencies that are repeated for 

all entropies. The classification accuracy obtained when using one channel is significantly 

reduced compared to the results achieved when using all channels: minimum classifica-

tion error ERKF increases by ~8 times when using one channel and one type of signal (Sec-

tion 3.2) and 92 times when using all signals and all channels (Section 3.1). This suggests 

the need to use multichannel EEG measurement devices to maximize accuracy. 

3.4. Classification Accuracy Using One Feature 

In Sections 3.2 and 3.3, reduced datasets with fourteen (one signal type) and nine (one 

channel) features were used; however, Figures 4 and 5 show that classification accuracy 

varies significantly across different channels and signal types (frequency bands). At the 
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same time, when analyzing these two criteria, we cannot determine the most informative 

combinations of channels and frequency ranges. 

This section presents the results of using one feature (one type of signal for one chan-

nel). In this case, the FuzzyEn method, which produced the best accuracy estimate in Sec-

tions 3.2 and 3.3, will be used, with the parameters m = 1, r = 0.15 × std, r2 = 5. The graphs 

are grouped by signal types and are divided into two groups: 

1. Group 1 consists of signals based on detail wavelet coefficients, as follows: cD1 (32–

64 Hz), cD2 (16–32 Hz), cD3 (8–16 Hz), and cD4 (4–8 Hz); 

2. Group 2 consists of the original signal and signals based on approximation wavelet 

coefficients, as follows: O (0–64 Hz), cA1 (0–32 Hz), cA2 (0–16 Hz), cA3 (0–8 Hz), and 

cA4 (0–4 Hz). 

The most informative frequency range for the first group (Figure 6a) is cD4 (4–8 Hz), 

for which the average value of ARKF (ARKF_mean) is equal to 67.1%, while for the rest of the 

frequency ranges, ARKF_mean ~63%. Among the signals in the second group (Figure 6b), the 

most informative is cA3 (0–8 Hz), with an average value of ARKF_mean = 71.4%, while signals 

with the presence of higher-frequency components show lower values of ARKF_mean: 63.2% 

for O (0–64 Hz), 62.9% for cA1 (0–32 Hz), and 65.8% for cA2 (0–16 Hz). The lower accuracy 

of ARKF_mean = 68.2% for cA4 (0–4 Hz) may indicate that the 4–8 Hz range is needed to im-

prove signal classification accuracy. The highest classification accuracy by one feature was 

obtained for the T8 channel and the cA3 signal: ARKF = 79.5%. 

 

(a) 

 

(b) 

Figure 6. Dependence of classification accuracy ARKF on channel number for FuzzyEn method (m = 

1, r = 0.15 × std, r2 = 5), grouped by signal types: (a) cD1, cD2, cD3, cD4; (b) O, cA1, cA2, cA3, cA4. 
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To determine the most informative combinations of channels and frequency ranges, 

Table 2 was compile. It contains 15 combinations of channel and signal type with the high-

est ARKF value from those presented in Figure 6a,b. It can be noted that for most of the 

channels presented in the table (T8, O2, FC6, F3, AF4), only the low-frequency components 

of the original signal are the most informative, namely cA3 (0–8 Hz), cA4 (0–4 Hz), and 

cD4 (4–8 Hz), while for channels F8 and O1, signals with high-frequency components are 

also informative: O (0–64 Hz) and cD1 (32–64 Hz). It is also worth noting that most of the 

channels that give the best results were located in the right hemisphere of the head. 

According to our knowledge, there are no earlier studies that examine the impact of 

specific regions or specific hemispheres on PD diagnosis using rest-state EEG signals. As 

a result of the proposed entropy-based PD diagnosis methodology, right hemisphere 

channels showed a significant difference compared to left hemisphere channels in terms 

of the following criteria: (a) limited number of PD subject data, clinical history of the pa-

tients, and progression of PD in the subjects; (b) limited number of channels (14 channels); 

and (c) proposed methodology of entropy features and machine learning-based diagnosis. 

No specific region in the brain has been studied in the literature on diagnosing PD due to 

the lack of valid scientific evidence. By conducting the experiment on another PD dataset 

with a larger number of subjects with a higher number of EEG channels, we could justify 

or test our proposed conclusion in the future. 

Table 2. Combinations of channels and signal type that give the highest ARKF value. 

Channel Signal Type ARKF, % 

T8 cA3 79.5 

O1 cA4 77.1  

FC6 cA4 76.9 

O2 cA3 76.5 

FC6 cA3 76.2 

F8 cA2 74.9 

T8 cA4 74.2 

F3 cA3 74.2 

F8 O 73.4 

F8 cD1 73.4 

O1 cA3 72.4 

F8 cA3 72.3 

AF4 cA3 72.1 

O1 O 71.9 

AF4 cD4 71.6 

4. Model Optimization 

Section 3.4 showed that different types of signals perform best on different channels. 

A high classification accuracy can be achieved with a minimum number of features, which 

appears to be an interesting goal. We examined how the accuracy of ARKF changes with the 

number of features computed using FuzzyEn (Section 3.4). In order to do this, we used an 

iterative approach in which only the first feature gave the maximum value of ARKF. Next, 

the ARKF value was calculated for the combination of two features. The evaluation proce-

dure was repeated with one more of the remaining features added. Figure 7 illustrates the 

dependence of ARKF on feature numbers. 

With 11 features, classification accuracy ARKF is 99.9%, which is the same as that 

achieved using all 126 features. By minimizing the number of features, it is possible to 

reduce the computational costs of classification and use lower-performance devices for 

analysis, such as peripheral IoT devices or embedded analytical modules in EEG signal 

measurement devices. 
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Figure 7. Dependence of classification accuracy ARKF on the number of features. 

The length of the EEG segment (LEEG) can also be reduced to reduce the amount of 

data to be processed. In Section 3, we used segments with 1000 counts (~7.8 s). However, 

it is possible to shorten this length in order to speed up calculations. We achieved this by 

reducing the most resource-intensive part of the analysis—the calculation of FuzzyEn. 

Another part of the time is spent filtering the signal using wavelet methods. According to 

Figure 8, ARKF accuracy depends on the number of LEEG readings when using all 126 fea-

tures (see Section 3.1) or the 11 most informative ones (this section). 

 

Figure 8. Dependence of classification accuracy ARKF on segment length LEEG. 

The segment length LEEG of 1000 samples provides a high classification accuracy of 

99.9% for both 11 and 126 features. As segment length LEEG decreases, classification accu-

racy ARKF also decreases, but less intensely for 126 features than for 11. For example, a 

decrease in length even by 20% (up to LEEG = 800) led to a decrease in accuracy to 99.4% 

for 126 features and to 98.2% for 11 features. Thus, ERKF error increased by 6 times for 126 

features and by 18 times for 11 features. 

Since the main idea of reducing computational costs is to reduce computation time, 

we compared the computation time of one segment (calculation of entropy features and 

classification by the trained model) for different segment lengths LEEG and different num-

bers of features. The calculations were performed on a desktop computer with an Intel i5-

7200U (2.5 GHz) processor and 8 GB of RAM. 
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With more than 350 samples, computation time tcomp depends linearly on segment 

length LEEG, since most of the time is spent calculating entropy features. It took approxi-

mately 0.06 s to calculate one feature with a length of LEEG = 1000. In Figure 9, it can be 

observed that by reducing the number of features, calculation time can be significantly 

reduced (for example, with LEEG = 1000, calculation time varies by 11 times) while main-

taining a low classification error (see Figure 8). The reduction in segment length does not 

significantly improve calculation speed (for example, the speed difference between LEEG = 

1000 and LEEG = 800 is only 25%), but significantly increases classification error ERKF. 

 

Figure 9. Dependence of computation time tcomp on segment length LEEG. 

5. Future Work: Smart IoT Environment Concept for Patient Health Monitoring 

Based on the results presented in Section 3, we conclude that entropy features can be 

used to analyze EEG signals in order to effectively diagnose PD patients. Let us present 

the idea of a smart IoT environment that continuously monitors the patient’s condition at 

home (Figure 10). Such a smart IoT environment collects and analyzes a wide array of 

information in real-time using ML sensors in edge IoT devices. The results are then pre-

sented to both the patient and the attending physician through remote, authorized access 

to the data. The latter is especially important if the treatment takes place at home rather 

than in a medical facility [57]. An attending physician can intervene quickly if a patient’s 

condition deteriorates, which the patient himself/herself may not be aware of due to the 

deterioration in cognitive functions. This approach enhances human resilience to PD, 

making everyday life more comfortable and easier. 

 

Figure 10. The concept of a smart IoT environment that can continuously monitor Parkinson’s dis-

ease patients. 
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According to the concept of personal medicine [8], the constant monitoring of disease 

and identifying the best treatment method for everyone are important elements of care. 

The previous sections discussed the classification of EEG signals used to diagnose Parkin-

son’s disease. FuzzyEn-based features, however, can be used as a tool to assess the current 

state of a disease. Histograms of entropy values (cA3 for channel T8) for people with Par-

kinson’s disease and healthy controls are shown in Figure 11. Based on the results pre-

sented, the presence of disease is associated with more chaotic EEG signals in most pa-

tients. Based on the dynamics of the change in entropy value, it is possible to track the 

improvement or deterioration of the clinical picture for each individual patient using sev-

eral combinations of signal type and channel as indicators. As entropy increases, one can 

speak of deterioration in the patient’s condition, and as it decreases, one can speak of im-

provement. As a result of the variability in values within the dataset under study, the ab-

solute value of entropy cannot serve as an unambiguous indicator of disease severity. The 

effectiveness of an individual treatment method can also be assessed based on how much 

entropy has decreased over time compared with control indicators. Thus, the results 

shown in Figure 11 can be expanded with additional studies to identify the connection 

between changes in FuzzyEn values of EEG signals and the degree of progression of PD 

using continuous monitoring with the proposed IoMT system. 

 

Figure 11. Histogram of distribution of FuzzyEn values for signal cA3 of channel T8. 

The optimization of information processing processes is an important step in devel-

oping IoT environments and low-performance sensors that monitor PD patients’ health 

status. Due to their limited computing capabilities and small amounts of RAM, IoT de-

vices and gateways need to reduce their volume to speed up data processing. An IoMT 

network is capable of continuously monitoring physiological parameter changes in hu-

mans by using machine learning (ML) models trained on smart sensors [12,58,59]. Physi-

ological or biomedical sensors that are placed on the patient’s body (wearable sensors) 

measure different types of physiological responses, including heart rate, blood pressure, 

skin electrical conductivity, oxygen saturation, heart electrical activity, electroencephalo-

grams (EEGs), etc. [60]. Additionally, some sensors can be placed in the room where the 

patient is located to monitor their movement patterns, gait, physical activity, etc. [61,62]. 

In addition to transforming the hardware designs of traditional sensor systems using ML 

techniques, artificial intelligence sensors (or smart sensors) can also be designed holisti-

cally based on ML methods [63] and machine learning algorithms [64,65]. A further de-

velopment of the ML sensor paradigm was achieved by Warden et al. [59] and Matthew 

Stewart [58], where the authors introduced the terms Sensors 1.0 and Sensors 2.0. Sensors 

2.0 involve both a sensor and a machine learning module integrated into one device. 
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In Section 4, we showed that only 11 features are sufficient to identify PD with a clas-

sification accuracy ARKF of ~99.9%. For future research, it is possible to propose the devel-

opment of a type of Sensor 2.0 which will be implemented in the real device (wireless 

headset) (Figure 10). EEG signals will be input into the model, and the output will be the 

degree of disease development. This may be part of a smart IoT environment for patient 

health monitoring. To implement the EEG signal classification methods proposed in this 

work, it is proposed that Raspberry Pi Zero W be used. 

The third direction of research could be the fusing of information from EEG devices 

and an IoT video camera. Continuous monitoring of the patient’s condition could include 

regular (e.g., weekly) EEG measurements at rest and continuous monitoring of motor ac-

tivity using video surveillance. By analyzing the video image, it would be possible to iden-

tify specific motor activity disorders characteristic of Parkinson’s disease. Both the patient 

and his/her attending physician would be able to monitor the patient’s condition objec-

tively based on the analysis results. Interaction between the smart IoT environment and a 

medical information system could be achieved through network interaction. This would 

be especially relevant to remote northern regions with low population density and long 

distances to medical institutions with the necessary infrastructure. Additionally, it would 

reduce the burden on medical facilities and reduce the cost and time of transporting pa-

tients. 

6. Conclusions 

This study proposes a novel ML model based on EEG entropy features for PD diag-

nosis and monitoring in smart IoT environments. We investigated the most effective en-

tropy method to calculate EEG entropy features. We found that fuzzy entropy performed 

well in detecting and monitoring Parkinson’s disease. EEG signals with low frequencies 

(0–4 Hz) contributed the most to high classification accuracy, and we identified the most 

prominent EEG signal frequency range. Additionally, the most informative signals were 

received primarily from the right hemisphere of the head (F8, P8, T8, FC6). A combination 

of signal frequency range and channels was selected to accurately diagnose PD with only 

11 features achieving a classification accuracy ARKF of ~99.9%, while reducing data pro-

cessing time by ~11 times. A study of the dependence of classification accuracy ARKF on 

the length of EEG segments (LEEG) showed a significant decrease in ARKF with a decrease 

in LEEG: from 99.9% for LEEG = 1000 to 98.3% for LEEG = 800 when using the 11 best features. 

At the same time, decreasing the value of LEEG only slightly reduced computation time, so 

this approach does not make much practical sense. This also shows the limitations of the 

method: to obtain a high classification accuracy, it is necessary to use long segments of the 

EEG signal (1000 samples or ~7.8 s). An optimized model with a small number of features, 

reducing computational costs, could be used in low-performance devices, and so would 

be applicable for smart IoT environments with ML sensors. 
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