
Energy Efficient Next-Gen of Virtualization for

Cloud-native Applications in Modern Data Centres

 Mr.BharaniDharan.G1 Dr.Jayalakshmi.S2

1 Research Scholar, Dept. Of Computer Science, VISTAS, 2Professor, Dept. Of Computer Applications, VISTAS,

Pallavaram, Chennai. Pallavaram, Chennai.

 Email: bharanmca@gmail.com Email: jai.scs@velsuniv.ac.in

Abstract—In the new software-driven world this is the need of the

hour to achieve success by accelerating development, delivery of

applications and services rapidly that make customers happy and
business competitive. To achieve faster delivery of resources and

applications to strengthen the business with more

transformations containers have been introduced. At the existing

scenario, the hyper-converged data centre uses the concept of

virtualization which creates software abstraction of the
underlying hardware using Hypervisor software that enables to

execute several Virtual Machines (VMs) with dissimilar

Operating System (OS) flavours. But virtualization is

heavyweight and it may take more time to boot. The proposed

containerization and docker in hybrid cloud composable data
centre is lightweight supports Operating System (OS) level

virtualization that isolates resources, libraries and other binaries

bundled into a single package for agile modern scalable

workloads. This paper focuses on the container-based
virtualization to shape the future cloud-based modern data

centre for supporting the micro-services based applications for

faster deployment to Developer Operations (DevOps) teams in IT

with resiliency, High Availability and better resource

management with energy savings.

Keywords-Hypervisor, Container, Docker, Virtualization, Agile,

High Availability, Hyper-Converged, DevOps, Micro-services.

I. INTRODUCTION

 In the past decade, the computing paradigm has a rapid shift

from on-premise trad itional infrastructure to on-demand

Hybrid cloud Infrastructure. Most of the IT organisations and

enterprises moved to cloud for the development of core

business. Cloud Serv ice Providers (CSP) has been providing

flexib le, scalable and elastic infrastructure of IT in term of

virtualizat ion technology with VMs [1]. The usage of VMs

may incur energy and wasting the computing resources by

running the same operations and content with various guest

operating systems. To avoid this inefficiency and energy

consumption, the container technology has been introduced to

increase resource usage efficiency for business agility and

improvement in deployment by sharing the same infrastructure

with the same operating systems and runtime components.

Containerizat ion is evolving and provisioning major impact in

Modern computing technologies. By means of containers,

developers can encapsulate all components, binaries, libraries

and make it as separate micro-services of an applicat ion with

continuous integration exercise process to make the

application more ag ile with resilient. Applications in the

microservice approach consist of many decoupled services

independent of each other. Each of these services performs a

specific task that is developed and deployed independently [2].

Docker is also playing an emerging role in container-based

cloud autonomic data centre. Scalable container service has

been used by most cloud service providers like IBM, Amazon,

Google, Alibaba. Docker containers can easily be deployed

into the cloud-based environment [3].

The unique approach has been utilized by container-based

virtualizat ion illustrate about the virtualization layer which is

available on the top and the application runs within the OS. It

has to be noted here as default host OS is considered at the

base [4]. In container-based Virtualization, a single OS will

take care of all hardware calls.

In Containers, the layer of virtualizat ion has provided a file

system and similarly, the layer o f kernel service separation has

assisted to isolate resource from all VMs to make containers

look like an individual server [5]. Th is paper is a review of the

technology of docker and analyses its performance by a

systematic literature rev iew. The work is organised as follow.

Next section discusses the literate review of existing VMs and

the Next-Gen v irtualisation is container-based. In Sect ion III,

the benefit of Container-based virtualization whereas Section

deals with the components and significants of the docker

container. In section V, the architecture of docker is illustrated

and similarly in section VI microservice arch itecture and

challenges. In section VII the arrangements of the container by

Kubernetes And Docker Swarm. Section VIII illustrates the

comparison of performance evaluation in proposed

architecture with existing VMs arch itecture. Section IX

concludes that software-defined DC may rely on container and

VM placement mechanisms to support next-generation

applications.

II. LITERATURE REVIEW

In Modern clouds, Virtualization is one of the vibrant concepts

for sharing physical resources among various users [6].

Virtualizat ion based on hypervisor helps the data centre

resources can be utilised efficiently by means of consolidation

to a single system and even assist for fault tolerance and

replication with other geographical areas [7].

Proceedings of the Fourth International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC)
IEEE Xplore Part Number:CFP20OSV-ART; ISBN: 978-1-7281-5464-0

978-1-7281-5464-0/20/$31.00 ©2020 IEEE 203

Authorized licensed use limited to: Carleton University. Downloaded on May 29,2021 at 13:21:41 UTC from IEEE Xplore. Restrictions apply.

Virtualizat ion is widely classified into two categories such as

Full v irtualization and Paravirtualizat ion. In the process of

Full virtualizat ion has created virtual resources such as

storage, processor and network to run various flavours of

guest OS on a single physical machine which are unaware that

they are existing in virtualised location [8]. Most importantly

all operating systems think as it runs on bare-metal. Full

Virtualisation is implemented through VMware. It is

important to note that windows Hyper-V use Microsoft kernel

and ESXi server by Linux Kernel. In Para-Virtualisation to

satisfy the necessary resource requirements, the applicat ions

of guest are accomplished in quarantined fields which have

identified as guests and instruct command straight to the OS of

the host. The Para-Virtualisation can be used with the Zen

family. Virtualization is heavyweight and can cause high

resource overheads.

One of the significant factor done through microservice

virtualizat ion is to develop the cloud application performance

whereas there are several researchers involved in analyzing

various virtualizat ion technique performance [9]. The alternate

emerging technology to virtualization is containerizat ion that

assists in obtaining popularity in VMs because of its high

scalability, high performance and light weighted. The Barik et

al. has made a comparative analysis over the performance of

VMs and container with several simulations [10]. However,

the architecture of container differs from VMs and the main

distinguish is about sharing of host OS can be done by

container but in virtualization it can be done at kernel level.

Therefore, the requirement of container is guest process which

has been compatible with host kernel is shown in figure I.

Thus, container is compared to VMs in which every VM has

its individual guest OS whereas the container reduced its

overhead by introducing dissimilar guest OS to various

container process. This get resulted in requirement of less

memory, reduced infrastructure cost with high performance.

The other Next -Gen v irtualisation is container-based or OS-

level based virtualisation is an alternate to hypervisor-based

virtualisation effectively reduces resource overheads and

improves resource utilisation with faster deployment in

modern data centres for heterogeneous modern workloads is

illustrated in Table I. In containerisation, each separate case is

said to be Container which executes on the top of a shared OS

along with proper and required isolation. In Containerisation

the virtual objects are restricted to global kernel resources

which result in utilizing resources like networking, CPU and

memory for cost-efficient management, scalable and

effectiveness efficient over cloud infrastructure [11].

TABLE. I: Ideal differences between Virtual Machines and

Containers

FIGURE.I: Virtual Machine vs. Container [13]

III.BENEFITS OF OS-LEVEL BASED OR

CONTAINER VIRTUALISATION

Compared to conventional Hypervisor based virtualization,

containerizat ion improves performance, energy and efficiency

because of additional resource required for each OS is

avoided. The Container-based virtualisation fits best when a

single OS is required. Single Kernel is used to execute several

S.No

.

CHARACTE

RISITICS

VMs CONTAINERS

01 Abstraction Hardware-level

abstraction

OS-level

abstraction

02 Number of

kernels

Multiple kernels

for multiple

VM’s on a

physical

machine

Single kernel

for various

containers on a

physical

machine.

03 Booting time Takes a few

minutes

Takes a few

seconds

04 Live Migration

Time

Takes more time

because of

running heavy

applications

Shorter time

because of

migrating

specific OS

components

instead of the

whole OS

05 Predictability

in Live-

Migration

Though post

copy offers

better prediction

but not

satisfactorily

[12]

Predictability

due to smaller

memory

footprint.

Proceedings of the Fourth International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC)
IEEE Xplore Part Number:CFP20OSV-ART; ISBN: 978-1-7281-5464-0

978-1-7281-5464-0/20/$31.00 ©2020 IEEE 204

Authorized licensed use limited to: Carleton University. Downloaded on May 29,2021 at 13:21:41 UTC from IEEE Xplore. Restrictions apply.

cases of an OS. In the OS level, virtualisation doesn’t

duplicate its functionality.

In Container-based virtualisation instances are very smaller

and it is faster and easier for generating or migrating. Cloud

Service Providers (CSP) have involved in containers due to

the same hardware environment in which more instances of a

container can be implemented.

 Challenges faced in the use of containers:

One of the major disadvantages present in container-based

virtualizat ion is security. However, the containers can able to

share the components and kernel o f the host OS. It is to be

noted here that Virtual Machines shares only the hypervisor

make less prone to attack [14].

In containers, the host OS has created a single point situation

on failures of host OS may affect any containers.

IV. DOCKER CONTAINERS

The name of the organizat ion is Docker that creates software

named as Moby which is an open-source project whereas the

Docker gets executed on Windows and Linux. The usage of a

container is quite simple to generate, implement and execute

applications designed with Docker tool. Docker helps the

developers to get a clear view of the stack easily.

A. The different parts in Docker are:

 Docker Engine: It performs as a program which

generates and executes Docker Container from the

Docker image itself.

 Docker images: It is a file system and organised with

several layers and every layer consists of file for that

layer which is immutable. Docker images are used as

a Docker container snapshot.

 Docker Files: It perfo rms as a text document which

consists of guidelines to compose an image that can

be recognised using build engine. Docker file also

defined the scenario within the container. Inside the

container mapping volumes, the files get copied and

access to resources may happen.

B. Significant advantages of Container Dockers

are:

 Fast and lightweight Docker: Containers have

performed as a lightweight and boots fast when

compared to VMs because VM makes use of the

entire OS to start. It is to be noted that each VM runs

full OS instance to consume resources [15][16].

 Utilization of resources: The physical servers can

able to execute more containers than VMs which can

result in high resource utilization. However, the

containers are thin, effective and portable that can

able to execute on the physical host. Containers run

as an isolated process and it contains application code

with dependencies and also shares a kernel with

various containers in the user’s host OS space [17].

 Exact fit for Microservices architecture: Containers

support microservices architecture as every

microservices that can be implemented with no

disturbance with other microservices. Containers are

appropriate to service arrangement by means of

agility, separation and easy deployment with new

versions.

 Portability: Docker can embed any kind of

application needs over a container is portable across

various platforms. The application of distributed can

able to create, implement and execute through

containers. Inside the containers deployment,

orchestration can be done so that application

developers can execute a similar applicat ion on VMs

or in the cloud.

 Minimal resource utilization: Docker can allocate

limited resources to any kind of processes by LINUX

control groups. It confirms that a single process

doesn’t consume more computer resources on

underfed other processes.

V. DOCKER ARCHITECTURE

A. Docker Engine:

 It is performed as an application of client-server and it gets

comprised into three parts namely

 Daemon Process: This is a server process which runs

as a background process that executes continuously

to process any commands by constantly listening to

REST API.
 REST API: REST API can able to access via HTTP

client and to communicate with Docker daemon.

 Client: It is performed as a Command Line Interface

(CLI).

Proceedings of the Fourth International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC)
IEEE Xplore Part Number:CFP20OSV-ART; ISBN: 978-1-7281-5464-0

978-1-7281-5464-0/20/$31.00 ©2020 IEEE 205

Authorized licensed use limited to: Carleton University. Downloaded on May 29,2021 at 13:21:41 UTC from IEEE Xplore. Restrictions apply.

B.Architecture of Docker Client-Server:

The architecture of Docker system is majorly involved with

client, registry and DOCKER-HOST (Daemon).

 Docker Client: Through the Docker client users can

interact with Docker Daemon using the commands in

CLI through Docker API interface. However, the

Docker objects can be created by the command that

gets executed by Docker. Hence, the Multiple Docker

Daemons have been accessed by the Docker client.

 Docker Registries: Docker registry is a place where

the images are created using Docker daemon which

gets shared in a location. Moreover, the available

public reg istries are Docker hubs that can be accessed

from all users. Hence, it is to be noted that the

Docker hub can also be utilized fo r configuring

private registry. Thus, the Docker PULL is utilized to

retrieve an image from the registry which gets

configured and similarly Docker PUSH is used to

store an image in the registry.

 Docker daemon: It performs as a server process

which is determined and runs in the background

looks on to REST API for the incoming request and

to execute commands. API interface can be listened

by daemon using File Descriptor, UNIX,

Transmission Control Protocol (TCP) sockets.

 Docker Objects: The objects represent services,

containers, images and storage.

 Images: To build an image, Docker file is used and

the file system is a read-only that consists of

commands for creating a container to execute an

application. Thus, the Docker images can be utilized

for implementing an applicat ion overproduction or

test environment.

FIGURE.II: Docker Architecture [18]

The Docker client with the build, pull and run has been

communicated to the daemon of docker that perform in

generating better lift in the build ing, distributing and executing

the docker container. However, the execution is done either on

a similar system from docker client and docker daemon or it

can able to connect docker client through remote of docker

daemon. Therefore, the communication of docker client and

daemon has used UNIX network interface by REST and API

is shown in figure II.

VI. EVOLUTION OF MICROSERVICES

In a monolithic applicat ion where the components of the

application, interface, data access code has been strongly

coupled as a single program. Most of the application is still

based on monolithic because it is easy to implement, test and

deploy.

Features of Microservices:
 Agile delivery: Services get decomposed into

logically modular in which the independent

microservices assist in to perform with Agile

delivery, easily fits over DevOps model and faster

time to market.

 High performance and high availability:

Containerized microservices has been leveraged to

high performance and availab ility. The request of

microservices with asynchronous nature assists in

improving the performance.

 Resiliency and fault tolerance: Container eco-system

offers features such as clustering, load balancing,

circuit breaking and others to offer high resiliency

and fault tolerance for the microservices. Thus, the

design is provided for with ag ile functionality

degradation.

Challenges of Monolithic services:
 Difficult to test different modules of an application

independently.

 Change in a piece of code in a particular module,

deployment of the entire service will take a long

time.

 Monolithic services have a single point of failure

because bug present in any modules can down the

complete service.

To avoid all the pitfalls of Monolithic arch itecture,

microservices came to existence.

In the architecture of Microservices has an application which

gets divided into several services which are independent to the

database. It gives developers a lot of sophistication to choose

the individual modules to work. These services are also being

scaled based on their requirement and the services of testing

independent are quite simple that brings modularity is

illustrated in Table II.

Proceedings of the Fourth International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC)
IEEE Xplore Part Number:CFP20OSV-ART; ISBN: 978-1-7281-5464-0

978-1-7281-5464-0/20/$31.00 ©2020 IEEE 206

Authorized licensed use limited to: Carleton University. Downloaded on May 29,2021 at 13:21:41 UTC from IEEE Xplore. Restrictions apply.

TABLE.II: Comparison of Monolithic Architecture and

Microservices

FEATURES MONOLITHIC

ARCHITECTURE

MICROS ERVICES

ARCHITECTURE

Maintenance Maintenance is

complex of

coherency of

modules.

Maintenance is easy

because they are

independent.

 Deployment Containers

deployment is

difficult because of

its expansive nature.

Deploying individual

services is easier.

 Testing Testing the entire

modules that are

coupled is a

cumbersome task.

Individual

components in

Microservices are

easier to test.

Scalability Harder to scale and

no flexibility

It can be scaled on

demand

Start-up time More time to boot Due to the smaller

size of individual

services, start-up time

is less.

Technology A monolithic

application is written

in a single language

with a single

database.

Adopt to any new

technologies because

of each Microservice

use the appropriate

database that fits the

needs

FIGURE. III: Microservices

Each Microservices is for the function of specific business and

it gets suitable in operations of particular business function is

shown in figure III. However, the architecture of

Microservices has provided web based advancement for better

flexib ility and agile to support and manage code base.

Therefore, the Docker is performed as an organizer and eye-

opener to container and microservices oriented application

deployment.

VII. DOCKER CONTAINER ORCHESTRATION USING

KUBERNETES AND DOCKER SWARM

According to the Docker container, both Kubernetes and

Docker swarm is the orchestrating tools. Kubernetes is open-

source software for containers arrangements. In Greek,

Kubernetes is also represented as K8s which illustrate the

meaning as a pilot. However, Kubernetes is the ship captain

with all executing containers present inside [19]. Therefore,

Kubernetes container management has responsibilities in

involving container implementation, load balance and scaling.

Thus, it performs as an open-source platform for managing

containerized applications and to automate deployments [20].

Kubernetes is for organizing and running multiple connected

containers in rack server based Performance-Opt imized

Datacentres (PODS). According to the arrangement, the

container Kubernetes is in the de-facto standard whereas

Kubernetes has supported various modern workloads namely

stately, stateless and processed workloads with boundless

swift [21]. Kubernetes helps us to create ingress routing and to

run and execute stately services. It will also help to maintain

secret and manage passwords. Kubernetes can be useful in

deploying a large cluster, managing a large number of

containers to reliable and quick response time.

A. Kubernetes Features:

 Load balancing with service Discovery: Kubernetes

automatically maintains all networking

communicat ion by assigning IP addresses in all

containers and a DNS name to container set for

maintaining load balance within the clusters is

illustrated in Table 3.

 Auto Bin-Packing: Based on the requirements

Kubernetes automatically schedules and pack the

applications within the containers. It provides best-

effort workloads by ensuring complete utilizat ion of

resources and saves unused resources [22].

 Storage Automation: With the aid of Kubernetes

mounting, the storage system will be done based on

user choice. User can choose for public cloud

provider storage namely AWS or local storage or by

shared network storage such as Network File System

(NFS).

 Automatic Rollbacks: Kubernetes automatically roll

back the changes for the user if something goes

wrong with the configuration or not proper updates

installed to an application.

Proceedings of the Fourth International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC)
IEEE Xplore Part Number:CFP20OSV-ART; ISBN: 978-1-7281-5464-0

978-1-7281-5464-0/20/$31.00 ©2020 IEEE 207

Authorized licensed use limited to: Carleton University. Downloaded on May 29,2021 at 13:21:41 UTC from IEEE Xplore. Restrictions apply.

 Self Healing: During the execution, if the containers

fail, Kubernetes automatically restart the containers

and kill those containers that do not respond to

custom health checks [23].

B. KUBERNETES ARCHITECTURE

Kubernetes architecture mainly comprises of

1.Master Node:

Kubernetes cluster can be managed by the Master Node and it

is the waypoint to the entire admin istrative task. The

controlling point is hosted by the Master Node is available for

the whole environment is shown in figure IV. Some of the

services in Master Node are:

 Control Manager: It manages the process and the

service that executes together on Kubernetes Master.

 API Server: This is to showcase the functionality to

the users. Using kubcctl command the user can

manage Kubernetes and also can talk to the API

server.

 Scheduler: In some environment whether the

Kubernetes pods or implements have been scheduled

properly will be ensured by the scheduler.

 ETCD: It is the back end database with key-value

pair gets stored in the database [23].

FIGURE.IV: Kubernetes Architecture (Master Node)

2. Worker-Slave Nodes:

Apart from the Master Node, there are also slave

nodes [24]. If the architecture is large, more worker

nodes will be there is shown in figure V.

 Kublet: One of the significant parts of the slave node

is Container Engine (CE) and it will be essential and

make it possible for executing containers. Kubernetes

can talk to Kublet for executing container that

executes on worker nodes.

 Pods: Kubernetes can take care of any hosts present

in a cluster and can join any hosts available over a

cluster to run container is known as POD. POD is

mainly used for redundancy, scalability [25]. Group

of POD’s that can form an applicat ion and similarly

storage is referenced to the POD which can be inside

or outside the cluster to the POD. Thus, the Kube-

proxy has performed as a network proxy that can

execute on every node over the cluster.

FIGURE.V: Kubernetes Architecture-Slave Node [26]

3. Kubernetes Cluster:

It contains a set of node machines for running

containerized applications. A cluster contains a slave

node and a master node. Running Kubernetes has

shown running a cluster. Deploying programs on to

the cluster intelligently handle the distributed work to

the separate nodes. Kubernetes can able to supports

clusters up to 5000 nodes.

C. DOCKER SWARM

A swarm acts as a machine crew which can be either physical

or VMs that assist in executing the application of Docker and

it gets configured for merging in a cluster is illustrated over

Table 3. The Docker swarm has assisted user for managing

several containers generally which has been implemented over

various host machines. Swarm directors are the root machines

in a swarm that can process the direction or allow d ifferent

machines to join the swarm as workers or labourers. The IT

administrators, developers can be easily managing a cluster of

Docker nodes as a single Virtual machine is shown in figure

VI.

Proceedings of the Fourth International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC)
IEEE Xplore Part Number:CFP20OSV-ART; ISBN: 978-1-7281-5464-0

978-1-7281-5464-0/20/$31.00 ©2020 IEEE 208

Authorized licensed use limited to: Carleton University. Downloaded on May 29,2021 at 13:21:41 UTC from IEEE Xplore. Restrictions apply.

Docker Swarm Features:

 Autoload balancing: There is autoload balancing

present in the environment, and it can able to script

that into how it can be written out and structure the

Swarm environment.

 Decentralized access: Swarm makes it very simple to

the teams for accessing and managing the

environment

 High scalability: Load balancing has converted the

Swarm environment into a highly scalable

infrastructure.

Types of nodes in the swarm cluster:

 Manager Nodes: It will handle the cluster

management tasks such as scheduling services,

maintaining the state of the cluster and serving

swarming mode through HTTP API endpoints.

 Worker nodes: There are instances of Docker engine

particularly to execute containers. I do not involve in

raft distributed state like scheduling decisions. It

should be noted that no worker node without at least

one manager node.

FIGURE. VI: Swarm Cluster [27]

This proposed architecture Orchestration of docker

containerizat ion has implemented with the modern DC to

discover better energy efficiency and high agility due to

automating deployment of Kubernetes and auto load balancing

of docker swarm. The proposed architecture of docker

conterinization is compared with existing VMs.

VIII. RESULT AND DISCUSSION

In this session, the implementation strategy of elastic

resource allocation depends upon the performance measure

whereas the proposed Docker containerization DC has

determined the suitability to meet the requirement in

various workload types using cloudStack4.5. Hence, th is

proposal has considered with standard DC in a combination

of 15/15 as CPU/Memory modules using 3.4 GHz and

capacity as 24 GB capacities correspondingly over

CentOS6.9 for comparison of Docker containerization

architecture of DC among existing VM architectured DC.

Resource Energy consumption

The ratio of total energy consumption and total interval

numbers is said to be average energy consumption is

formulated in equation 1. In addition, energy consumption is

formulated in equation 2.

∑

 (1)

 () (2)

Where,

K = the coefficient of idle power consumption = 0.7

Pmax = Peak power

u = Utilization of CPU

The power consumed from the CPU during workload process

and ideal are evaluated for all type of DC infrastructure

whereas the proposed architecture DC consumed less power

compared than that of VM infrastructure DC shown in figure

VII due to high agility and automatically schedules of the

applications within the containers by Kubernetes.

FIGURE. VII: Comparison of energy consumption

Proceedings of the Fourth International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC)
IEEE Xplore Part Number:CFP20OSV-ART; ISBN: 978-1-7281-5464-0

978-1-7281-5464-0/20/$31.00 ©2020 IEEE 209

Authorized licensed use limited to: Carleton University. Downloaded on May 29,2021 at 13:21:41 UTC from IEEE Xplore. Restrictions apply.

IX. CONCLUSION AND FUTURE WORK

To cope up with executing modern applications, the Software-

Driven data centres are relied on orchestration using

containers, Dockers and Kubernetes to provision the resources

to the cloud-native, modern workloads or the Dev-ops teams

with agility by means of on-demand. This proposed

architecture has evaluated in term of power consumption

which illustrates less energy consumption than VMs

architecture. The Modern infrastructure also provides auto-

scaling with proactive and predict ive modes, load balancing

using server consolidations and VM placement mechanis ms to

support the next-generation applications which will help for

the enterprise business growth and expansion that enhanced to

generate the application deployment still more incred ible,

faster and automated. In future works , the study will be

conducted on Ansible container and playbooks can be used.

REFERENCES

[1] AkkaritSangpetchet. al., “Thoth: Automatic Resource Management with

machine Learning for Container-based cloud platform”, IEEE,
Proceedings of 7

th
 International Conference on Cloud Computing and

Services Science, 2017, ISSN: 978-989-758-243-1.

[2] Z. Xiao, I. Wijegunaratne and X. Qiang, ”Reflections on SOA
andMicroservices,” 2016 4th International Conference on
EnterpriseSystems (ES), Melbourne, Australia, 2016, pp. 60-67.

[3] Bui, T . (2015). Analysis of docker security.arXiv preprint
arXiv:1501.02967.

[4] Sachchidanand Singh et. al., “Conatainers and Docker: Emerging Roles
and Future of Cloud Technology, IEEE, 2016, ISSN: 978-1-5090-2399-
8/16.

[5] Virtualization performance and Container-based Virtualization,
http://searchservervirtualization.techtarget.com/tip/virtualization-
performance-and-container-based-virtualization.

[6] David Bernstein, Containers and Cloud: From LXC to docker to
Kubernetes, IEEE Cloud Computing, 1(3): 81-84, 2014.

[7] Minxian Xu et. al., “A survey on load balancing algorithms for VM
Placement in cloud computing, Concurrency and computation: Practice
and Experience. 29(12): e4123, 2017.

[8] Rich Uhlig et al., Intel Virtualization Technology Computer, 38(5):48-
56, 2015.

[9] H. Khazaei, C. Barna, N. Beigi-Mohammadi and M. Litoiu,
“EfficiencyAnalysis of Provisioning Microservices,” 2016 IEEE

InternationalConference on Cloud Computing Technology and Science
(CloudCom),Luxembourg City, 2016, pp. 261-268.

[10] R. K. Barik, R. K. Lenka, K. R. Rao and D. Ghose, “Performanceanalysis
of virtual machines and containers in cloud computing,”
2016International Conference on Computing, Communication
andAutomation (ICCCA), Noida, 2016, pp. 1204-1210.

[11] JunzoWatadaet. al., “Emerging Trends, Techniques and open issues of
Containerization, DOI: 10.1109/ACCESS. 2019-2945930, 2019.

[12] PetterSvard et al., “Principles and Performance Characteristics of
Algorithms for LIVE VM Migration. ACM SIGOP S Operating Systems
Review, 49(1): 142-155, 2015.

[13] https://blog.netapp.com/blogs/containers-VS-vms/

[14] KinnaryJangla, Accelerating Development Velocity using Docker:
Docker across Microservices, IEEE, ISSN: 978-1-4842-3936-0, 2018.

[15] Docker leads the container technology charge in cloud-
http://serachcloudcomputing.techtarget.com/feature/Docker-leads-the
container-technology-charge-in-cloud.

[16] containers-Not Virtual Machine-Are the future cloud-
http://www.linuxjournal.com/content/conatainers%E2%80%94 not-
virtual-machines %E2%80%94 are-future-cloud?page=0,1.

[17] Microservices Architecture, Containers and Docker.
http://www.ibm.com/developerworks/community/blogs/lba56fe3-432f-
alab-
58ba3910b073/entry/microservices_architecture_containers_and_docker
?lang=eng.

[18] KinnaryJangla, Accelerating Development Velocity using Docker:
Docker across Microservices, IEEE, ISSN: 978-1-4842-3936-0, 2018.

[19] Documentation of “PaaS and Container Clouds” by John Refrano,
IBM,NY University, 2015.

[20] Publication of “Kuberenetes Fundamentals” by the Linux Foundation
training, 2017.

[21] “Bringing Devops for Network with Ansible” by Redhat Enterprise.

[22] Basit Mustafa, Taow. James Lee, Stefan Thorpe “Kubernetes from the
ground up, deply and scale performance and reliable containerized
applications with Kubernetes” by Level Up Kubernetes Program, 2018.

[23] Article on “What is Docker Container?” by Saurabh Kulshrestha.

[24] Article on “How does Kubernetes Networking work” by Level up
Programming.

[25] Arundel, Khare, Saito, lee and Carol Hsu “Devops: Puppet, Docker and
Kubernetes-learning path” by Thomas Uphill, Packet publications, First
Edition, 2017.

[26] Jay Shah and DushyantDubaria, “Building Modern Clouds: using
Docker, Kubernetes and Google Platform, IEEE, ISSN: 978-1-7281-
0554-3/19, 2019.

[27] Nikhil Marathe, Ankita Gandhi, Jaimeel M Shah, “ Docker swarm and
Kubernetes in cloud computing Environment”, IEEE Xplore, ISSN: 978-
1-5386-9439-8, 2019.

[28] Dmitry Paunin, “The best architecture with Docker and Kubernetes-
myth or reality.

Proceedings of the Fourth International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC)
IEEE Xplore Part Number:CFP20OSV-ART; ISBN: 978-1-7281-5464-0

978-1-7281-5464-0/20/$31.00 ©2020 IEEE 210

Authorized licensed use limited to: Carleton University. Downloaded on May 29,2021 at 13:21:41 UTC from IEEE Xplore. Restrictions apply.

