

www.asianjournalofmycology.org **Article Doi 10.5943/ajom/6/2/9**

Development and Characterization of Expression Vectors for the Riboflavin Overproducing Fungus *Eremothecium ashbyii* using *Ashbya gossypii* Genes

Simadri D^1 , Sampath K^2 , Vinod U^2 , Prasanth K^3 , Rajagopal $K^{1,4}$ and Vijayalakshmi $S^{1,2,3^*}$

Department of Biotechnology, School of Life Sciences, VELS University, Pallavaram, Chennai-600117. Department of Biotechnology, School of BioEngineering, SRM University, Kattankulathur, Chennai-603203 Department of Biotechnology, Hindustan College of Arts and Science, Padur, Kelambakkam, Chennai-603103. Department of Botany, Ramakrishna Mission Vivekananda College, Mylapore, Chennai-600004.

Simadri D, Sampath K, Vinod U, Prasanth K, Rajagopal K, Vijayalakshmi S 2023 – Development and Characterization of Expression Vectors for the Riboflavin Overproducing Fungus *Eremothecium ashbyii* using *Ashbya gossypii* Genes. Asian Journal of Mycology 6(2), 271–289, Doi 10.5943/ajom/6/2/9

Abstract

Eremothecium ashbyii is a filamentous hemi-ascomycete fungus and a natural overproducer of riboflavin. The present study was undertaken to characterize the molecular tools constructed for the genetic manipulation of this organism based on plasmids constructed for the related organisms A. gossypii and S. cerevisiae using two candidate genes. The candidate gene, SPR3 homolog of S. cerevisiae, is known to play a role in cytokinesis in S. cerevisiae. This gene was chosen to aid in future studies on the regulation of septation and its role in the excretion of riboflavin in E. ashbyii, as yeast cytokinesis is analogous to the septation of filamentous fungi. The second candidate gene was the S. cerevisiae RAD14 homolog, which is known to play a key role in the nucleotide excision repair pathway. Reporter plasmids, constructed previously in a preliminary study with the AgSPR3-like gene and the AgRAD14-like gene fused to the LacZ reporter gene, were used in this study. These plasmids were characterized by sequencing followed by homology searches. While the former revealed homology to the S. cerevisiae septin protein family, SPR3 gene, and the Neurospora crassa CDC12 gene involved in cell cycle regulation, the latter showed homology to the S. cerevisiae HOGI gene involved in the osmotic stress response.

Keywords – Cytokinesis – *HOG1* – NER pathway – Septation – *SPR*3

Introduction

Eremothecium ashbyii is a filamentous hemi-ascomycete fungus with a genome similar to the yeast Saccharomyces cerevisiae. It is known for the natural overproduction of riboflavin (Zhang et al. 2021), thus making it industrially important. Riboflavin, also known as vitamin B₂, is important for cells. It forms the main component of flavin adenine dinucleotide (FAD) and flavin mononucleotide (FMN), which function as coenzymes for many oxidoreductases (Zhang et al. 2021). It is an important ingredient in multivitamin formulations and is also used as a food additive and in the formulation of animal feed supplements.

Morphological studies of *E. ashbyii* show the presence of slimy colonies. The mycelium is found to be coenocytic at the earliest stage, which eventually divides into plurinucleate segments of unequal length by forming callose plugs. Swelling of the segments leads to the division of nuclei, causing condensation of the sporoplasm around the nuclei. Ascospores, usually 8–16 per ascus, are hyaline and smooth. Sporulation is correlated with riboflavin production (Pujari & Chandra 2001). Non-sporulating *E. ashbyii* produces less riboflavin (Zhang et al. 2021). It has been shown that *E. ashbyii* accumulates lipids in its mycelia before riboflavin overproduction (Vijayalakshmi et al. 2010). The amount of lipid accumulated in mycelia decreases as riboflavin production increases. Monitoring of the lipid accumulation was done with the fluorescent probe Nile blue (Vijayalakshmi et al. 2003). The lipid accumulation was correlated with extracellular lipase activity and also with the production of riboflavin (Vijayalakshmi et al. 2010). Riboflavin is transported out of the overproducer's cytoplasm rather than being stored in the cell.

In E. ashbyii, one of the mechanisms of countering riboflavin-induced toxicity is through the modulation of membrane fluidity by incorporating a large percentage of unsaturated fatty acids, and notably oleic acids, in the membrane phospholipids (Vijayalakshmi et al. 2010). Preliminary studies have shown that morphological changes are produced as a first line of defense (Sampath & Vijayalakshmi 2018). Another line of adaptation to stress is the change in membrane fluidity as a result of alterations in the composition of the membrane phospholipids (Vijayalakshmi et al. 2010). Regarding riboflavin overproduction by E. ashbyii, a question of relevance to be addressed is whether changes in membrane fluidity alone are enough to allow the riboflavin to be excreted. Cellular processes such as vesicle trafficking, cytoskeletal organization, and regulation are vital to riboflavin production and excretion. Septation is an important process that plays a role in the organism's development. Hence, the proteins involved in septation and cytoskeletal organization are good candidates for researching the role of the cytoskeleton and septation in riboflavin production and excretion in E. ashbyii. The SPR3 gene is known to play a role in cytokinesis in S. cerevisiae (Alexander & Michelle 2019). The cytokinesis process in yeast is analogous to the process of septation in filamentous fungi. Hence, this SPR3 gene homolog was chosen to aid future studies on the regulation of septation and its role in riboflavin excretion in E. ashbyii.

Excess endogenous riboflavin is known to cause photo-induced damage similar to UV damage, causing DNA, RNA, and protein damage, whereas exogenous riboflavin protects the spores (Silva et al. 2019; Sugimoto et al. 2010). Organisms subjected to UV treatment start producing riboflavin at an early stage, accounting for the importance of maintaining their genomic integrity. Though a change in membrane fluidity and composition of membrane phospholipids has been implicated in countering riboflavin toxicity (Vijayalakshmi et al. 2010), the above findings point to the possible existence of another pathway triggered by UV exposure. UV-induced damage is mostly repaired by the RAD proteins of the Nucleotide Excision Repair (NER) mechanism (Perego et al. 2000) and is probably active during the overproduction of riboflavin. The genome of *E. ashbyii* is similar to that of *S. cerevisiae* (Prillinger et al. 1997). The NER pathway has been characterized in detail in *S. cerevisiae*, in which several proteins like *RAD1*, *RAD10*, and *RAD14* have been shown to play a role. The NER may probably be functioning in *E. ashbyii* to combat riboflavin toxicity, thus maintaining the genome stability of the organism. Hence, the *S. cerevisiae RAD* 14 homologue was chosen with a view to aiding future studies on the role of the NER pathway in combating riboflavin-induced stress in *E. ashbyii*.

Molecular studies have been successfully undertaken in *A. gossypii*, and many vectors have been constructed for use in *A. gossypii* (Wright & Philippsen 1991, Steiner et al. 1995, Wendland et al. 2000). Additionally, the genome of *A. gossypii* has been completely sequenced (Dietrich et al. 2004), making genetic studies feasible in this organism. However, no genomic studies have been carried out so far on *E. ashbyii*. In another study, vectors constructed in *A. gossypii* were used to successfully transform *E. ashbyii* (Manoj & Vijayalakshmi, unpublished results). Hence, in this study, the vectors were constructed using *A. gossypii* genes to aid in future studies on *E. ashbyii*.

Materials and Methods:

Organism and culture conditions

Eremothecium ashbyii MTCC 366 (also known as NRRL 1363) was cultured on Potato Dextrose Agar slants and plates (PDA g/l, Potato infusion-200, Dextrose-20, Agar-20 pH 5.6 ± 0.2) and cultures were maintained at 25 °C. Subculturing was done at 15-day intervals on PDA slants to maintain the culture.

Chemicals

All chemicals used were of analytical grade from local sources.

DNA manipulations

All DNA manipulations were carried out according to Sambrook & Russell (2001) using the *Escherichia coli* DH5-α strain as the host (Hanahan 1983). Before cloning, the sequences of the PCR-amplified fragments were verified by sequencing. Sequencing was done by Eurofins (Bangalore, India). The proper orientation of insertion was verified by restriction analysis. Competent cells were prepared, and the ligated DNA mixture was mixed with competent cells and transformed by the heat shock method. Transformed colonies were selected by the blue/white screening method (Green & Sambrook 2012).

Plasmids and constructs

Plasmids used in the present study are listed in Table 1. PCR primers used are listed in Table 2.

Plasmid isolation

Plasmid isolation was carried out using the alkaline lysis method. Single transformed colonies were grown overnight in 10 ml of LB broth containing ampicillin (50 μ g/ml). A 1.5 ml of LB broth was centrifuged at 10,000 rpm for 2 min at 4 °C. A 100 μ l of the re-suspension buffer (50 mM glucose, 10 mM EDTA, 25 mM TrisHCl, pH 8.0) was added to the pellet and mixed properly.

A white precipitate was formed, indicating the presence of chromosomal DNA when 200 μ l of lysis solution (0.2N NaOH, 1% SDS) was added to the above mixture. Finally, 150 μ l of neutralizing solution (of composition per 100 ml: 60 ml of 5M potassium acetate, 11.5 ml of glacial acetic acid and 28.5 ml of deionized water) was added to the solution. After the addition, centrifugation was done at 10,000 rpm for 10 minutes at 4 °C. To the supernatant, an equal amount of phenol: chloroform: isoamyl alcohol (25:24:1) was added. The top aqueous layer was collected after centrifuging at 10,000 rpm for 2 minutes. Then, 1 ml of 100% ethanol was added to the top aqueous layer and collected. Centrifugation was done at 10,000 rpm for 5 minutes at -4 °C, and the pellet was collected. To the pellet, 1 ml of ice-cold 70% ethanol was added and centrifuged at 10,000 rpm for 2 minutes. The collected pellet was air-dried and re-suspended with 100 μ l TE buffer (Sambrook & Russell 2001).

Table 1. List of Plasmids used in the present study and their properties

Plasmids	Properties	Source
Plasmid	Amp ^r , Gen ^r A derivative of pSV 2 in which the RIB 3 gene is	Sampath &
BB	excluded and restriction sites for integration of RAD 14 are	Vijayalakshmi
	included.	(2009), unpublished
		thesis work.
Plasmid D	Amp ^r , Gen ^r A derivative of pSV 2 and contains the lacZ	Vinod &
	reporter gene from pTS 24 (Schlösser, 2007), under the	Vijayalakshmi
	control of the SPR 3 promoter	(2009), unpublished
		thesis work.

Restriction digestion

Isolated plasmid DNA was subjected to restriction digestion as follows: $2 \mu l$ of each plasmid DNA was taken separately, and $1 \mu l$ of the 10X tango buffer (ThermoFisher) was added to each sample. To this mixture, $2 \mu l$ of restriction enzyme BamH1 (ThermoFisher) was added, and the samples were incubated in the water bath at $37 \, ^{\circ}C$ overnight. Later, the reaction mix was electrophoresed on a $1 \, \%$ agarose gel.

Table 2. List of primers used in PCR

Primer Sequence (5'-3')		Template		
Sam1 RAD 14 (Promoter + ORF)	Α.	gossypii genomic DNA		
Forward: ATG CTG GGG CCC ATG GCG CTG ACC				
GCA GAG				
Reverse: ATG CTG GCT AGC CTA CAA CAT TAT				
TTC TTC TAT CTC TAT C				
Sam2 RAD 14 (Promoter)	A.	gossypii genomic DNA		
Forward: CAT GGG CCC TTA CTA GCG TGA CCC				
CCG GG				
Reverse: ATC GCT AGC GAA CAG ACA GGA GCC				
TAT GTA G				
Vin1 - SPR3 (Promoter + ORF)	A.	gossypii genomic DNA		
Forward: ATT CGG GCC CCG TCA GAG TGC ACA				
AGC TCG				
Reverse: ATT CGC TAG CCT TGC TGC TCA TGC				
TGC CC				
Vin2 – SPR3 (Promoter)	A.	gossypii genomic DNA		
Forward: ACT TGG GCC CCG TCA GAG TGC ACA				
AGC TCG				
Reverse: ACT TGC TAG CCT CCG TCC TTC TTA				
TTC TGT TTG				
Sequence for <i>Apa</i> I - GGG CCC				

Sequence for *Apa* I - GGG CCC Sequence for *Nhe* I - GCT AGC

Result

The plasmids were constructed using *A. gossypii* genes. Homologous recombination has been reported as the main mechanism for DNA integration in *A. gossypii* (Steiner et al. 1995). Since *A. gossypii* vectors bearing *A. gossypii* genes have been experimentally proven to successfully transform *E. ashbyii* (Fig. 1) (Manoj & Vijayalakshmi, unpublished results), it is quite possible that homologous recombination may prove to be the main mechanism for transformation in *E. ashbyii* as well. Therefore, we used *A. gossypii* genes to construct vectors for *E. ashbyii*.

The plasmid D is a derivative of the original integrative plasmid pSV 2 (Vijayalakshmi et al. 2003), which contains the *GFP* gene under the control of the *RIB* 3 promoter and also specific loci for the targeted integration of the plasmid into the *A. gossypii* genome. In this plasmid, the *RIB* 3 promoter was replaced by the *A. gossypii SPR* 3 gene/promoter homolog, the Lac Z gene replaced the GFP gene, and the whole fragment was cloned into the *Bgl* II restriction site of plasmid pSV 2. The cloning was verified by linearizing the plasmids using *BamH1* digestion.

Plate showing E.ashbyii transformed with RIB3p GFP bearing Plasmid (pSV-2)

RIB3p GFP Expressing cells in Transformant (right panel) Control: wild type

E. ashbyii (left panel)

Fig. 1 – Preliminary studies on *E. ashbyii* transformation using the pSV-2 vector constructed using *A. gossypii* genes. The image on the top is the plate on which *E. ashbyii* is transformed with a pSV-2 vector constructed using *A. gossypii* genes, showing the successful transformation. The image below is the fluorescent microphotograph of the *E. ashbyii* filaments expressing *A. gossypii* RIB3p GFP (pSV-2) (Bar, 100 μm) (right panel), thus showing that *A. gossypii* vectors are functional in *E. ashbyii*. The left panel is wild type of *E. ashbyii* with no GFP expression, indicated by the dark background.

Characterisation of Plasmid D

The plasmid D sequencing data was subjected to bioinformatics searches using the KEGG database, Unit Prot and SGD for homology. The nucleotide sequence of both the transcribed and the flanking regions of *SPR3* revealed a 640-bp open reading frame (Fig. 2) capable of encoding a 210-aa polypeptide chain (Fig. 3). The data showed a significant sequence homology with genes belonging to the septin family.

The gene sequence of Plasmid D harbouring homologue to SPR3 gene

GCCTCTTAAGATTGAGATAATATGCTTCTGGGAGGGTTCGGTAGGTGATCTTGCTGGAATCCCCAGTATGGCACGAGAATTGGGT

AGGATGTGGACTCGAGGCTACCCAATCATCGGGATGAGTTAATGGCCGACTGATTTGATCAGAGATGATTTATCAACCAATTAAC

 $AAACTGATTGTTGGGAAGAGGGGGGTAGGGAGTAAAGGGCGCTCTTAGGAGCGAAGGAATTGCTAT\\TTAATTCCATGGGGA$

 ${\tt TGCAAGGGCTATTTCTGTGGTGGGCGGAGCATAAAATAAGATCCAAGTGTGGGTTTGCGGCGCAGTGCCAGTTGCGCTTGGGT}$

GTTGGGAAGGGCAGCAGTCCGATATCCGCTGTGAGGAGTGGGCGGGGAGGAGGTAGATGCCAGAATAGCGCTGTTGGAGAAG GGAAATAAGGACTTAGAGAAGCGGAGAGCCCGTGGAGACAAATCT

Amino acid sequence analyses in the ProSite database showed the presence of the highly conserved P-loop region (Fig. 2). The presence of the P-loop (ATP/GTP binding site motif) is a characteristic feature of many septin family proteins. The analysis also revealed the presence of two leucine zipper domains in the *Ag SPR3*p (Fig. 3). The leucine zipper pattern is present in many gene regulatory proteins such as C/EBP, CREB, C-myc, etc. As *Ag SPR3*p belongs to the septin family, which has protein regulatory functions, it is important to probe if *Ag SPR3*p is a nuclear DNA-binding protein. If it turns out to be a DNA-binding protein, *Ag SPR3*p's regulatory role may not be limited to the protein level alone.

Fig. 2 – KEGG Database: http://www.genome.jp/tmp/blast/150311182730YL62W/result_blast.html

Comparison of the predicted amino acid sequence using the UniProtKB

The database revealed a significant sequence homology with genes belonging to the septin family (Fig. 4). The *AgSPR3*-like protein has a maximum percentage of sequence identity (100% similarity with 1st score bit and 49% with 2nd score bit) with the *Kluyveromyces lactis* protein KLLA0B08129g, which belongs to the septin family of proteins (Figs. 5 & 6), a high degree (almost 98%) of homology to *A. gossypii* (strain ATCC 10895) as shown in Fig. 4. In contrast to our point of interest, 78% homology has been seen with septin-type G protein of *Eremeothecium cymbalariae* (Fig. 7) and 51% homology with sporulation-regulated protein 3 of *S. ludwigii* (Fig. 8) and least with *S. cerevisiae SPR3p of 47*%, (Fig. 9). The highest match of 73% with *Kluyveromyces marxianus* (strain DMKU3-1042/BCC 29191/NBRC 104275) protein has been found which is known as cell division protein 3 (Fig. 10) and the least match of 38% with *CDC*12p of *Neurospora crassa*, a zinc finger protein, which is involved in cell division (Fig. 11). This indicates that the *Ag SPR3* gene could have a potential role in the process of septation and can be probed further for such a role as well as a regulatory role on account of its homology to zinc finger proteins.

 $MSENQGTTSGGLHEDDSQNYTNSETISMSADQRAVSQAQTLGSQSETAASHSGQQATLDPEEHHTSLGYY\\ EVERKADDGEQDASSNNNMDQLLEGVYFQHDDTETNNAHDKTRKLVEKKPISDRYRVGIECLPLQREFVT\\ AKKGGHFTVMVVGQTGLGKTTFVNTLFRTSLLPSVWDTLEGNKPNVQFKKTTRIIRHQALIEEKNIKLKLT\\ VIDTPGFGDNANNSFAWSPIISYIDEQFRSYIFQEEQPDRRRLSDNRIHCCLYFLNPSNKGISPLDIEAMQEISK\\ RVNLIPVIAKADSLGTQSIAAFKEDVRRIINAQGIRICAFLDESDSECQSVIRDSPYALVCCDSYVQKPNGEK\\ VRGRKYKWGIAEVENPKHSDFCQLRDILMSKNMVDLVVSSEKYYETCRSHMLMTRINQAKDGLAAETSE\\ DNLILKNMNYEDPDANGMLNYKCYQIYNKQYMHELIIEWSPEFIHKQWEAKKRLNEIAHSEETKFTWKRA\\ LMFKHTN(LDSEIED(LHNRVKNL)_1QIDCEEL)_2ESILLQTGGLGSMSSKRMSKHDLLQ$

<u>ATP/GTP-binding site motif A (P-loop)</u> 153 – 160: GqtglGKT

<u>LEUCINE ZIPPER Pattern</u> 500 - 521: LmfkhtnLdseiedLhnrvknL

Fig. 3 – Predicted polypeptide sequence of Ag~SPR3p. The P-loop region is highlighted in blue, and the two leucine zipper patterns are highlighted in red.

Fig. 4 – Comparison of predicted amino acid sequences for homology studies with the septin family.

					0/			
P41901	ā	SPR3_YEAST	Sporulation-regulated protein 3	SPR3, YGR059W	Saccharomyces cerevisiae (strain ATCC 204508 / S288c) (Baker's yeast)	512 AA	 47.2% 1003 4.5e-121	+1 more
□ J4U1R8	lì.	J4U1R8_SACK1	SPR3-like protein	YGR059W, SKUD_203102	Saccharomyces kudriavzevii (strain ATCC MYA-4449 / A S 2.2408 / CBS 8840 / NBRC 1802 / NCYC 2889) (Yeast)	507 AA	41.5% 997 3e-120	+1 more
☐ J8LNH9	h	J8LNH9_SACAR	Spr3p	\$U7_1227	Saccharomyces arboricola (strain H-6 / AS 2.3317 / CBS 10644) (Yeast)	512 AA		+1 more
□ A0A061B4E7	h	A0A061B4E7_CYBFA	CYFA0S14e02322g1_1[]	BON22_3926, CYFA0S_14e02322g	Cyberlindnera fabianii (Yeast) (Hansenula fabianii)	495 AA	46.7% 977 1.7e-117	+1 more
□ A0A4C2E1T6	h	A0A4C2E1T6_9SACH	Septin-type G domain-containing protein	ZYGM_004869	Zygosaccharomyces mellis	586 AA	 47.7% 972 1.4e-115	+1 more
□ I2GWW4	h	I2GWW4_TETBL	Septin-type G domain-containing protein	TBLA0A08270, TBLA_0A08270	Tetrapisispora blattae (strain ATCC 34711 / CBS 6284 / DSM 70876 / NBRC 10599 / NRRL Y-10934 / UCD 77-7) (Yeast) (Kluyveromyces blattae)	520 AA	38.3% (930) (2.4e-110)	+1 more
□ G0WAB9	h	G0WAB9_NAUDC	Septin-type G domain-containing protein	NDAI0D04160, NDAI_0D04160	Naumovozyma dairenensis (strain ATCC 10597 / BCRC 20456 / CBS 421 / NBRC 0211 / NRRL Y-12639) (Saccharomyces dairenensis)	512 AA	 39.8% 8e-108	+1 more
□ A0A7H9B7F5	h	A0A7H9B7F5_ZYGMR	Septin-type G domain-containing protein	HG535_0F01730	Zygotorulaspora mrakii (Zygosaccharomyces mrakii)	493 AA		+1 more
□ A0A1B7THP7	n	A0A1B7THP7_9ASCO	Septin	HANVADRAFT_16057	Hanseniaspora valbyensis NRRL Y- 1626	367 AA		+1 more
☐ G8YQZ9	lì	G8YQZ9_PICSO	Piso0_001121 protein	Piso0_001121, GNLVRS01_PISO0C11354g, GNLVRS01_PISO0D11421g	Pichia sorbitophila (strain ATCC MYA-4447 / BCRC 22081 / CBS 7064 / NBRC 10061 / NRRL Y- 12695) (Hybrid yeast)	503 AA	43.8% 846 1.8e-98	+1 more
□ H2AX97	h	H2AX97_KAZAF	Septin-type G domain-containing protein	KAFR0F04020, KAFR_0F04020	Kazachstania africana (strain ATCC 22294 / BCRC 22015 / CBS 2517 / CECT 1963 / NBRC 1671 / NRRL Y- 8276) (Yeast) (Kluyveromyces africanus)	475 AA	40.2% 8.1e-98	+1 more

Fig. 4 – Continued.

```
>TR:Q6CVZ7 Q6CVZ7_KLULA KLLA0B08129p OS=Kluyveromyces lactis (strain ATCC
8585 / CBS 2359 / DSM 70799 / NBRC 1267 / NRRL Y-1140 / WM37)
OX=284590 GN=KLLA0_B08129g PE=3 SV=1
Length=548
Score = 1113 bits (2880), Expect = 0.0
Identities = 548/548 (100%), Positives = 548/548 (100%), Gaps = 0/548 (0%)
            {\tt MNSTKNGWGSSMDHYIEATGVEYDSISYGPAKYGSNADNLEVINEQPEEECTEVKPQSQE}
Query 1
            MNSTKNGWGSSMDHYIEATGVEYDSISYGPAKYGSNADNLEVINEQPEEECTEVKPQSQE
Sbjct 1
            {\tt MNSTKNGWGSSMDHYIEATGVEYDSISYGPAKYGSNADNLEVINEQPEEECTEVKPQSQE}
                                                                          60
            {\tt KKEVLDSVRRLFEADSTESNSALKSLDVDINVQGDFYTLNSVMNSSTANTTQENCSKFIT}
Query
            KKEVLDSVRRLFEADSTESNSALKSLDVDINVQGDFYTLNSVMNSSTANTTQENCSKFIT
            KKEVLDSVRRLFEADSTESNSALKSLDVDINVQGDFYTLNSVMNSSTANTTQENCSKFIT
Sbjct 61
                                                                           120
Query 121
           PSVIDEHYHIGIDSIPLQKETFIEKNGVQFTMMVVGQSGLGKTTFINTLFGTSLLPTVWE
            PSVIDEHYHIGIDSIPLQKETFIEKNGVQFTMMVVGQSGLGKTTFINTLFGTSLLPTVWE
           PSVIDEHYHIGIDSIPLQKETFIEKNGVQFTMMVVGQSGLGKTTFINTLFGTSLLPTVWE
                                                                          180
Sbjct
     121
      181 SDMTERGVTKTTKIVRHESELVENGFTLRYTVIDTPGFGDLANNNFSWSPIVNYIDEQYR
                                                                           240
Query
            SDMTERGVTKTTKIVRHESELVENGFTLRYTVIDTPGFGDLANNNFSWSPIVNYIDEQYR
Sbjct 181
           SDMTERGVTKTTKIVRHESELVENGFTLRYTVIDTPGFGDLANNNFSWSPIVNYIDEQYR
                                                                          240
      241 SYIFQEEQPLRASLKDNRIHCCLYFINLTRNGLSALDIAAMEEISKRVNLIPVIAKIDGL
Ouerv
            SYIFQEEQPLRASLKDNRIHCCLYFINLTRNGLSALDIAAMEEISKRVNLIPVIAKIDGL
           SYIFQEEQPLRASLKDNRIHCCLYFINLTRNGLSALDIAAMEEISKRVNLIPVIAKIDGL
                                                                          300
Sbjct
      241
           TSADLEMYKRKIRETLQKQEIKVCSFLDQNHPNCQTIFDTYPFGIVCSDEMVTNNEGKLV
Ouerv
            TSADLEMYKRKIRETLQKQEIKVCSFLDQNHPNCQTIFDTYPFGIVCSDEMVTNNEGKLV
           TSADLEMYKRKIRETLQKQEIKVCSFLDQNHPNCQTIFDTYPFGIVCSDEMVTNNEGKLV
                                                                           360
           RGRKYKWGNVEVENPLHSEFTALRTVLMSKNLVDFAVGCENYYEKCRSHILLSRIQQAKT
                                                                          420
Ouerv
            RGRKYKWGNVEVENPLHSEFTALRTVLMSKNLVDFAVGCENYYEKCRSHILLSRIQQAKT
Sbjct 361 RGRKYKWGNVEVENPLHSEFTALRTVLMSKNLVDFAVGCENYYEKCRSHILLSRIQQAKT
                                                                          420
```

Fig. 5 – Sequence identity of *Ag SPR*3p with *K. lactis* KLLA0B08129g using UniProtKB: Identical matches are shown in the figure.

```
421
           NCPDHLDLTNLDLDNPDQNGLENYKFYEAFNKKFMDDLIIEWSPEFIHKQWEAKKRLSEI
Ouerv
            NCPDHLDLTNLDLDNPDQNGLENYKFYEAFNKKFMDDLIIEWSPEFIHKQWEAKKRLSEI
Sbjct
      421
           NCPDHLDLTNLDLDNPDQNGLENYKFYEAFNKKFMDDLIIEWSPEFIHKQWEAKKRLSEI
                                                                         480
           VSMEEKRFKDWKQDLLNKQNLFNHEIEDLHTIVQQIRSECNELETRVNKQRPRRFSKLGL
Query
            VSMEEKRFKDWKQDLLNKQNLFNHEIEDLHTIVQQIRSECNELETRVNKQRPRRFSKLGL
           VSMEEKRFKDWKQDLLNKQNLFNHEIEDLHTIVQQIRSECNELETRVNKQRPRRFSKLGL
Sbjct 481
                                                                        540
      541
           SSHSELAR
                     548
Query
            SSHSELAR
           SSHSELAR 548
Sbjct
      541
Score = 468 bits (1205), Expect = 3e-150
 Identities = 238/487 (49%), Positives = 321/487 (66%), Gaps = 25/487 (5%)
Query 608
            PEEHHTSLGYYEVERK------ADDGEQDASSNN-NMDQLLEGVYFQ----HDDT
                                                                          651
                         E+K
                                     AD E +++ + ++D ++G ++
            PEEECTEVKPQSQEKKEVLDSVRRLFEADSTESNSALKSLDVDINVQGDFYTLNSVMNSS
Sbjct 47
                                                                          106
Query 652
            ETNNAHDKTRKLVEKKPISDRYRVGIECLPLQREFVTAKKGGHFTVMVVGQTGLGKTTFV
                      K + I + Y +GI+ +PLQ+E K G FT+MVVGQ+GLGKTTF+
Sbjct 107
            TANTTQENCSKFITPSVIDEHYHIGIDSIPLQKETFIEKNGVQFTMMVVGQSGLGKTTFI
                                                                          166
Query
      712
            {\tt NTLFRTSLLPSVWDTLEGNKPNVQFKKTTRIIRHQALIEEKNIKLKLTVIDTPGFGDNAN}
                                                                          771
            NTLF TSLLP+VW E +
                                      KTT+I+RH++ + E
                                                        L+ TVIDTPGFGD AN
            NTLFGTSLLPTVW---ESDMTERGVTKTTKIVRHESELVENGFTLRYTVIDTPGFGDLAN
Sbjct 167
                                                                          223
            {\tt NSFAWSPIISYIDEQFRSYIFQEEQPDRRRLSDNRIHCCLYFLNPSNKGISPLDIEAMQE}
Query 772
                                                                          831
            N+F+WSPI++YIDEQ+RSYIFQEEQP R L DNRIHCCLYF+N + G+S LDI AM+E NNFSWSPIVNYIDEQYRSYIFQEEQPLRASLKDNRIHCCLYFINLTRNGLSALDIAAMEE
Sbjct 224
                                                                          283
      832
            ISKRVNLIPVIAKADSLGTQSIAAFKEDVRRIINAQGIRICAFLDESDSECQSVIRDSPY
                                                                          891
Query
            Sbjct 284
                                                                          343
             ALVCCDSYVQKPNGEKVRGRKYKWGIAEVENPKHSDFCQLRDILMSKNMVDLVVSSEKYY
Query 892
                                                                           951
             +VC D V
                         G+ VRGRKYKWG EVENP HS+F LR +LMSKN+VD V E YY
Sbjct
             GIVCSDEMVTNNEGKLVRGRKYKWGNVEVENPLHSEFTALRTVLMSKNLVDFAVGCENYY
                                                                           403
      344
             {\tt ETCRSHMLMTRINQAKDGLAAETSEDNLILKNMNYEDPDANGMLNYKCYQIYNKQYMHEL}
Query
      952
             E CRSH+L++RI QAK
                                     D+L L N++ ++PD NG+ NYK Y+ +NK++M +L
Sbjct 404
             EKCRSHILLSRIQQAK----TNCPDHLDLTNLDLDNPDQNGLENYKFYEAFNKKFMDDL
            IIEWSPEFIHKQWEAKKRLNEIAHSEETKF-TWKRALMFKHTNLDSEIEDLHNRVKNLQI
Query 1012
                                                                          1070
             IIEWSPEFIHKQWEAKKRL+EI EE +F WK+ L+ K
                                                        + EIEDLH V+ +-
             IIEWSPEFIHKQWEAKKRLSEIVSMEEKRFKDWKQDLLNKQNLFNHEIEDLHTIVQQIRS
Sbjct
      459
                                                                           518
            DCEELES 1077
             +C ELE+
             ECNELET
Sbjct
      519
                     525
```

Fig. 5 – Continued.

Gene: SPR3 [Kluyveromyces lactis NRRL Y-1140] Locus Transcript CDS Ortholog Gene ID KLLA0B08129a Alias Original symbol Assigned symbol SPR3 Curated symbol hypothetical protein Original Description some similarities with splP41901 Saccharomycescerevisiae YGR059w SPR3 sporulation-specific septin, hypothetical start Assigned Description Septin family protein (P-loop GTPase) Curated Description Length 1647 bp GC% Organism Kluyveromyces lactis NRRL Y-1140 Genome Chromosome NC_006038.1, 718086-719732 bp (-) **Contig Location** Links NCBI GeneID:2897475 Comment

Fig. 6 – CAoGD database showing KLLA0B08129g having similarities with *S. cerevisiae* SPR3 and belongs to septin family protein with P-loop GTPase.

```
>TR:G8JVG9 G8JVG9_ERECY Septin-type G domain-containing protein OS=Eremothecium
 cymbalariae (strain CBS 270.75 / DBVPG 7215 / KCTC 17166 / NRRL Y-17582) OX=931890 GN=Ecym_6267 PE=3 SV=1
 Length=562
  Score = 879 bits (2270), Expect = 0.0
  Identities = 436/562 (78%), Positives = 482/562 (86%), Gaps = 10/562 (2%)
              {\tt MSENQGTTSGGLHEDDSQNYTNSETISMSADQRAVSQAQ------TLGSQSETAASHSG}
                                                                              601
 Query 549
              MSEN G T+G EDD+ NYT S+ S + DQ+ SQ Q T+ SQ+ S S MSENYGPTNGESSEDDTPNYTASDANSSAIDQQLNSQNQPVLLQPSTVPSQAIGNTSQST
 Sbjct 1
                                                                              60
              QQATLDPEEHHTSLGYYEVERKADDGEQDASSNNNMDQLLEGVYFQHDDTE-TNNAHDKT
 Query 602
                                                                              660
                 +LDP+E+HTSLGY+EV K + + ++ MD
                                                      EGV+FQHDD + +N +K
              VPLSLDPDENHTSLGYFEVNDKKSEIVEQEATEPQMDPFFEGVFFQHDDAQPASNTQNKA
 Sbjct
       61
                                                                              120
 Query 661
              RKLVEKKPISDRYRVGIECLPLQREFVTAKKGGHFTVMVVGQTGLGKTTFVNTLFRTSLL
                                                                              720
                L+EK+PI+++Y VGI CLPLQREFVTAKKGGHFT+MVVGQTGLGKTTFVNTLFRTSLL
 Sbjct
      121
              NTLIEKRPINEKYTVGIGCLPLQREFVTAKKGGHFTIMVVGQTGLGKTTFVNTLFRTSLL
              PSVWDTLEGNKPNVQFKKTTRIIRHQALIEEKNIKLKLTVIDTPGFGDNANNSFAWSPII
 Query 721
              PSVWDTLE KPNV FKKTTRIIRHOA+IEE NIKLKLTVIDTPGFGDN NNSFAWSPII
              PSVWDTLESVKPNVFFKKTTRIIRHQAMIEENNIKLKLTVIDTPGFGDNTNNSFAWSPII
 Sbjct 181
                                                                              240
              SYIDEQFRSYIFQEEQPDRRRLSDNRIHCCLYFLNPSNKGISPLDIEAMQEISKRVNLIP
 Query
       781
                                                                              840
              SYIDEQFRSYIFQEEQPDR+RLSDNRIHCCLYFLNPSNKGISPLDIEAMQEISKRVNLIP
 Sbjct 241
              SYIDEQFRSYIFQEEQPDRKRLSDNRIHCCLYFLNPSNKGISPLDIEAMQEISKRVNLIP
                                                                              300
              VIAKADSLGTQSIAAFKEDVRRIINAQGIRICAFLDESDSECQSVIRDSPYALVCCDSYV
 Query
       841
                                                                              900
              VIAKADSLG +I FK+DV++IINAQGI++CAFLDE D +CQ+V RDSPY LVCCDSYV
 Sbjct 301
              {\tt VIAKADSLGVHNIITFKDDVKKIINAQGIKVCAFLDEGDPDCQAVCRDSPYTLVCCDSYV}
                                                                              360
              QKPNGEKVRGRKYKWGIAEVENPKHSDFCQLRDILMSKNMVDLVVSSEKYYETCRSHMLM
 Query
       901
                                                                              960
              QKPNGE+VRGRKYKWG+AEVENPKHSDFC LRDILMS+NMVDLVVSSEKYYETCRSHMLM
 Sbjct 361
              QKPNGERVRGRKYKWGVAEVENPKHSDFCLLRDILMSRNMVDLVVSSEKYYETCRSHMLM
                                                                              420
             TRINQAKDGLAAETSEDNLILKNMNYEDPDANGMLNYKCYQIYNKQYMHELIIEWSPEFI
Query
      961
                                                                             1020
             TRINQAKDGLAAETSEDN+ILKNMNYE+PDANG+ NYKCYQIYNKQYM ELIIEWSPEFI
             TRINQAKDGLAAETSEDNVILKNMNYENPDANGLQNYKCYQIYNKQYMDELIIEWSPEFI
Sbjct
      421
                                                                             480
             Query
      1021
                                                                             1079
             HKQWEAKKRFNEIVHLEEKKFKDWKRALMFKQTNFNSEIEDVHNRVKNLQIDCEELESIL
Sbjct
      481
                                                                             540
      1080
             LQTGGL-GSMSSKRMSKHDLLQ 1100
Query
             LQTGG+ G+M+SKRMSKHDLLQ
Sbjct 541
             LQTGGVGGNMNSKRMSKHDLLQ
 Score = 493 bits (1270), Expect = 1e-159
Identities = 248/471 (53%), Positives = 325/471 (69%), Gaps = 18/471 (4%)
            EVLDSVRRLFEADSTESNSALKSLDVDINVQGDFYTLNSVMNSSTANTTQENCSKFITPS
Query
                                    +D +G F+ + ++ A+ TQ
            EVNDKKSEIVEQEATEPQ-----MDPFFEGVFFQHD---DAQPASNTQNKANTLIEKR
Sbjct
      78
            VIDEHYHIGIDSIPLQKETFIEKNGVQFTMMVVGQSGLGKTTFINTLFGTSLLPTVW---
Query
       123
                                                                            179
             I+E Y +GI +PLQ+E
                                  K G FT+MVVGQ+GLGKTTF+NTLF TSLLP+VW
            PINEKYTVGIGCLPLQREFVTAKKGGHFTIMVVGQTGLGKTTFVNTLFRTSLLPSVWDTL
Sbjct
      128
                                                                            187
       180
            ESDMTERGVTKTTKIVRHESELVENGFTLRYTVIDTPGFGDLANNNFSWSPIVNYIDEQY
                                                                            239
Query
                      KTT+I+RH++ + EN
                                         L+ TVIDTPGFGD NN+F+WSPI++YIDEQ+
            ESVKPNVFFKKTTRIIRHQAMIEENNIKLKLTVIDTPGFGDNTNNSFAWSPIISYIDEQF
Sbjct
      188
            RSYIFQEEQPLRASLKDNRIHCCLYFINLTRNGLSALDIAAMEEISKRVNLIPVIAKIDG
                                                                            299
Query
       240
            RSYIFQEEQP R L DNRIHCCLYF+N + G+S LDI AM+EISKRVNLIPVIAK D
            RSYIFQEEQPDRKRLSDNRIHCCLYFLNPSNKGISPLDIEAMQEISKRVNLIPVIAKADS
Sbjct
      248
                                                                            307
       300
            LTSADLEMYKRKIRETLQKQEIKVCSFLDQNHPNCQTIFDTYPFGIVCSDEMVTNNEGKL
                                                                            359
                               Q IKVC+FLD+ P+CQ +
Sbjct
            LGVHNIITFKDDVKKIINAQGIKVCAFLDEGDPDCQAVCRDSPYTLVCCDSYVQKPNGER
```

Fig. 7 – Sequence identity of *Ag SPR*3p with *Eremeothecium cymbalariae* showing 78% homology with Septin-type G domain-containing protein.

```
VRGRKYKWGNVEVENPLHSEFTALRTVLMSKNLVDFAVGCENYYEKCRSHILLSRIQQAK
                                                                          419
Query
      360
            VRGRKYKWG EVENP HS+F LR +LMS+N+VD V E YYE CRSH+L++RI QAK
Sbjct
      368
           VRGRKYKWGVAEVENPKHSDFCLLRDILMSRNMVDLVVSSEKYYETCRSHMLMTRINQAK
                                                                          427
Query
      420
            ----TNCPDHLDLTNLDLDNPDQNGLENYKFYEAFNKKFMDDLIIEWSPEFIHKQWEAK
                                                                          474
                    D++ L N++ +NPD NGL+NYK Y+ +NK++MD+LIIEWSPEFIHKQWEAK
Sbjct
      428
           DGLAAETSEDNVILKNMNYENPDANGLQNYKCYQIYNKQYMDELIIEWSPEFIHKQWEAK
                                                                          487
Query
      475
           KRLSEIVSMEEKRFKDWKQDLLNKQNLFNHEIEDLHTIVQQIRSECNELET
            KR +EIV +EEK+FKDWK+ L+ KQ FN EIED+H V+ ++ +C ELE+
Sbjct
           KRFNEIVHLEEKKFKDWKRALMFKQTNFNSEIEDVHNRVKNLQIDCEELES
```

Fig. 7 – Continued.

```
TR:A0A376BBJ7 A0A376BBJ7_9ASCO Related to Sporulation-regulated protein 3 OS=Sacchar
ludwigii OX=36035 GN=SCODWIG_03827 PE=3 SV=1
Length=608
 Score = 468 bits (1205), Expect = 2e-149
Identities = 238/470 (51%), Positives = 323/470 (69%), Gaps = 23/470 (5%)
Query 653
               TNNAHDKTRKLVEKK-----PISDRYRVGIECLPLQREFVTAKKGGHFTVMVVGQTGL
                                               VGI LPLQ+ +TA+ G +F +MVVGQ+
                     K + E K P+
               TENSLPKNEDVQESKNVFVVAEPLDSDRLVGIGELPLQKMKLTARNGAYFNLMVVGQSGL
Sbjct 128
                                                                                      187
              GKTTFVNTLFRTSLLPSVWDTLEG--NKPNVQFKKTTRIIRHQALIEEKNIKLKLTVIDT
Query
       706
                                                                                     763
              GKTTF+NTLF TS+LP++W+ +E PNV F KTT I+RH +++EEK+I LK TVIDT GKTTFINTLFGTSILPNIWNQIESLMKTPNVTFNKTTSIVRHTSILEEKDISLKFTVIDT
Sbjct 188
                                                                                      247
Query
       764
              {\tt PGFGDNANNSFAWSPIISYIDEQFRSYIFQEEQPDRRRLSDNRIHCCLYFLNPSNKGISP}
                                                                                      823
              PGFGD +NNSF+W PI +YIDEQFRSY+FQEEQPDR + D R+HCCLYF+ PSNKG+S
Sbjct 248
              PGFGDCSNNSFSWEPITNYIDEQFRSYMFQEEQPDRSPIEDRRVHCCLYFIQPSNKGLST
                                                                                      307
Query
       824
              LDIEAMQEISKRVNLIPVIAKADSLGTQSIAAFKEDVRRIINAQGIRICAFLD-ESDSEC
               LDIE+M+EISKRVNLIP+IAK D L + + FK+ +R I+ AQ I+IC F+ E D C
Sbjct 308
              LDIESMKEISKRVNLIPIIAKGDGLLPKDLQIFKKTIRSILQAQNIKICEFIQKEKDPGC
Query
              QSVIRDSPYALVCCDSYVQKPNGEKVRGRKYKWGIAEVENPKHSDFCQLRDILMSKNMVD
       883
                                                                                      942
                                        + V GRKYKWG++EVEN KH DF +LR++LM +N+VD
              SLIFKDFPYSIIGSESKTLNEEHKLVYGRKYKWGVSEVENEKHCDFVKLRNVLMKENLVD
Sbjct 368
                                                                                      427
Query
       943
              LVVSSEKYYETCRSHMLMTRINOAKDGL----AAETSEDNLI-----LKNMNYEDPD
                                                                                      990
              LV+S+E YYE CR+ +L TRI QAKD L
                                                        ++ +T
              LVLSTEAYYEKCRTKLLETRILQAKDSLINVSGVKKKDEEVINIGITKKGLSELDFDNLN
Sbjct 428
                                                                                      487
              ANGMLNYKCYQIYNKQYMHELIIEWSPEFIHKQWEAKKRLNEIAHSEETKF-TWKRALMF
+N + NYKCY I++K YM EL+IEWSP FIHKQWEAK++ NEI EE KF WK+AL
SNKLDNYKCYYIFDKLYMDELVIEWSPIFIHKQWEAKQKFNEIVLLEEKKFKDWKKALFN
Query
       991
                                                                                      1049
Sbjct
       488
                                                                                      547
               KHTNLDSEIEDLHNRVKNLQIDCEELESILLQTGGLGSMSSKRMSKHDLL
Query
       1050
              + T + EIE+LH +VK LQ +C+ELE + + L + K K+ +L
RQTGFNIEIENLHKKVKLLQKNCQELEKNINMSRELFNHPHKLAMKNPIL
Sbjct 548
```

Fig. 8 – Sequence identity of *Ag SPR3*p with *Saccharomycodes ludwigii* showing 51% homology with its sporulation-regulated protein3 (*SPR3*).

```
Score = 461 bits (1185), Expect = 2e-146
Identities = 235/443 (53%), Positives = 298/443 (67%), Gaps = 23/443 (5%)
           QENCSKFITPSVIDEHYHIGIDSIPLQKETFIEKNGVQFTMMVVGQSGLGKTTFINTLFG
Query 112
                                                                           171
                            +GI +PLOK
                                            +NG F +MVVGQSGLGKTTFINTLFG
                       +D
Sbjct
     139
           QESKNVFVVAEPLDSDRLVGIGELPLQKMKLTARNGAYFNLMVVGQSGLGKTTFINTLFG
                                                                           198
           Query
      172
                                                                           226
            TSILPNIWNOIESLMKTPNVTFNKTTSIVRHTSILEEKDISLKFTVIDTPGFGDCSNNSF
Sbjct 199
                                                                           258
Query
      227
           SWSPIVNYIDEQYRSYIFQEEQPLRASLKDNRIHCCLYFINLTRNGLSALDIAAMEEISK
                                                                           286
            SW PI NYIDEQ+RSY+FQEEQP R+ ++D R+HCCLYFI + GLS LDI +M+EISK
           SWEPITNYIDEQFRSYMFQEEQPDRSPIEDRRVHCCLYFIQPSNKGLSTLDIESMKEISK
Sbjct
     259
                                                                           318
Query
      287
           {\tt RVNLIPVIAKIDGLTSADLEMYKRKIRETLQKQEIKVCSFLD-QNHPNCQTIFDTYPFGI}
                                                                           345
           RVNLIP+IAK DGL DL+++K+ IR LQ Q IK+C F+ + P C IF +P+ I
RVNLIPIIAKGDGLLPKDLQIFKKTIRSILQAQNIKICEFIQKEKDPGCSLIFKDFPYSI
Sbjct
      319
                                                                           378
Query
      346
           {\tt VCSDEMVTNNEGKLVRGRKYKWGNVEVENPLHSEFTALRTVLMSKNLVDFAVGCENYYEK}
                                                                           405
                    N E KLV GRKYKWG EVEN H +F LR VLM +NLVD + E YYEK
           IGSESKTLNEEHKLVYGRKYKWGVSEVENEKHCDFVKLRNVLMKENLVDLVLSTEAYYEK
Sbjct 379
                                                                           438
Query
      406
            CRSHILLSRIQQAKTNCPD------HLDLTNLDLDNPDQNGLENYKFYE
                                                                           448
            CR+ +L +RI QAK + +
                                                    L+ LD DN + N L+NYK Y
Sbjct 439
            CRTKLLETRILQAKDSLINVSGVKKKDEEVINIGITKKGLSELDFDNLNSNKLDNYKCYY
                                                                           498
Query
      449
            AFNKKFMDDLIIEWSPEFIHKQWEAKKRLSEIVSMEEKRFKDWKQDLLNKQNLFNHEIED
                                                                           508
             F+K +MD+L+IEWSP FIHKQWEAK++ +EIV +EEK+FKDWK+ L N+Q FN EIE+
      499
            IFDKLYMDELVIEWSPIFIHKQWEAKQKFNEIVLLEEKKFKDWKKALFNRQTGFNIEIEN
                                                                           558
Sbjct
Query
            LHTIVQQIRSECNELETRVNKQR
                                     531
            LH V+ ++ C ELE +N R
            LHKKVKLLQKNCQELEKNINMSR
Sbjct
      559
                                     581
```

Fig. 8 – Continued.

```
>SP:P41901 SPR3_YEAST Sporulation-regulated protein 3 OS=Saccharomyces cerevisiae
(strain ATCC 204508 / S288c) OX=559292 GN=SPR3 PE=1
SV=1
Length=512
Score = 390 bits (1003),
                         Expect = 5e-121
Identities = 195/413 (47%), Positives = 280/413 (68%), Gaps = 19/413 (5%)
             VGIECLPLQREFVTAKKGGHFTVMVVGQTGLGKTTFVNTLFRTSLLPSVWDTLEGNKPNV 734
Query 675
             +GI+ LP QRE + AK G FT+MV GQ+GLGKTTF+N+LF TSL+
                                                              D ++ NKP
Sbjct 90
             IGIKNLPRQRELLNAKNGIDFTLMVAGQSGLGKTTFINSLFSTSLID---DDIKENKP--
Query
     735
             QFKKTTRIIRHQALIEEKNIKLKLTVIDTPGFGDNANNSFAWSPIISYIDEQFRSYIFQE
                                                                            794
                    IIR++++E L VIDTPGFG+N +N+F W +++YIDE+ RSYIFQE
     145
             -----IIRYKSIVEGDGTHLNFNVIDTPGFGNNMDNAFTWRTMVNYIDEEIRSYIFQE
Sbjct
                                                                            197
Query
      795
             EQPDRRRLSDNRIHCCLYFLNPSNKGISPLDIEAMQEISKRVNLIPVIAKADSLGTQSIA
                                                                            854
             EQPDR ++ DNR+HCCLYFL PSNKGI LD+ M++++KRVNLIPVIAK+D L
Sbjct 198
             EOPDRTKMVDNRVHCCLYFLRPSNKGIDTLDVVTMKKLAKRVNLIPVIAKSDLLTKEELK
                                                                            257
      855
             AFKEDVRRIINAQGIRICAFL-DESDSECQSVIRDSPYALVCCDSYVQKPNGEKVRGRKY
                                                                            913
Query
             FK VR II Q I +C F DE + Q + + P++++ + Y+ GEKV+GR+Y
NFKTQVREIIRVQDIPVCFFFGDEVLNATQDIFQKYPFSIIASNEYIFNEKGEKVKGRQY
Sbjct
     258
                                                                            317
             KWGIAEVENPKHSDFCQLRDILMSKNMVDLVVSSEKYYETCRSHMLMTRINQAKDGLAAE
Query
      914
             KWG ++EN K+ DF L+ + N++DLV S+E YYE CRS ML TR+ +A+D L +
             KWGAVDIENEKYCDFKILQKTIFDWNLIDLVESTEDYYEKCRSEMLRTRLLKARDCLTTK
Sbjct 318
                                                                            377
Query
      974
             ----TSEDNLIL-KNMNYEDPDANGMLNYKCYQIYNKQYMHELIIEWSPEFIHKQWEAKK
                                                                            1028
                      L + MN+++ + N + NYKCY+I NK M ++ EW PEFI +Q EAKK
Sbjct 378
             SVDITEEQRKFLEEEMNFDEIEENKLKNYKCYEIINKTVMDKVATEWDPEFITRQLEAKK
                                                                            437
Query
      1029
             RLNEIAHSEETKF-TWKRALMFKHTNLDSEIEDLHNRVKNLQIDCEELESILL
             + NE+++ E +KF WK++L + N + EIE L+++++NLQ++C++LE LL
             KFNELSNREISKFRDWKKSLFMEQENFNQEIEQLNHKLENLQLECQDLEYKLL
Sbjct 438
```

Fig. 9 – Sequence identity of *Ag SPR*3p with *S. cerevisiae SPR*3p using UniProtKB: Identical matches are shown in the figure.

```
Score = 360 bits (923), Expect = 2e-109
Identities = 181/410 (44%), Positives = 266/410 (65%), Gaps = 22/410 (5%)
          IGIDSIPLQKETFIEKNGVQFTMMVVGQSGLGKTTFINTLFGTSLLPTVWESDMTERGVT
           IGI ++P Q+E
                        KNG+ FT+MV GQSGLGKTTFIN+LF TSL+
           IGIKNLPRQRELLNAKNGIDFTLMVAGQSGLGKTTFINSLFSTSLI-----DDDIK
Sbjct 90
           KTTKIVRHESELVENGFTLRYTVIDTPGFGDLANNNFSWSPIVNYIDEQYRSYIFQEEQP
Query 190
              I+R++S + +G L + VIDTPGFG+ +N F+W +VNYIDE+ RSYIFQEEQP
Sbjct
      141
           ENKPIIRYKSIVEGDGTHLNFNVIDTPGFGNNMDNAFTWRTMVNYIDEEIRSYIFQEEQP
                                                                     200
Query
      250
           LRASLKDNRIHCCLYFINLTRNGLSALDIAAMEEISKRVNLIPVIAKIDGLTSADLEMYK
            R + DNR+HCCLYF+ + G+ LD+ M++++KRVNLIPVIAK D LT +L+ +K
          DRTKMVDNRVHCCLYFLRPSNKGIDTLDVVTMKKLAKRVNLIPVIAKSDLLTKEELKNFK
Sbjct
      201
           368
Query
      310
           TQVREIIRVQDIPVCFFFGDEVLNATQDIFQKYPFSIIASNEYIFNEKGEKVKGRQYKWG
Sbjct
      261
                                                                     320
      369
           NVEVENPLHSEFTALRTVLMSKNLVDFAVGCENYYEKCRSHILLSRIQQAKTNC--PDHL
                                                                     426
Ouerv
            V++EN + +F L+ + NL+D
                                        E+YYEKCRS +L +R+ +A+ +C
Sbjct
           AVDIENEKYCDFKILQKTIFDWNLIDLVESTEDYYEKCRSEMLRTRLLKAR-DCLTTKSV
Query
      427
           DLT-----NLDLDNPDQNGLENYKFYEAFNKKFMDDLIIEWSPEFIHKQWEAKKRL
                      ++ D ++N L+NYK YE NK MD + EW PEFI +Q EAKK+
           D+T
Sbjct
      380
           DITEEQRKFLEEEMNFDEIEENKLKNYKCYEIINKTVMDKVATEWDPEFITRQLEAKKKF
                                                                     439
          SEIVSMEEKRFKDWKQDLLNKQNLFNHEIEDLHTIVQQIRSECNELETRV 527
Query
      478
           +E+ + E +F+DWK+ L +Q FN EIE L+ ++ ++ EC +LE ++
          NELSNREISKFRDWKKSLFMEQENFNQEIEQLNHKLENLQLECQDLEYKL 489
Sbjct 440
```

Fig. 9 – Continued.

```
>TR:W0TC07 W0TC07_KLUMD Cell division control protein 3 OS=Kluyveromyces
marxianus (strain DMKU3-1042 / BCC 29191 / NBRC 104275) OX=1003335
GN=SPR3 PE=3 SV=1
Length=550
 Score = 813 bits (2099), Expect = 0.0
 Identities = 399/550 (73%), Positives = 464/550 (84%), Gaps = 2/550 (0%)
Query 1
             MNSTKNGWGSSMDHYIEATGVEYDSISYGPAKYGSNADNLEVINEQPEEECTEVKPQSQE 60
             M S NGWGS MD +E++ + S S KY + +++E+I E PEE+ E+ S MTSMNNGWGSYMDRSVESSDIGSSSGSNAQEKYLAPNESMEIIQEHPEEDNLEIASISHG
Sbjct 1
                                                                                    60
Query 61
             KKEVLDSVRRLFEADSTESNSAL-KSLDVDINVQGDFYTLNSVMNSSTANTTQ-ENCSKF
             + VL SV++LF ADS ES+ +L K+ D + N Q D+YT NS +NS ++
Sbjct 61
             EDGVLGSVKKLFAADSIESSKSLTKNSDNEQNAQADYYTPNSAINSEVFDSNGGEKNRRF
                                                                                    120
Query 119
             ITPSVIDEHYHIGIDSIPLQKETFIEKNGVQFTMMVVGQSGLGKTTFINTLFGTSLLPTV
                  VID +Y+IGID+IP+QK+TFI KNG +FTMMVVGQSGLGKTTFINTLFGTSLLPTV
             VNAPVIDPNYYIGIDTIPIQKQTFIAKNGGRFTMMVVGQSGLGKTTFINTLFGTSLLPTV
Sbjct 121
                                                                                    180
             {\tt WESDMTERGVTKTTKIVRHESELVENGFTLRYTVIDTPGFGDLANNNFSWSPIVNYIDEQ}
Query
      179
                                                                                    238
             WE D+++R VTKTTKIVRHESELVE F L++TVIDTPGFGD ANN+FSWSPIVNYIDEQ
             WEGDLSDREVTKTTKIVRHESELVEGDFALKFTVIDTPGFGDHANNSFSWSPIVNYIDEQ
Sbjct
       181
Ouerv
       239
             YRSYIFQEEQPLRASLKDNRIHCCLYFINLTRNGLSALDIAAMEEISKRVNLIPVIAKID
             YRSYIFQEEQPLR SLKDNRIHCCLYFI LTR+GLSALDIAAMEEISKRVNLIP+IAK+D
Sbjct
       241
             YRSYIFQEEQPLRGSLKDNRIHCCLYFIKLTRHGLSALDIAAMEEISKRVNLIPIIAKVD
                                                                                    300
              \begin{array}{lll} {\sf GLTSADLEMYKRKIRETLQKQEIKVCSFLDQNHPNCQTIFDTYPFGIVCSDEMVTNNEGK} \\ {\sf GLT} & {\sf D+} & {\sf +YK+} & {\sf IRET+QKQ+IKVC+FLDQN} & {\sf PNCQTIFD} & {\sf YPFGIVCSDEMV} & {\sf N} & {\sf EGK} \\ \end{array} 
Query 299
                                                                                    358
             GLTPDDVSIYKKNIRETIQKQQIKVCAFLDQNDPNCQTIFDMYPFGIVCSDEMVPNEEGK
Sbjct 301
                                                                                    360
Query
             LVRGRKYKWGNVEVENPLHSEFTALRTVLMSKNLVDFAVGCENYYEKCRSHILLSRIQQA
                                                                                    418
             LVRGRKYKWGNVEVENP HSEFTALRTVLMSKNLVD VGCENYYE+CR+H+LLSRI QA
             LVRGRKYKWGNVEVENPEHSEFTALRTVLMSKNLVDLVVGCENYYERCRTHMLLSRINQA
Sbict
      361
                                                                                    429
```

Fig.10 – Sequence identity match of *Ag SPR*3p with cell division control protein 3 of *Kluyveromyces marxianus* using UniProtKB.

```
419
           KTNCPDHLDLTNLDLDNPDONGLENYKFYEAFNKKFMDDLIIEWSPEFIHKOWEAKKRLS
Query
           K N PD ++ + L+L++P+QNGL+NYKFYE FNKK+MD+LIIEWSPEFIHKQ EAKKRL+
Sbjct
           KVNNPDFIESSGLNLEDPNQNGLDNYKFYETFNKKYMDELIIEWSPEFIHKQLEAKKRLN
      421
           {\tt EIVSMEEKRFKDWKQDLLNKQNLFNHEIEDLHTIVQQIRSECNELETRVNKQRPRRFSKL}
Query
           EIVS+EEKRFKDWKQDLLNKQNLFNHEIEDLHT+VQQIRSECNE+E + NKQR RRFS+L
Sbjct
      481
           EIVSLEEKRFKDWKQDLLNKQNLFNHEIEDLHTLVQQIRSECNEMEAKANKQRARRFSRL
                                                                         540
      539
           GLSSHSELAR 548
           GLSSHSELA+
Sbjct 541 GLSSHSELAK
                       550
Score = 487 bits (1253), Expect = 3e-157
Identities = 239/458 (52%), Positives = 321/458 (70%), Gaps = 14/458 (3%)
            DGEQDASSNNNMDQLLEGVYFQ-----HDDTETNNAHDKTRKLVEKKPISDRYRVGIECL
            ESSKSLTKNSDNEQNAQADYYTPNSAINSEVFDSNGGEKNRRFVNAPVIDPNYYIGIDTI
Sbjct
Query
      681
            {\tt PLQREFVTAKKGGHFTVMVVGQTGLGKTTFVNTLFRTSLLPSVWDTLEGNKPNVQFKKTT}
                                                                          740
             P+Q++ AK GG FT+MVVGQ+GLGKTTF+NTLF TSLLP+VW EG+ + + KTT
            PIQKQTFIAKNGGRFTMMVVGQSGLGKTTFINTLFGTSLLPTVW---EGDLSDREVTKTT
                                                                          194
Sbjct 138
            RIIRHQALIEEKNIKLKLTVIDTPGFGDNANNSFAWSPIISYIDEQFRSYIFQEEQPDRR
                                                                          800
Query
      741
             +I+RH++ + E + LK TVIDTPGFGD+ANNSF+WSPI++YIDEQ+RSYIFQEEQP R
            KIVRHESELVEGDFALKFTVIDTPGFGDHANNSFSWSPIVNYIDEQYRSYIFQEEQPLRG
                                                                          254
Sbjct
      195
      801
            RLSDNRIHCCLYFLNPSNKGISPLDIEAMQEISKRVNLIPVIAKADSLGTQSIAAFKEDV\\
                                                                          860
Query
             L DNRIHCCLYF+ + G+S LDI AM+EISKRVNLIP+IAK D L
Sbjct
      255
            SLKDNRIHCCLYFIKLTRHGLSALDIAAMEEISKRVNLIPIIAKVDGLTPDDVSIYKKNI
                                                                          314
      861
            RRIINAQGIRICAFLDESDSECQSVIRDSPYALVCCDSYVQKPNGEKVRGRKYKWGIAEV
Query
             R I Q I++CAFLD++D CQ++ P+ +VC D V G+ VRGRKYKWG EV
Sbjct
            RETIQKQQIKVCAFLDQNDPNCQTIFDMYPFGIVCSDEMVPNEEGKLVRGRKYKWGNVEV
      315
                                                                          374
       921
             ENPKHSDFCQLRDILMSKNMVDLVVSSEKYYETCRSHMLMTRINQAKDGLAAETSEDNLI
Query
             ENP+HS+F LR +LMSKN+VDLVV E YYE CR+HML++RINQAK
                                                                  + D +
             ENPEHSEFTALRTVLMSKNLVDLVVGCENYYERCRTHMLLSRINQAK-----VNNPDFIE
Sbjct
       375
                                                                          429
Query
       981
             {\tt LKNMNYEDPDANGMLNYKCYQIYNKQYMHELIIEWSPEFIHKQWEAKKRLNEIAHSEETK}
                                                                          1040
                +N EDP+ NG+ NYK Y+ +NK+YM ELIIEWSPEFIHKQ EAKKRLNEI EE +
             SSGLNLEDPNQNGLDNYKFYETFNKKYMDELIIEWSPEFIHKQLEAKKRLNEIVSLEEKR
Sbjct 430
       1041
             F-TWKRALMFKHTNLDSEIEDLHNRVKNLQIDCEELES 1077
Query
             F WK+ L+ K
                           + EIEDLH V+ ++ +C E+E+
Sbjct 490
             FKDWKQDLLNKQNLFNHEIEDLHTLVQQIRSECNEMEA
                                                    527
```

Fig. 10 – Continued.

```
>TR:Q1K7H5 Q1K7H5_NEUCR Cell division control protein 12 OS=Neurospora crassa
(strain ATCC 24698 / 74-OR23-1A / CBS 708.71 / DSM 1257
/ FGSC 987) OX=367110 GN=NCU03795 PE=3 SV=1
Length=385
 Score = 268 bits (686), Expect = 3e-77
 Identities = 157/417 (38%), Positives = 234/417 (56%), Gaps = 52/417 (12%)
            VGIECLPLQREFVTAKKGGHFTVMVVGQTGLGKTTFVNTLFRTSLLPSVWDTLEGNKPNV 734
Query 675
             +GI LP QR + AK+G FT+MV G++GLGKTTF+NTLF T++
            IGIANLPNQRHKIVAKRGAAFTIMVAGESGLGKTTFINTLFSTTIKNYADHKRRHQK---
Sbjct 12
Query 735
            QFKKTTRIIRHQALIEEKNIKLKLTVIDTPGFGDNANNSFAWSPIISYIDEQFRSYIFQE
               KT I +A +EEK K++LTVIDTPGFGD NN +W PII ++D+Q SY+ QE
            QVDKTVEIEITKAELEEKFFKVRLTVIDTPGFGDYVNNRDSWMPIIEFLDDQHESYMLQE
Sbjct 69
                                                                         128
            EQPDRRRLSDNRIHCCLYFLNPSNKGISPLDIEAMQEISKRVNLIPVIAKADSLGTQSIA 854
Query 795
             +QP R+ D R+H CLYF+ P+ + PLDIE M+ + RVNLIPVIAKAD+L
Sbjct 129
            QQPRRQDKIDLRVHACLYFIRPTGHTLKPLDIEVMKRLCSRVNLIPVIAKADTLSPADLA 188
            AFKEDVRRIINAQGIRICAFLDESDSE-----CQSVIRDSPYALVCCDSYVQKPNGEKVR
Query 855
                                EDE
             FK +R +I AQGI+I
                                            +S++ P+A++ + V+ +G V+
            RFKSRIRAVIEAQGIKIYQPPIEEDDEAAAQHARSLMAAMPFAVIGSEKDVKTSDGRIVK
Sbjct 189
                                                                         248
      910
            GRKYKWGIAEVENPKHSDFCQLRDILMSKNMVDLVVSSEK-YYETCRSHMLMTRINQAKD 968
Query
            GR+Y WG+AEVEN +H DF +LR IL+ +M+DL+ ++E+ +YE R+ + TR
Sbjct 249
            GRQYSWGVAEVENEEHCDFKKLRSILIRTHMLDLIHTTEELHYEAYRAQQMETR----KF
Query 969
            GLAAETSEDNLILKNMNYEDPDANGMLNYKCYQIYNKQYMHELIIEWSPEFIHKQWEAKK 1028
                                                            P+F ++ +K
            G A
            GEARPRKLDN-----
                                              -----PKFKEEEEALRK 326
Sbjct 305
            RLNEIAHSEETKF-TWKRALMFKHTNLDSEIEDLHNRVKNLQIDCEELESILLQTGG 1084
Query 1029
            R E EE +F W++ L+ + L+ ++E H ++K+L+++ E L+ +++ G
            RFTEQVKIEEQRFRQWEQKLIAERDRLNKDLEQTHAQIKSLEMELESLQGNAVRSHG 383
Sbjct 327
Score = 258 bits (660), Expect = 1e-73
Identities = 148/421 (35%), Positives = 227/421 (54%), Gaps = 41/421 (10%)
Query 119 ITPSVIDEHYHIGIDSIPLQKETFIEKNGVQFTMMVVGQSGLGKTTFINTLFGTSLLPTV 178
            + P+ + IGI ++P Q+ + K G FT+MV G+SGLGKTTFINTLF T++
            MAPATTESASPIGIANLPNORHKIVAKRGAAFTIMVAGESGLGKTTFINTLFSTTIKNYA
Sbjct
           WESDMTERGVTKTTKIVRHESELVENGFTLRYTVIDTPGFGDLANNNFSWSPIVNYIDEQ
Ouery 179
                  ++ V KT +I   ++EL E  F +R TVIDTPGFGD  NN  SW PI+ ++D+Q
            DHKRRHQKQVDKTVEIEITKAELEEKFFKVRLTVIDTPGFGDYVNNRDSWMPIIEFLDDQ
Sbjct 61
                                                                          120
Query
      239
           YRSYIFQEEQPLRASLKDNRIHCCLYFINLTRNGLSALDIAAMEEISKRVNLIPVIAKID
                                                                           298
            + SY+ QE+QP R D R+H CLYFI T + L LDI M+ + RVNLIPVIAK D
Sbjct 121
           HESYMLQEQQPRRQDKIDLRVHACLYFIRPTGHTLKPLDIEVMKRLCSRVNLIPVIAKAD
                                                                           180
Query 299
            GLTSADLEMYKRKIRETLQKQEIKVCSFLDQNH-----PNCQTIFDTYPFGIVCSDEMVT
             L+ ADL +K +IR ++ Q IK+
            TLSPADLARFKSRIRAVIEAQGIKIYQPPIEEDDEAAAQHARSLMAAMPFAVIGSEKDVK
Sbjct 181
           NNEGKLVRGRKYKWGNVEVENPLHSEFTALRTVLMSKNLVDFAVGCENYYEKCRSHILLS 413
Query
      354
             ++G++V+GR+Y WG EVEN H +F LR++L+ +++D
            TSDGRIVKGRQYSWGVAEVENEEHCDFKKLRSILIRTHMLDLIHTTEEL-----HYEAY
Sbjct 241
            {\tt RIQQAKTNCPDHLDLTNLDLDNPDQNGLENYKFYEAFNKKFMDDLIIEWSPEFIHKQWEA}
Query
      414
            R QQ
                                       +E KF EA +K
                                       -METRKFGEARPRKLD-----NPKFKEEEEAL
Sbjct
      295
           KKRLSEIVSMEEKRFKDWKQDLLNKQNLFNHEIEDLHTIVQQIRSECNELETRVNKQRPR
      474
                                                                          533
Query
           +KR +E V +EE+RF+ W+Q L+ +++ N ++E H ++ + E L+ + R RKRFTEQVKIEEQRFRQWEQKLIAERDRLNKDLEQTHAQIKSLEMELESLQGNAVRSHGR
Sbjct
      325
      534
           R 534
Query
Sbjct 385
           R 385
```

Fig. 11 – Sequence identity of *Ag SPR*3p with *N. crassa CDC*12p using UniProtKB: Identical matches are shown in the figure.

Characterization of plasmid BB

The plasmid BB is also a derivative of the original integrative plasmid pSV 2. In this plasmid, the *RIB* 3 promoter was replaced by the *A. gossypii RAD* 14 gene/promoter homologue, the Lac Z gene replaced the GFP gene, and the whole fragment was cloned into the *Bgl* II restriction site of plasmid pSV 2.

The plasmid BB was sequenced, and the sequencing data was subjected to bioinformatics searches using the KEGG database, Unit Prot, and SGD for homology. The nucleotide sequence of both the transcribed and the flanking regions of *RAD* 14 revealed an 849-bp open reading frame. The gene sequence showed a high degree of homology (42%) with genes of the *HOG* I pathway of *S. cerevisiae*, which is involved in the stress response. Specifically, it plays a role in combating osmotic stress in *S. cerevisiae* (Nadal & Posas 2022). This pathway may be implicated in combating the hyperosmotic conditions resulting from the accumulation of intracellular riboflavin in *E. ashbyii*, and this could lead to further scrutiny.

Gene sequence homologous to gene for stress response protein RAD 14 like protein involved in hypoxia stress response

 ${\tt CGGGGGGATGCTGGTTCATTTCTTTGGTGATTATACGATTGTTCCCCGGGGGGGTGGTTCGGATGGTTATAATTCGCCTGGTGAAT}$

 ${\tt GCCGGAGACTGACCGGATGACAAGTTTGTTCGAGGATACTGAGGCAGTGTTGCTGGGAATTGACTATCGGATGGGGGTATCGAGA}$

 $\label{eq:control} \textbf{ACTGCTGTTCCCCTTAAACGTAGGACGAAGAAATGAGCTCTGAATAGCCTCTCGAGAATATTCGTTATTTGCATTGACATAGTTGG$

GGTGGGCTACCTAGCGCAGGGCTCAAGACACCTTATGGGAGAGGGAAGGCTATCCGACTAATTCCAGTACTTATTATCATTGGGG

 ${\tt GAAGAAGCTTTCTTCCGACCACTAGCCCCCAGAAACCGAATCGCCCCACAACTGACCGCGGGCAACCTAGTAAATCCAACTATTG}$

 ${\tt CAACAGGGGTATCTGTCCTATTCCCTCTTTACCCAGGTAGCCATCTGAACTGCAACAGACTGTTCCAAGTAACACTACGAGAGCG}$

CCAGTAGCAAGTGCGAGCTATAGATAGGCCTGTATATAAGTCTTTATCTCCAGAAATTGTTAGTGCCACCATGCAAGTGCGCTCA ATATACACCACTCAGAATTACAG

Discussion

Characterisation of plasmid D

This study has shown that the plasmid D, which harbours the *SPR* 3 gene homologue, is probably a regulatory gene since it exhibits a high degree of homology to the zinc finger binding protein and the regulatory *SPR* 3 gene of *S. cerevisiae* and SPR type G gene of *S. ludwigii* and *E. cymbalariae* as well as homology to *the K. marxianus* CDC 3p and *N. crassa* CDC 12 protein. Both of these are regulatory proteins with zinc clusters and zinc finger domains in their structures. Many regulatory proteins in yeast and filamentous fungi employ zinc finger motifs and zinc clusters for mediating transcriptional regulation. Zinc clusters are especially implicated in the regulation of amino acid and vitamin biosynthesis (MacPherson et al. 2006, Schillig & Morschhäuser 2013, Garcia-Estrada et al. 2018, Li & Liu 2020). Since the database search has revealed a significant degree of homology between the *AgSPR* 3 homologue and zinc finger proteins, it is quite possible that the *Ag SPR* 3 homologue encodes a transcription factor which probably regulates cell division and septation by employing the zinc finger motif/zinc cluster to mediate transcriptional regulation of these processes. This aspect of the *AgSPR* 3 gene can be probed further.

Characterisation of plasmid BB

This study has shown that the plasmid BB, which harbours the *RAD* 14 gene homologue, is probably involved in the pathway activated in response to osmotic stress. The homology searches in the databases revealed a significant degree of homology to the genes of the *HOG* I pathway of *S. cerevisiae*, which plays a role in combating osmotic stress (Warringer et al. 2010, Nadal & Posas 2022). Since both *A. gossypii* and *E. ashbyii* are overproducers of riboflavin, an intracellular accumulation of the metabolite could lead to a hyperosmotic condition within the hyphae, leading to osmotic stress, which could, in turn, trigger the stress response pathway. Hence, the *RAD* 14 gene homologue could be probed further for its role in combating osmotic stress due to intracellular accumulation of riboflavin, in addition to its possible role in combating radiation stress. The possibility of crosstalk between the osmotic stress response and radiation stress response pathways could be explored as a time course to check temporal gene regulation. Earlier reports implicate the *HOG* pathway's involvement in other stress conditions, such as temperature fluctuations, oxidative stress, and heat stress, where it plays the role of a modulator in fine-tuning the response. (Winkler et al. 2002, Bilsland et al. 2004, Panadero et al. 2006, Gutin et al. 2015). The *RAD* 14 gene in *E. ashbyii* and *A. gossypii* can be studied for such a modulating role.

Conclusions

Knowledge about the biochemistry and genetics of riboflavin overproduction by E. ashbyii is of interest both from a fundamental and an applied point of view. A host of cellular processes are involved in the synthesis and secretion of riboflavin. Of these, the process of intracellular compartmentalization and septation is very important. In the present study, a plasmid bearing the AgSPR 3 gene (which functions in septation) fused to the Lac Z reporter gene was characterized, and it showed homology to the S. ludwigii and E. cymbalariae septin protein, S. cerevisiae SPR 3 gene, and K. marxianus CDC 3 and N. crassa CDC 12 genes involved in cell cycle regulation, a possibility that can be explored further. Riboflavin is an essential vitamin, but it causes photoinduced damage to the DNA at higher concentrations. One of the mechanisms of repairing the damaged DNA is by RAD proteins. Hence, in this study, the plasmid bearing the Ag RAD 14 gene fused to the Lac Z reporter gene was characterized, and it showed homology to the S. cerevisiae HOG I gene, which could prove to be the focus of future research. Finally, molecular tools for E. ashbyii have been characterized in this study and this would aid in carrying out future studies on the biochemistry and genetics of flavinogenesis by E. ashbyii. In future, these vectors will be used to transform E. ashbyii and pull out the homologous genes to study their respective roles in E. ashbyii.

Acknowledgements

The authors would like to thank the DST-SERB funding agency for funding Dr. S Vijayalakshmi to carry out the research work, research grant no EMR/2016/000915, and for providing a fellowship to the first author for carrying out her doctoral research work. A part of the project has been submitted to the journal for publication.

References

- Alexander M, Michelle M. 2019 Septin mutations and phenotypes in *S. cerevisiae*. Cytoskeleton 76, 33–34.
- Bilsland E, Claes M, Swarna S, Anna R, Sunnerhagen P. 2004 *Rck1* and *Rck2* MAPK AP-kinases and the HOG pathway are required for oxidative stress resistance. Molecular Biology 53, 1743–1756.
- Dietrich FS, Voegeli S, Brachat S, Lerch A et al. 2004 The *Ashbya gossypii* genome as a tool for mapping the ancient *Saccharomyces cerevisiae* genome. Science 304, 307.

- García-Estrada C, Dominguez-S R, Kosalkova Katarina, Martin J-F. 2018 Transcription factors controlling primary and secondary metabolism in filamentous fungi: The β-Lactam Paradigm. Fermentation 4, 47.
- Michael G, Joseph S. 2012 Molecular Cloning: A Laboratory Manual, Fourth edition, Cold Spring Harbor Laboratory Press NY.
- Gutin J, Sadeh A, Ayelet R, Aharoni A, Friedman N. 2015 Condition-specific genetic interaction maps reveal crosstalk between the cAMP/PKA and the HOG MAPK pathways in the activation of the general stress response. Molecular Systems Biology 11, 829.
- Hanahan D. 1983 Studies on transformation of *Escherichia coli* with plasmids. Journal of Molecular Biology 166, 557–580.
- Li Y-H, Lu T-B. 2020 Zinc finger proteins in the human fungal pathogen *Cryptococcus neoformans*. International Journal of Molecular Sciences 21, 1361.
- Sarah M, Marc L, Bernard T. 2006 A fungal family of transcriptional regulators: Zinc cluster proteins. Microbiology and Molecular Biology Reviews 70, 583–604.
- de Eulàlia N, Francesc P. 2022 The HOG pathway and the regulation of osmo adaptive responses in yeast. FEMS Yeast Research 22, foac013.
- Panadero J, Pallotti C, Sonia R-V, Francisca R-G, Jose P-A. 2006 A downshift in temperature activates the high osmolarity glycerol (HOG) pathway, which determines freeze tolerance determines freeze tolerance in *Saccharomyces cerevisiae*. Journal of Biological Chemistry 281, 4638–4645.
- Perego P, Jimene GS, Gatti L, Howell SB, Zunino F. 2000 Yeast mutants as a model system for identification of determinants of chemo-sensitivity. Pharmacological Reviews 52, 477–491.
- Prillinger H, Schweigkofler W, Breitenbach M, Briza M, Staudacher F, Lopandic K, Molnar O, Weigang F, Ibi M, Ellinger A. 1997 Phytopathogenic filamentous (*Ashbya, Eremothecium*) and dimorphic fungi (*Holleya, Nematospora*) with needle-shaped ascospores as new members within the Saccharomycetaceae. Yeast 13, 945–960.
- Pujari V, Chandra TS. 2001 Physio-morphological changes in a riboflavin producer *Eremothecium ashbyii* DT1 and UV mutants in submerged fermentation. Journal of Microbiology and Biotechnology 11, 552–557.
- Joseph S, David R. 2001 *Molecular Cloning: A Laboratory Manual*, Third edition, Cold Spring Harbor Laboratory Press NY.
- Sampath J, Vijayalakshmi S. 2018 Effect of stress inducer on the morphology of the riboflavin producer *Eremothecium ashbyii*. Research Journal of Pharmacy and Technology 11, 5227–5232.
- Rebecca S, Joachim M. 2013 Analysis of a fungus-specific transcription factor family, the *Candida albicans* zinc cluster proteins by artificial activation. Molecular Biology 89, 1003–1017.
- Schlösser T, Wiesenburg A, Gätgens C, Funke A et al. 2007 Growth stress triggers riboflavin overproduction in *Ashbya gossypii*. Applied Microbiology Biotechnology 76, 569–578.
- Silva R, Aguiar TQ, Oliveira R, Dominguez L. 2019 Light exposure during growth increases riboflavin production, reactive oxygen species accumulation and DNA damage in *Ashbya gossypii* riboflavin-overproducing strains. *FEMS Yeast Research* 19, 114.
- Steiner S, Wendland J, Wright MC, Philippsen P. 1995 Homologous recombination as the main mechanism for DNA integration and cause of rearrangements in the filamentous ascomycete *Ashbya gossypii*. Genetics 140, 973–987.
- Sugimoto T, Morimoto A, Nariyama M, Kato T, Park E-Y. 2010 Isolation of an oxalate-resistant *Ashbya gossypii* strain and its improved riboflavin production. *Journal of Industrial Microbiology and Biotechnology* 37, 57–64.
- Vijayalakshmi S, Karthika TN, Mishra AK, Chandra T-S. 2003 Spectrofluorimetric method for the estimation of total lipids in *Eremothecium ashbyii* fungal filaments using Nile blue and avoiding interference of autofluorescent riboflavin. Journal of Microbiological Method 55, 99–103.

- Vijayalakshmi S, Suvashree R Mishra AK, Chandra T-S. 2010 Lipid accumulation and membrane fluidity influence mycelial stability and riboflavin production by the riboflavinogenic fungus *Eremothecium ashbyii*. The Internet Journal of Microbiology 8, 7–8.
- Jonas W, Malin H, Sergi R, Francese P, Per S. 2010 The HOG pathway dictates the short-term translational response after hyperosmotic shock. Molecular Biology of the Cell 21, 2975–3092.
- Wendland J, Ayad-Durieux Y, Knechtle P, Rebischung C, Philippsen P. 2000 PCR-based gene targeting in the filamentous fungus *Ashbya gossypii*. Gene 242, 381–391.
- Winkler A, Arkind C, Mattison PC, Burkholder A, Knoche K, Ota I. 2002 Heat stress activates the yeast high-osmolarity glycerol mitogen-activated protein kinase pathway, and protein tyrosine phosphatases are essential under heat stress. Eukaryotic Cell 1, 163–173.
- Wright MC, Philippsen P. 1991 Replicative transformation of the filamentous fungus *Ashbya gossypii* with plasmids containing *Saccharomyces cerevisiae* ARS elements. Gene 109, 99–105.
- Zhang J-R, GeY-Y, Liu P-H, Wu D-T, Liu H-Y et al. 2021 Biotechnological strategies of riboflavin biosynthesis in microbes. Engineering 12, 115–127.