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Abstract: Diagnosing Intracranial Hemorrhage (ICH) at an early stage is difficult since it affects
the blood vessels in the brain, often resulting in death. We propose an ensemble of Convolutional
Neural Networks (CNNs) combining Squeeze and Excitation–based Residual Networks with the
next dimension (SE-ResNeXT) and Long Short-Term Memory (LSTM) Networks in order to address
this issue. This research work primarily used data from the Radiological Society of North America
(RSNA) brain CT hemorrhage challenge dataset and the CQ500 dataset. Preprocessing and data
augmentation are performed using the windowing technique in the proposed work. The ICH is then
classified using ensembled CNN techniques after being preprocessed, followed by feature extraction
in an automatic manner. ICH is classified into the following five types: epidural, intraventricular,
subarachnoid, intra-parenchymal, and subdural. A gradient-weighted Class Activation Mapping
method (Grad-CAM) is used for identifying the region of interest in an ICH image. A number of
performance measures are used to compare the experimental results with various state-of-the-art
algorithms. By achieving 99.79% accuracy with an F-score of 0.97, the proposed model proved its
efficacy in detecting ICH compared to other deep learning models. The proposed ensembled model
can classify epidural, intraventricular, subarachnoid, intra-parenchymal, and subdural hemorrhages
with an accuracy of 99.89%, 99.65%, 98%, 99.75%, and 99.88%. Simulation results indicate that the
suggested approach can categorize a variety of intracranial bleeding types. By implementing the
ensemble deep learning technique using the SE-ResNeXT and LSTM models, we achieved significant
classification accuracy and AUC scores.

Keywords: intracranial hemorrhage; deep learning models; classification; SE-ResNeXT; LSTM;
Grad-CAM model; ResNeXT

1. Introduction

An intracranial hemorrhage (ICH) can result from bleeding within the intracranial
vault as well as bleeding in the brain parenchyma and in nearby meningeal spaces as a
byproduct of bleeding within the intracranial vault. In the case of ICH, it is a fatal disease
that requires prompt medical attention and comprehensive interventions at the right time.
It is estimated that approximately ten percent of stroke deaths are caused by intracranial
hemorrhages. There are approximately 40,000 to 67,000 cases of ICH per year in the United
States, according to the American National Institutes of Health, based on a prevalence
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estimate of 24.6 cases per 100,000 person-years [1]. Additionally, hemorrhages in the brain
account for 8 to 13 percent of all strokes that occur in the brain [2]. The number of patients
at risk of death in this group is estimated to be 40%. The reasons for this may differ from
patient to patient and can be based on one or more factors.

Firstly, it is very important to diagnose the type of acute ICH so that precise treatment
can be provided. Ischemic cerebral hemorrhage can be classified into various types, such as
Intraparenchymal Hemorrhage (IPH), Intraventricular Hemorrhage (IVH), Subarachnoid
hemorrhage (SAH), Subdural Hemorrhage (SDH), and Epidural Hemorrhage (EDH). The
majority of subdural hemorrhages are caused by bridging veins within the dura and
the arachnoid membrane, and the bleeding is predominantly caused by the rupture of
these veins [3]. Hemorrhage in the subarachnoid space, which often occurs as a result of
bleeding from the cerebral artery, is commonly called a subarachnoid hemorrhage. An
intraventricular hemorrhage occurs when bleeding occurs anywhere within a ventricle of
the brain, and it is usually the result of another hemorrhage that has occurred previously.
During a cerebral hemorrhage, blood may flow anywhere within the brain’s neural tissue,
referred to as an intraparenchymal hemorrhage, while epidural hemorrhages can occur
between the dura and the skull.

As a part of the process of managing the individual and making sure that they receive
the best assessment, medication, and rehabilitation, it is necessary to determine the exact
location of the bleeding and how it occurred in order to ensure the best possible care. A
method is implemented in [4] that detects ICH in a faster way by using Convolutional Neu-
ral Networks (CNNs) and Long Short-Term Memory Networks (LSTMs). An experimental
analysis of the RSNA 2019 dataset was conducted, and a weighted mean log loss of 0.04989
was obtained with 98% accuracy when comparing it with the RSNA 2014 dataset. The
Grad-CAM technique is utilized in order to enhance the fast diagnosis of ICH by increasing
the detection rate.

CNN is one of the most effective deep learning algorithms for diagnosing brain dis-
eases due to its ability to learn and classify the features of complex images automatically [5].
Several researchers have used explainable Artificial Intelligence (AI) and deep learning
techniques in their medical imaging applications [6–9]. A Computerized Tomography (CT)
scan is the preferred method of diagnosis for brain disease because it provides a better
spatial resolution compared to other forms of imaging. It is also more sensitive to detecting
brain hemorrhages by visualizing the brain regions, which makes it more appropriate for
diagnosing brain diseases [10]. It is a challenging issue for radiologists to determine the
exact diagnosis of ICH from CT images, since the bleeding areas in the brain can also be
easily misinterpreted as calcifications or stripping artifacts. Despite having the same ICH
subtype, hemorrhages can be markedly different in size, shape, and location, even when
the hemorrhage is exquisite. In this paper, we present a hybrid deep learning technique that
is effective at detecting ICH specifically by its type for the purpose of assisting healthcare
providers in the detection of ICH.

Intracerebral hemorrhage (ICH) can cause enduring cognitive impairment or even
death, requiring immediate diagnosis and treatment. It is well known that ICH is a
significant contributor to fatalities, resulting in an elevated mortality rate. A brain injury
can cause death and paralysis if it is not detected early enough. It is possible to diagnose
ICH using CT scans because they provide a reliable and non-intrusive imaging method.
In patients presenting neurological symptoms that indicate ICH, skilled radiologists use
CT images to identify any intracerebral hemorrhage. Reviewing a CT scan manually by a
radiologist is both time-consuming and demanding. Patient deaths can result from urgent
treatment requirements in combination with the severity of the condition. An automated
system is thus needed to detect both ICH and its specific subtype, addressing the urgency
of critical cases, increasing diagnostic speed, and assisting radiologists. In order for an
automated tool to be effective in medical diagnosis, it must display high levels of accuracy.

SE-ResNeXT combines a Squeeze-excitation block with a Residual network and In-
ception network. This reduces the difficulty of training deep networks by incorporating
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shortcut connections between layers. In addition, Multi-Step LR (learning rate adjustments)
and transfer learning are used to enhance the performance of the network. The model
focuses on picking out the most significant features of the lesion and leaving out the less
significant ones. The combined ResNet and Inception models form the ResNeXT model,
which performs group convolutions. Finally, a hyperparameter called cardinality is used to
manage each group in this ResNeXT model.

Grad-CAM interprets the model decision-making process. ICH lesions are visualized
as heat maps, which enable a clear understanding of the lesions present. Through Grad-
CAM, a trained DL model can be used effectively to classify ICH types. Finally, the
Grad-CAM assists doctors and physicians in making decisions based on AI in massive
datasets.

This present work aims to diagnose the ICH and its subtypes (IPH, IVH, SAH, SDH,
and EDH) by implementing ensemble deep learning techniques. The key contributions of
the proposed work are as follows:

• The CT scan images are preprocessed by resampling, downscaling, and cropping
certain regions of the brain to gain fine-grained details about the type of ICH.

• A windowing technique is used on three layers (bone, brain, subdural) to create an
image with better contrast.

• A fine-tuned ensemble convolutional neural network (SE-ResNeXT + LSTM) is pro-
posed to classify the intracranial hemorrhage, and its performance is compared with
various statistical metrics.

• Finally, Grad-CAM visualization is used to identify the region of interest in the CT
scan images to identify the type of ICH.

A brief introduction to the proposed work and major contributions to the related
field are presented in Section 1. A detailed review of the recent literature on the topic is
presented in Section 2. Section 3 describes the methodology, including the database used,
how the preprocessing steps are performed, and how the ResNet, SE-ResNeXT, and LSTM
models are compared with the pre-trained models. The results of the proposed work are
discussed in Section 4 after a comparison with the existing literature. Lastly, in Section 5,
we report our conclusions about the present work.

2. Literature Review

The use of deep learning for medical image analysis has risen dramatically in recent
years [11–14]. Automatic classification and detection of acute ICH using deep learning
algorithms is presented in [15]. This work uses Artificial Intelligence (AI) to diagnose acute
ICH, with CNN classifiers as the first stage, followed by Sequence Models 1 and 2 and
recurrent neural networks with three-dimensional slices that are used to extract appropriate
feature outputs for detecting acute ICH. In this study, researchers conducted a multi-class
classification of ICH based on three datasets: Physionet-ICH, RSNA, and CQ500. According
to the results obtained, EDH can be diagnosed with high sensitivity compared to other
types of ICH. Additionally, the proposed work provides better classification accuracy using
2019 RSNA datasets than the other two datasets. Due to the complexity of the model and
the lengthy training process, this work has significant limitations.

Barin et al. [16] proposed a hybrid CNN model by combining EfficientNet-B3 and
Inception-ResNet-V2 for ICH diagnosis. However, the proposed work is limited to the
overfitting problem, despite reaching 98% accuracy. A hybrid deep neural network was
constructed in [17] to predict intracranial hemorrhage. CNNs and LSTMs are combined to
implement systematic windowing. The features are extracted from the CT image (RSNA
dataset) using a CNN with a 10-window slice input. LSTM models are trained to categorize
ICH hemorrhage types based on the extracted features. Approximately 72,516 CT scan
images are used for training, and 7515 and 7512 CT scan images are used for validation
and testing. With an accuracy of 95.14%, sensitivity of 93.87%, and specificity of 96.45%,
the proposed Conv-LSTM model outperforms the other models. However, selecting the
optimal features for training the model is challenging.
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A machine learning algorithm is presented in [18] to identify and classify ICHs. Tsallis
entropy (TE) is used in conjunction with the grasshopper optimization algorithm (GOA)
for the segmentation of CT images. A Dense Net 201 model is used to extract features,
and an Extreme Learning Machine (ELM) is used to classify ICHs. The Physionet-ICH
dataset is analyzed in this study to classify the ICH as IPH, IVH, SAH, SDH, or EDH. A
DenseNet-ELM model showed the highest accuracy of 96.34% among all state-of-the-art
ICH classification models. Due to the random initialization of weights and biases during
training, this work involves high intricacy of hidden layers. In [19], EfficientNet’s deep
learning technology is discussed in relation to the diagnosis of ICH. Furthermore, the
Grad-CAM method and Hounsfield Unit (HU) are used to visualize the desired region. The
RSNA dataset is used for experimental analysis, and results show 92.7% accuracy; however,
the method it is computationally intensive.

A study conducted in [20] uses deep learning to classify ICH and its types on CT
images. Real-time CT image analysis is conducted using a deep neural network (DNN) at
the Burdenko Neurosurgery Center in Russia. To achieve precise classification, ResNext50
architecture is deployed with the Adam optimizer, which adaptively amends the channel-
wise feature responses. This work classifies IVH with an accuracy of 89.3%. For real-time
datasets, setting and generalizing hyperparameters like filter size and stride is challenging.
In [21], ensembled deep neural networks for diagnosing ICH are introduced. In order to
classify ICHs, the given image is preprocessed, and the data is augmented before applying
an efficient B0 network. Lastly, class activation mapping is used to visualize the bleeding
area. A major limitation of this study is the imbalanced distribution of ICH and its subtypes
in the RSNA dataset. Despite data augmentation being performed to minimize the above-
mentioned issue, high accuracy with low sensitivity is still achieved.

A CNN and Recurrent Neural Network (RNN) are combined to predict ICH and its
subtypes [22]. A CT slice is preprocessed for two types of classification (ICH and non-ICH)
as well as five different types (IPH, IVH, SAH, SDH, and EDH). In addition to identifying
bleeding precisely, Grad-CAM is also used for this purpose. A slice- and subject-level
automated algorithm is used to analyze all subtypes of ICH. Compared to 2D CT scans,
it takes less time to process 3D CT scans. The AUC value for all the ICH subtypes is
greater than 0.8. The study concentrates on data collection from Asian populations, which
limits the algorithm’s generalizability. The training set has unequal amounts of data for
abnormal and control groups. This affects the performance of the algorithm. In [23], ICH
is classified using a deep neural network, built using the residual network 152 and local
binary pattern-based features. The fusion-based feature extraction with deep learning
(FFE-DL) model outperformed other models, with an accuracy of 96.6% in the classification
of ICH. According to the results, the ResNeXT study achieved the same 96.6% accuracy
as ours.

Tharek et al. [24] demonstrated that feed-forward CNNs could detect and classify
ICHs and non-ICHs. In training and testing the network, 200 images from the public
dataset were used to achieve an accuracy of 95%. Based on CT images, binary classification
was performed to identify those with and without ICH. Their method combined hand-
crafted features with deep learning models to extract useful feature information for accurate
classification. They achieved 95.2% precision with their ResNeXT model. The feed-forward
deep learning method achieved an optimal precision value of 96.43%. The Inception ResNet-
v2, EfficientNet-B3, and hybrid models were used in [16] to classify different types of ICH.
Using the RSNA dataset, the authors trained and tested their network models. As a result
of the implementation of ResNet-v2, EfficientNet-B3, and hybrid models, they obtained
98.2%, 98.1%, and 98.5% accuracy, respectively. The highest accuracy was achieved by
hybrid models (combined with Inception—ResNet-v2 and EfficientNet-B3).

A binary classification-based pre-trained MobileNet-v2 was used in [25] to detect brain
hemorrhage. RSNA datasets were used to train the images, and Vietnam hospital datasets
were used for testing. To highlight the areas suspected of being ICH, several preprocessing
techniques were applied, including windowing and density-based spatial clustering of
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applications with noise (DBSCAN). Their results demonstrate a sensitivity and specificity of
99.2% and 80.2%, respectively. Since the authors used fewer datasets for testing, the model
was less effective. It is necessary for the authors to obtain additional test data in order
to improve their performance accuracy. Lee et al. [26] conducted a study using real-time
CT images of ICH cases and healthy controls. Using deep learning algorithms based on
the Kim–Monte Carlo algorithm, three types of ICH were classified: EDH, SAH, and IPH.
An SAH accuracy rate of 91.7% was achieved in comparison to an overall accuracy rate
of 69.6%. The major drawback of this study involves the need to validate the study by
increasing the sample size.

The most commonly used diagnostic procedure for patients experiencing symptoms
such as strokes or an increase in intracranial pressure is a CT scan of the head without
contrast. According to the study’s findings, deep learning algorithms can be used to identify
abnormalities in head CT images that require immediate treatment. Using metadata and
CT scans from the RSNA project dataset, this paper develops, implements, and validates
an ensemble convolutional neural network (SE-ResNeXT + LSTM and ResNeXT + LSTM)
for diagnosing ICH. Two databases, RSNA and CQ500, are used in the proposed study
to generate CT images of ICH. The RSNA dataset is used for training, and the CQ500
dataset is used for testing. Automated feature extraction and multi-class classification of
ICH into different categories are performed using the ResNeXT-2D + LSTM model and
SE-ResNeXT-2D + LSTM model. The severity of hemorrhages can be determined using
Grad-CAM visualization. The performance of the proposed ResNeXT and SE-ResNeXT
models in combination with LSTM is compared with pre-trained models such as ResNet
50, Inceptionnet-v3, Mobilenet-v2, VGG19, and DenseNet 121.

3. Materials and Methods

An overview of the proposed study for classifying various types of ICH is shown
in Figure 1. In the proposed block diagram in Figure 1, the input CT scan images are
obtained from the RSNA database, and the input CQ500 images are obtained from the
Qure.ai database. As a training database, the RSNA database is used, while the Qure.ai
database is used for testing purposes. A windowing technique is initially applied to the
RSNA database in order to prepare it for further processing. There are three different
kinds of windows that are utilized for preprocessing the images, namely a brain window,
a subdural window, and a bone window. A windowing technique is applied in order
to improve the RGB visualization of the data. Then, the dataset is normalized, and the
process of data augmentation is carried out based on the normalized dataset. Using the
image data generator API in Tensor flow V2.13.0, we were able to preprocess the testing
dataset and augment it with additional data. Using two different deep learning algorithms,
ResNeXT-2D + LSTM and SE-ResNeXT-2D + LSTM, two automated feature extraction
techniques were used, and a multi-class categorization of different ICHs was performed.
Additionally, the Grad-CAM algorithm was used in order to find the regions of interest in
various types of ICH.

3.1. RSNA Database

This hybrid model is analyzed using two different kinds of datasets, namely RSNA [27]
for the training process and CQ500 for testing and validation purposes. In this study,
we used the RSNA2019 Brain CT Hemorrhage challenge dataset, collected from three
institutions (Stanford University (Palo Alto, CA, USA), Universidade Federal de Sao Paulo
(Sao Paulo, Brazil), and Thomas Jefferson University Hospital (Philadelphia, PA, USA).
More than 60 neuroradiologists annotated the images in the dataset to group them into
different categories. In total, there are more than a million images in the original dataset.
The training set in the RSNA dataset contains 133,709 slices, while the test set contains
14,600 slices (Table 1). In the data, there are five different ICH types—EDH, IPH, IVH,
SAH, and SDH—but the distribution of each is highly unbalanced. All the CT images are
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captured using the non-contrast-enhanced method and stored in DICOM format, with a
pixel resolution of 512 × 512.
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Table 1. Training and testing datasets of RSNA dataset.

ICH Type Training Set Testing Set

EDH 2761 384
IPH 32,564 3554
IVH 23,766 2439
AH 32,122 3553

SDH 42,496 4670
Total 133,709 14,600

3.2. CQ500 Database

In this work, we used the CQ500 dataset for testing the proposed ICH classification
system. The CQ500 database contains a maximum of 171,390 images of different types of
brain images obtained from a total of 491 CT scans. These images include ICH (205 scans),
fractures (40 scans), middle shifts (65 scans), mass effect (127 scans), and normal controls
(54 scans), among other types of brain images. During the study, different slice thicknesses
(0.625 mm, 3 mm, and 5 mm) of CT images were captured using GE and Philips CT
imaging devices on subjects aged between 7 and 95 years old in India. The images were
annotated into different categories by three senior neuroradiologists who are specialists
in neurological imaging. This study’s dataset included data on every type of cerebral
bleeding.

3.3. Hounsfield Scale

Grayscale in medical CT imaging is measured in Hounsfield Units (HUs). There are
4096 values (12 bits), and the scale ranges from −1024 HU to 3071 HU (zero is also a
value). Using this scale, it is possible to correlate the attenuation of CTs with the density of
tissues [28]. Using the “windowing” technique, CT images are enhanced based on their
contrast. If two parameters are specified, the window level and the window width, it is
possible to see the given window (mapped into the entire grayscale range (0 to 255)). A
white color would be perceived if the value was greater than (l + w/2), whereas a black
color would be perceived if the value was lower than (l − w/2). There are two important
window settings for CT images: Bone window and Brain window. We used Python’s
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DICOM library, using command line APIs including Rescale Intercept and Rescale Slope.
The rescaling of CT images to Hounsfield units was carried out in different steps using
Python API, as shown in Figure 2. This method was used to determine the values of the
histograms of the images. Figure 2 shows ICH images with their corresponding histograms.
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3.4. Data Preprocessing Using Windowing and Augmentation

The first step in preparing the dataset was to convert intensities into HUs (Hounsfield
Units). Next, three windows were implemented: brain, subdural, and bone windows
(Figure 3b). Figure 3c illustrates the windowing techniques used for preprocessing ICH
images.

In the preprocessing step, the contrast-adjusted image is obtained by applying the
subdural window to the raw image. A training image with a size of (224,224,3) is provided
to the network architecture to determine the optimum size for training. Eighty percent of
the data used in the RSNA dataset is for training, and 20 percent is for testing. To validate
the dataset, 10-fold cross-validation is performed.

A technique of image augmentation was applied to the dataset in order to enhance
the efficiency and robustness of the model training. We used Python’s (version 3.10)
augmentation module and TensorFlow’s image data generator API (version V2.13.0) in this
study. The selected augmentation techniques are described and illustrated in Table 2 and
Figure 4.

Table 2. Augmentation description table.

Operation Description

Horizontal Flip Flip the input image horizontally
Gaussian Blur Blur the input image using a Gaussian filter with a random kernel size

Elastic Transform Elastic deformation of images
Rotate Rotate the input image by a random degree

Channel Shuffle Randomly rearrange channels of the input RGB image
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Figure 4. Different types of augmentation used for training data. First image shows the horizontal
flip operation applied over the input image; second image is Gaussian blur operation used for
augmentation; Elastic transform and rotation operation are applied in third and fourth images; fifth
image shows the channel shuffling applied over the input image.
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3.5. Implementation Details

We use the Tensorflow–Keras framework on a server that has two NVIDIA Tesla V100
GPUs, with 32 GB of graphics memory each. As a first step, we need to scale the image to
these dimensions: (w × h) = (224 × 224). Moments are estimated by the Adam optimizer,
which has an exponential decay rate of (1, 2) = (0, 99) and a learning rate of 1.25 × 10−5.
Using the Scikit-learn Python library, machine learning algorithms are used to pre-analyze
the process. An Intel i7 processor-powered Windows 10 operating system with 64-bit OS
and 16 GB RAM was used to execute Python codes.

3.5.1. ResNeXT Architecture

The ResNeXT model shows the Next dimensions on top of ResNet. As a result of
ResNeXT’s implementation, sub-modules such as Inception are used, the reaction time
for each operation is calculated, and the products are concatenated at the end of each
module. These sub-operations within the module are described in a new dimension called
“cardinality”. By repeating sub-operations within a substantially lower encoding, ResNeXT
simplifies module design. A major objective is to reduce the number of hyperparameters
required by conventional ResNets. We combined the best characteristics of VGG Net
and Inception designs. VGG Net is an architecture based on tiny kernels, which have
repeated layers, and Inception is an architecture based on micro-networks. Each filter
was employed in the same number of steps to obtain the same output size. The number
of filters was doubled if the output’s spatial dimension was half. In this technique, the
temporal complexity of each tier was maintained at the same level. Furthermore, expanding
cardinality is critical for improving accuracy, and promoting cardinality is more effective
than developing deep convolutional neural networks.

In ResNeXT, the hyperparameter “cardinality” indicates the number of paths found
in each block. It is usually set to 32, with a width of 4 for the bottleneck d and a width
of 128 for the group convolution. It has a computational complexity of 7.8 GFlops. The
model uses the following tuning parameters:, weight decay (0.0001), momentum (0.9), and
learning rate (0.1). The computational time required to execute the model is 164 ms or 1.7 s
per mini batch.

3.5.2. SE-ResNeXT Architecture

Squeeze-excitation (SE)-ResNeXT models are generated by applying the SE module to
residual blocks. The result is the transformation of a single residual route into numerous
residual pathways within the ResNet block. Both Visual Geometry Group Nets (VGG
architectures) and ResNet demonstrate that stacking blocks of the same form can decrease
hyperparameters while maintaining state-of-the-art performance [29]. Further, Google
Net and Inception have demonstrated the benefits of fine network architecture using split
transform mergers. As a result of combining these two excellent concepts, ResNeXT was
developed [30]. ResNeXT, in contrast to GoogleNet, simply repeats the same substructure,
resulting in the split transform merge being completed; at the same time, hyperparameters
are not significantly increased. A residual block of ResNeXT can be used to create SE-
ResNeXT by including the SE module. Due to its unique ability to reduce the parameters
and weight of the network without sacrificing its performance, the Squeeze and Excitation
Block was chosen for this present work. The SE block consists of three layers: a global
pooling layer, two fully connected layers (FC), and two activation function layers (Sigmoid
and ReLU). Due to the SE block’s regulation of the overall weight parameters, the relevant
traits are strengthened while the insignificant ones are weakened. The hyperparameters
used in SE-ResNeXT model are specified in Table 3.
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Table 3. Hyperparameters used in SE-ResNeXT model.

Learning Rate, LR 0.6

Epoch 200
Layer 50

Drop out 0.2
Crop Pct 0.875

Momentum 0.9
Interpolation Bicubic

3.5.3. LSTM

In RNNs, LSTMs are specifically designed to deal with the issue of lack of long-
term reliance. Even though this model is adapted to learn lengthy dependencies, it is
difficult for the network to learn long-term information. Rather than a simple convolution
operation, there are four layers, each of which interacts with the others differently. LSTMs
are characterized by their cell state, which is a horizontal line that runs down the chain,
with a few linear interactions between them. It allows data to pass through in its original
form without being altered. Table 4 illustrates the architecture of ResNeXT and SE-ResNeXT
that was used.

Table 4. Architecture of ResNeXT and SE-ResNeXT.

Layers Output Shape Kernel Size and Details

Convolution 2D 112 × 112 7 × 7 conv, stride 2
Max Pooling 2D 56 × 56 3 × 3 max − pool, stride 2
Conv Block (2) 56 × 56 [1 × 1.128 3 × 3.128, C = 32 1 × 1.256]× 3
Conv Block (3) 28 × 28 [1 × 1.256 3 × 3.256, C = 32 1 × 1.512]× 4
Conv Block (4) 14 × 14 [1 × 1.512 3 × 3.512, C = 32 1 × 1.1024]× 6
Conv Block (5) 7 × 7 [1 × 1.1024 3 × 3.1024, C = 32 1 × 1.2048]× 3

SE-Block (OPTIONAL) 7 × 7 Squeeze and Excitation Block × 1
Classification 1 × 1 7 × 7 (global average − pool)

Layer 5 Fully Connected Dense Layer, So f tmax

3.6. Performance Metrics of Ensemble Approach

A variety of metrics are used to prove the competence of the proposed work, includ-
ing accuracy, sensitivity, specificity, F1 score, precision, and Binary Cross Entropy (BCE)
loss. Based on the simulation results, it can be demonstrated that the suggested approach
provides a reliable method for identifying and categorizing a variety of intracranial hemor-
rhages. In an ensemble deep learning approach, SE-ResNeXT and LSTM models produced
high accuracy and F1 scores, indicating a strong and reliable performance. In this study,
True Positives, True Negatives, False Positives, and False Negatives are abbreviated TP, TN,
FP, and FN, respectively. In order to analyze the experimental data, the following metrics
are examined.

3.6.1. Accuracy

The accuracy (ACC) metric evaluates the classification outcome general accuracy and
is determined by Equation (1).

ACC =
TP + TN

TP + FP + TN + FN
(1)

The proposed methodology employs ACC as a statistical metric to assess the classifi-
cation performance of ensemble deep learning algorithms for various types of ICH.
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3.6.2. Precision

The metric of precision (PREC) pertains to the ratio of accurately predicted positive
classifications to all positive predictions and is mathematically derived using Equation (2).

PREC =
TP

TP + FP
(2)

It is proposed that precision be used as a statistical measure for evaluating the effec-
tiveness of the ensemble deep learning models in categorizing the various subtypes of ICH
by relying on the positive predictions made by the models as a means of evaluating their
effectiveness.

3.6.3. Sensitivity

The Sensitivity (SEN) or True Positive Rate (TPR) metric evaluates the ratio of accurate
positive classifications to the total number of positive cases and can be calculated using
Equation (3).

SEN =
TP

TP + FN
(3)

We use SEN as a statistical measure to assess the accuracy of our ensemble deep
learning models in detecting various subtypes of ICH among the positive cases.

3.6.4. Specificity

The metric of Specificity (SPEC) or True Negative Rate (TNR) relates to the ratio of
accurately identified negative classifications to the total number of negative cases and is
determined by Equation (4).

SPEC =
TN

TN + FP
(4)

In the proposed approach, SPEC is used as a statistical measure to evaluate the capacity
of the ensemble deep learning models to precisely detect the absence of various subtypes
of ICH among factual negative cases.

3.6.5. F1 Score

The F1 score is a statistical measure that calculates the harmonic mean of PREC and
recall (also known as SPEC). It is computed using Equation (5).

F1 − score =
2 · TP

2 · TP + FP + FN
(5)

The proposed methodology employs F1 as a statistical measure to assess the collective
effectiveness of the ensemble deep learning algorithms in accurately classifying diverse
subtypes of ICH, considering both precision and recall.

4. Experimental Results and Discussion

We used the CQ500 dataset and RSNA 2019 dataset to conduct our experiments. In CT
scan images, the gradient-weighted Class Activation Mapping (Grad-CAM) visualization
methodology proved effective in accurately detecting and localizing regions of interest,
facilitating subtype identification. Additionally, the SE-ResNeXT and LSTM models were
found to perform better than pre-trained models.

4.1. Grad-CAM Visualization Results

By using Grad-CAM’s backpropagation visualization method, we can gain insight into
the training model’s classification decisions. Grad-CAM is used to identify specific regions
within the input that influence the model’s decision-making mechanism. Grad-CAM uses
the spatial knowledge acquired by LSTMs and SE-ResNeXTs to identify the distinctive
regions critical to classification.
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The Convolutional Neural Network (CNN) integrates feature extraction and classifica-
tion into a unified system, employing a fully connected neural network in the classification
module. The features that have been derived are converted into probability scores for every
class. The segment with the highest score is then selected as the ultimate estimation or
categorization result. Grad-CAM performs image classification and accurately identifies
relevant regions using the gradients in the attribute map of the final convolutional layer.
Figure 5 shows the visualization results for classifying ICH subtypes, namely Epidural,
Intraparenchymal, Intraventricular, Subarachnoid, and Subdural. The first image focuses
on an epidural hemorrhage in the left parietal lobe. The second image concentrates on
an intraparenchymal hemorrhage in the temporal right lobe. An intraventricular hemor-
rhage located in the posterior median lobe is shown in the third image. A subarachnoid
hemorrhage present in the right parietal lobe is shown in the fourth image. The fifth
image represents a subdural hemorrhage in the left frontal lobe. Greater severity of the
hemorrhage was present in the epidural, subarachnoid, and intraparenchymal regions of
the brain.
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Figure 5. Grad-CAM visualization of subtypes of hemorrhage. The first image focuses on an
epidural hemorrhage in the left parietal lobe. The second image concentrates on an intraparenchymal
hemorrhage in the temporal right lobe. An intraventricular hemorrhage located in the posterior
median lobe is shown in the third image. A subarachnoid hemorrhage present in right parietal lobe is
shown in the fourth image. The fifth image represents a subdural hemorrhage in the left frontal lobe.

The proposed methodology integrates ensemble deep learning models with Grad-
CAM visualization to identify distinct areas of interest in CT scan images associated with
each ICH subtype. The visualization results can facilitate a more precise categorization of
each subtype based on its specific characteristics and locations. As a result, the proposed
methodology enhances understanding and identifies and categorizes diverse forms of ICH
with greater accuracy and effectiveness.

4.2. Binary-Cross-Entropy (BCE) Loss

We selected the Binary-Cross-Entropy (BCE) loss metric for this study. The selection is
appropriate since the issue involves a multi-label classification of cerebral hemorrhages,
where a single image may encompass multiple categories. The output layer implements
sigmoid activation functions coupled with BCE loss in order to address this situation. This
combination facilitates the model’s ability to assign probabilities to the different subtypes
of hemorrhage in an autonomous manner, allowing for precise classification of various
hemorrhage types within a single image. Equation (6) computes BCE loss.
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Hp(q) = − 1
N ∑N

i=1 yi · log(p(yi)) + (1 − yi) · log(1 − p(yi)) (6)

where the input sample is denoted as yi, the probability of the input sample is denoted as
p(yi), and the total number of samples is denoted as N.

Graphs depicting the loss and accuracy of ResNeXT-2D + LSTM at various epochs are
shown in Figure 6, with (a) representing the loss graph and (b) representing the accuracy
graph. As the number of epochs increases, the loss diminishes, whereas the accuracy
increases. A graphical representation incorporates both training and validation results,
demonstrating the model’s potency throughout the process. Training and validation
loss mean values of 0.10 and 0.12 demonstrate the model’s ability to reduce errors. A
training accuracy of 0.961 and a validation accuracy of 0.960 show the model’s efficiency
in classifying the numerous subtypes of ICH accurately. According to the findings, the
proposed concept is successful, as evidenced by the model’s high accuracy and low loss
ratios. Thus, the model is able to diagnose and classify different subtypes of ICH, which
suggests its effectiveness.
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Figure 6. Training and validation (a) loss and (b) accuracy graphs of ResNeXT-2D + LSTM.

A graphical representation of Figure 7a loss and Figure 7b accuracy of (SE) ResNeXT-
2D + LSTM at various epochs is shown in Figure 7. Based on the graphical representations,
there is a negative correlation between the number of epochs and the loss, and a positive
correlation between the number of epochs and the accuracy. A steady decline in loss and
an increase in accuracy is seen as the number of epochs increases from 0 to 9. In the graph,
the training and validation outcomes illustrate the model’s effectiveness. Mean values of
0.01 and 0.03 are obtained for the training and validation losses, respectively. In terms of
accuracy scores, the model categorizes ICH subtypes with exceptional precision, scoring
0.979 for training and 0.980 for validation. In addition to providing further evidence of
the feasibility of the concept, this study also provides evidence of its efficacy. Based on
the SE ResNeXT-2D model, various subtypes of ICH can be identified and classified with
exceptional accuracy and minimal loss.
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4.3. Confusion Matrix Analysis

Figure 8 shows the confusion matrices for the CQ500 (test) dataset using ResNeXT-2D
+ LSTM for each of the five subtypes of hemorrhage. Across both the non-epidural and
epidural subtypes, the model achieved a classification accuracy of 0.98. Regarding the
subarachnoid subtype, the model achieved 0.84 accuracy for non-subarachnoid classifica-
tions and 0.99 accuracy for subarachnoid classifications. In the context of intraventricular
subtypes, the model achieved a classification accuracy of 0.95 for non-intraventricular
subtypes and 0.91 for intraventricular subtypes. Among non-intraparenchymal cases, the
model achieved a classification accuracy of 0.95, while intraparenchymal cases attained a
classification accuracy of 0.96. The model classified subdural cases with a classification
accuracy of 0.94 and non-subdural cases with a classification accuracy of 0.87. Overall, the
model showed excellent capability of categorizing intracranial hemorrhages accurately.
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The confusion matrixes in Figure 9 are displayed for each of the five hemorrhage
subtypes in the CQ500 (test) dataset using (SE) ResNext-2D + LSTM. Based on the model,
the epidural subtype has a classification accuracy of 0.99 for non-epidurals and 0.97 for
epidurals. Under the subarachnoid subtype, the model achieved a classification accuracy of
0.92 for the non-subarachnoid subtype and 0.85 for the subarachnoid subtype. This model
determined a classification accuracy of 0.95 for non-intraventricular subtypes and 0.88 for
intraventricular subtypes for intraventricular classifications. In intraparenchymal cases,
the model achieved a classification accuracy of 0.97, whereas in non-intraparenchymal
cases, the model achieved a classification accuracy of 0.09. In this study, the model was
evaluated for its ability to detect subdural tumors. Non-subdural cases were classified with
a classification accuracy of 0.94, while subdural cases were classified with a classification
accuracy of 0.90. Based on the results, the ResNeXT-2D architecture with SE is capable of
accurately classifying intracranial hemorrhages.
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4.4. AUC-ROC Score

Figure 10 depicts the AUC-ROC score plots for the CQ500 (test) dataset using ResNeXT-
2D + LSTM for each of the five subtypes of hemorrhage. ROC curves were generated for
epidural, intraparenchymal, intraventricular, subarachnoid, and subdural categories. Based
on the receiver operating characteristic (ROC) curve, epidurals have an area under the
curve of 1; intraparenchymal, intraventricular, subarachnoid, and subdural have an area
under the curve of 0.97; and subdurals have an area under the curve of 0.97. This implies
that ResNeXT-2D + LSTM can distinguish with precision between the various subtypes of
intracranial hemorrhage, indicating exceptional efficacy in epidurals.
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Figure 11 shows the AUC-ROC score plot for the CQ500 (test) dataset utilizing
ResNeXT-2D for each of the five subtypes of hemorrhage. A series of ROC curves was
generated for epidural, intraparenchymal, intraventricular, subarachnoid, and subdural
categories. Epidurals had an area under the ROC curve of 1, intraparenchymals had an area
under the ROC curve of 0.97, intraventriculars had an area under the ROC curve of 0.98,
subarachnoids had an area under the ROC curve of 0.96, and subdurals had an area under
the ROC curve of 0.97. These findings highlight the remarkable discriminatory capacity
of the (SE) ResNeXT-2D + LSTM architecture to detect distinct categories of intracranial
bleeding. The model’s high AUC-ROC scores indicate its ability to distinguish between
various classes. A notable achievement is the flawless classification of the epidural subtype.
Based on the results, the proposed approach is capable of accurately categorizing various
forms of hemorrhage.
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It was demonstrated in Table 5 that the SE-ResNeXT + LSTM architecture was able
to achieve excellent results across a number of statistical metrics (performance measures).
The results of this study demonstrated that the epidural subtype had good discriminative
capacity, which was evidenced by a value of 1 for the AUC. There were noteworthy levels
of precision, recall, F1 score, and accuracy in all subtypes tested, proving that the method
has the ability to accurately categorize a wide variety of hemorrhage types. There were
a number of factors that indicate the reliability and resilience of this model, including its
AUC of 0.99, its precision of 0.96, its recall of 0.98, its F1 score of 0.97, and its accuracy of
94%. This study confirms that the proposed approach is effective in accurately identifying
and categorizing intracranial bleeding through the use of SE-ResNeXT + LSTM algorithms
to identify and categorize bleeding.
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Table 5. ResNeXT + LSTM model results for various performance measures.

Subtype Name AUC Precision Recall F1 Score Accuracy

Epidural 0.99 0.72 0.97 0.83 97%
Intraparenchymal 0.99 0.97 0.97 0.97 98%
Intraventricular 0.98 0.92 0.96 0.94 98%
Subarachnoid 0.99 0.95 0.99 0.97 97%

Subdural 0.99 0.99 0.98 0.98 99%
Average 0.99 0.96 0.98 0.97 94%

Various pre-trained models to test for ICH are presented in Figures 12 and 13 along
with their accuracy and loss metrics. Several models are evaluated in the figures under
consideration, including ResNet50 [31], Inceptionv3 [32], VGG19 [33], MobileNetv2 [34],
and DenseNet121. Figure 12 illustrates the superior accuracy value achieved by the pro-
posed ensembled approach in relation to other models used for diagnosing various kinds
of ICHs. It was found that the ResNet50 model has the lowest accuracy score of 80% when
it comes to predicting subarachnoid hemorrhage. According to ResNet50 and Inceptionv3,
both models exhibit a loss score of 0.43 for predicting subarachnoid and subdural ICHs.
The SE-ResNeXT + LSTM model achieved an average accuracy of 99% when it comes to
diagnosing intracranial hemorrhages, regardless of the type of intracranial hemorrhage
that was present. By observing the low loss of epidural ICH with the proposed model
compared to the previous models, the competence of the proposed model is proven.
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A cost-sensitive and query-by-committee active learning approach for intracranial
hemorrhagic screening was proposed in [35]. As compared to previous studies, it was
evaluated on a significantly larger pixel-wise labeled dataset, and its results were used to
develop the model by marking real-world data. This study shows that cost-sensitive active
learning can be used to improve major medical databases. Several quantifiable benchmarks
were used to assess the accuracy of the community model of four patch-based FCNs (Fully
Connected Networks), and the model received an accuracy rating of 90%. Using deep
learning algorithms, nine critical anomalies were independently identified on CT scans of
the head in [36]. Natural language processing (NLP) was used to identify intraparenchymal,
intraventricular, subdural, extradural, subarachnoid, and subarachnoid hemorrhages in
the study participants, as well as calvarial fractures. According to the algorithm, an
image can be assigned a confidence score between 0 and 1, and each confidence score
confirms the presence of each of the nine findings below in descending order of probability.
Patients suffering from symptoms that might indicate a stroke or an increase in intracranial
pressure most often undergo non-contrast CT scans of the head. A deep learning algorithm
may be helpful for detecting abnormalities in head CT images that need prompt medical
attention, according to the study’s findings. In most studies, binary classification and
trinary classification of ICH are used. However, in our proposed study, the ResNeXT
model had good accuracy for subtypes such as epidural (97%), intraventricular (94%),
subarachnoid (85%), and subdural (91%). In epidural, intraparenchymal, intraventricular,
subarachnoid, and subdural cases, SE-ResNeXT displayed better accuracy than ResNeXT,
at 99%, 98%, 98%, 97%, and 99%, respectively. SE-ResNeXT achieved an average accuracy
of 94% compared to ResNeXT (91.8%) and DenseNet 121 (92%).

Data acquired from different geographic regions distinct from the training dataset
were used as external validation to assess the generalizability of the model. The proposed
study utilized RSNA datasets obtained from three geographical locations for training,
namely the UK, Brazil, and Philadelphia, and CQ500 datasets were obtained from Indian
populations for testing. Thus, the proposed ensemble model classified epidural, intraven-
tricular, subarachnoid, intra-parenchymal, and subdural hemorrhages with an accuracy of
99.89%, 99.65%, 98%, 99.75%, and 99.88%, respectively.

Several researchers have applied the SE-ResNeXT and ResNeXT models in various
pathologies, such as ophthalmic diseases and gliomas. Fundus images are used in the
automated diagnosis of multiple ophthalmic diseases based on the SE-ResNeXT model. Ho
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et al. evaluated the model in the Retinal Fundus Multi-Disease Image Dataset (RFMiD)
and achieved an ROC area of 0.9586 [37]. Based on an SE-ResNeXT network, Li et al.
classified 12 different retinal pathologies based on color fundus images and obtained an
AUROC of 0.95 [38]. According to Linqi et al., a framework was developed to classify
gliomas using the SE-ResNeXT network and ResNeXT model. Using the BraTS2017 dataset,
they achieved 97.45 and 91.35% accuracy for SE-ResNeXT and ResNeXT, respectively [39].
Furthermore, SE-ResNeXT and ResNeXT models have been used in automated COVID-19
detection using chest radiographs, obtaining 99.32% accuracy in binary classification using
the SE-ResNeXT model [40].

In this study, there were several limitations: The study encountered difficulties with
managing large amounts of data. Due to the nature of the challenge, our computational
methodology was slow to complete the task. The accuracy and AUC ratings of all models
were below expectations. Therefore, we intended to show the discrepancy in empirical
performance between older and newer networks. Due to the long training period, experi-
menting with other loss functions (such as weighted cross-entropy) as well as up-sampling
and resampling strategies were difficult. Additionally, the models were only run for a
limited number of epochs before achieving satisfactory results. In addition, it was difficult
to conduct any other analyses (due to training time constraints) to ascertain whether certain
sections of the pipeline should be deleted or inserted to better understand how it behaves.
In the RSNA database, CT scans in DICOM format are stored in amounts up to 180 GB.
Simpler models can be utilized for training purposes by using smaller chunks of data.

The computational complexity of the work can be summarized as follows: an SE-Res
NeXt-2D + LSTM model and a ResNeXt-2D + LSTM model were run in Google Colab for
10 and 12 h, respectively. As compared to the ResNeXt-2D + LSTM model, the proposed
SE-ResNeXt-2D + LSTM model takes less computational time and has fewer test losses. In
Colab in a cloud environment, we ran pre-trained models on Intel Core I5 processors with
32 GB RAM. Optimizing the weights, tuning the model, and quantizing the data could
reduce the computational complexity of the network.

It will be necessary in the future to employ a method that can analyze large amounts
of data quickly and efficiently. There is a possibility of developing 3D model architectures
to read 3D DICOM data as quickly as possible. Enhanced classification techniques will
satisfy the needs of bigger clinical trials and implementations. To facilitate easy and fast
medical use, end-to-end deep learning methodologies can be employed. An ensemble
deep learning model and Grad-CAM visualization are combined to pinpoint specific
regions of significance within CT scan images associated with each subtype of Intracerebral
Hemorrhage (ICH). As a result of the visualization, a more accurate classification can be
achieved based on the unique characteristics and positions of each subtype. Thus, the
proposed approach contributes to an enhanced understanding of ICH and improves the
efficiency and precision of identifying and classifying various types of ICH.

5. Conclusions

An ensembled deep learning technique (SE-ResNeXT + LSTM) is proposed for the
detection and evaluation of intracranial hemorrhages. Moreover, this study compares the
performance of CNN networks in two different databases, RSNA and CQ500. A comparison
is made between the performance of these deep learning models and the performance of
pre-trained models, such as ResNet 50, Inception V3, VGG19, Mobile Net V2, and Dense Net
121. According to the simulation results, the suggested approach is capable of categorizing
different types of intracranial bleeding. An ensemble deep learning approach using LSTM
and SE-ResNeXT models achieved significant accuracy and AUC scores, demonstrating
dependable classification. Grad-CAM visualization is effective in identifying areas of
significance in computed tomography scan images, facilitating the recognition of distinct
hemorrhage categories. Additionally, the SE-ResNeXT + LSTM model demonstrated
superior performance in accuracy, loss, and AUC metrics in comparison with various pre-
trained models, confirming its appropriateness. In the future, large amounts of data need
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to be analyzed in a fast and efficient manner. Implementing 3D model architectures enables
the rapid reading of 3D DI-COM data. A new generation of classification techniques will
cater to the needs of more complex clinical trials and implementations. As a result of
the proposed methods, precise and dependable diagnoses can be made, which can aid
physicians and improve patient outcomes. Deep learning–based models have been widely
accepted in the medical community and could be beneficial for decision-making, patient
treatment, and overall health.
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