
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/354808499

Reactive Microservices Architecture Using a Framework of Fault Tolerance

Mechanisms

Conference Paper · August 2021

DOI: 10.1109/ICESC51422.2021.9532893

CITATIONS

3
READS

338

2 authors:

J. ABDUL Rasheedh

5 PUBLICATIONS   8 CITATIONS   

SEE PROFILE

Dr S Saradha

Vels University

7 PUBLICATIONS   19 CITATIONS   

SEE PROFILE

All content following this page was uploaded by J. ABDUL Rasheedh on 24 October 2021.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/354808499_Reactive_Microservices_Architecture_Using_a_Framework_of_Fault_Tolerance_Mechanisms?enrichId=rgreq-cafa6bb68e2d293d59c0fb8c8c30822d-XXX&enrichSource=Y292ZXJQYWdlOzM1NDgwODQ5OTtBUzoxMDgyMzY5NTYxODk5MDA4QDE2MzUwNjg0MjE0MzI%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/354808499_Reactive_Microservices_Architecture_Using_a_Framework_of_Fault_Tolerance_Mechanisms?enrichId=rgreq-cafa6bb68e2d293d59c0fb8c8c30822d-XXX&enrichSource=Y292ZXJQYWdlOzM1NDgwODQ5OTtBUzoxMDgyMzY5NTYxODk5MDA4QDE2MzUwNjg0MjE0MzI%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-cafa6bb68e2d293d59c0fb8c8c30822d-XXX&enrichSource=Y292ZXJQYWdlOzM1NDgwODQ5OTtBUzoxMDgyMzY5NTYxODk5MDA4QDE2MzUwNjg0MjE0MzI%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/J-Rasheedh?enrichId=rgreq-cafa6bb68e2d293d59c0fb8c8c30822d-XXX&enrichSource=Y292ZXJQYWdlOzM1NDgwODQ5OTtBUzoxMDgyMzY5NTYxODk5MDA4QDE2MzUwNjg0MjE0MzI%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/J-Rasheedh?enrichId=rgreq-cafa6bb68e2d293d59c0fb8c8c30822d-XXX&enrichSource=Y292ZXJQYWdlOzM1NDgwODQ5OTtBUzoxMDgyMzY5NTYxODk5MDA4QDE2MzUwNjg0MjE0MzI%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/profile/J-Rasheedh?enrichId=rgreq-cafa6bb68e2d293d59c0fb8c8c30822d-XXX&enrichSource=Y292ZXJQYWdlOzM1NDgwODQ5OTtBUzoxMDgyMzY5NTYxODk5MDA4QDE2MzUwNjg0MjE0MzI%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Dr-Saradha-2?enrichId=rgreq-cafa6bb68e2d293d59c0fb8c8c30822d-XXX&enrichSource=Y292ZXJQYWdlOzM1NDgwODQ5OTtBUzoxMDgyMzY5NTYxODk5MDA4QDE2MzUwNjg0MjE0MzI%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Dr-Saradha-2?enrichId=rgreq-cafa6bb68e2d293d59c0fb8c8c30822d-XXX&enrichSource=Y292ZXJQYWdlOzM1NDgwODQ5OTtBUzoxMDgyMzY5NTYxODk5MDA4QDE2MzUwNjg0MjE0MzI%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Vels_University?enrichId=rgreq-cafa6bb68e2d293d59c0fb8c8c30822d-XXX&enrichSource=Y292ZXJQYWdlOzM1NDgwODQ5OTtBUzoxMDgyMzY5NTYxODk5MDA4QDE2MzUwNjg0MjE0MzI%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Dr-Saradha-2?enrichId=rgreq-cafa6bb68e2d293d59c0fb8c8c30822d-XXX&enrichSource=Y292ZXJQYWdlOzM1NDgwODQ5OTtBUzoxMDgyMzY5NTYxODk5MDA4QDE2MzUwNjg0MjE0MzI%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/J-Rasheedh?enrichId=rgreq-cafa6bb68e2d293d59c0fb8c8c30822d-XXX&enrichSource=Y292ZXJQYWdlOzM1NDgwODQ5OTtBUzoxMDgyMzY5NTYxODk5MDA4QDE2MzUwNjg0MjE0MzI%3D&el=1_x_10&_esc=publicationCoverPdf


Reactive Microservices Architecture Using a 

Framework of Fault Tolerance Mechanisms 
 

J Abdul Rasheedh,  
Research Scholar, 

Department of Computer Science,  VISTAS,                                      

Pallavaram,Chennai, India 

 abdul_rasheedh@yahoo.co.in 

Dr. S. Saradha
2
, 

Research Supervisor, 

Department of Computer Science, VISTAS, 

Pallavaram,Chennai,India 

saradha.research@gmail.com 

Abstract—In Cloud Computing, microservices have been 

recently introduced for enabling the development of large-scale 

structures, which are scalable, agile and especially suitable for 
meeting the emerging demands. The asynchronous 

communication has facilitated using reactive system which 

managed in interaction challenges and even variation of load in 

modern systems. There are certain features of microservices 

like elasticity and resilience have considered for messages can 
be progressed through Reactive Microservices (RM) which 

consists of segregated components over event stream that can 

able to perform individually or shown with various 

microservices for reaching the event at final stages. The 

reactive principle in microservices have involved for individual 
possibility in every microservice components reference 

architecture include the components of microservices, which 

have the ability to develop, release, organize, scale, upgrade 

and retired individually. It has infused the necessary 
redundancy into the network for avoiding failure cascading, 

which maintains the system reactive in case of any failure. This 

paper has explored the RM architecture application and 

provides insights by assisting in reducing the developing 

demand to create resilient and scalable systems. The basic use 
case of microservice framework implementation has been 

illustrated by Vert.x, which act as the general toolkit to create 

RM and also the performance of both reactive and nonreactive 

implementation are compared as an alternate. The 

performance comparison can reveal how RM performs better 

than non-reactive microservices.  

Keywords—Reactive Microservices (RM), fault tolerance, 
Vert.x, failures 

I. INTRODUCTION 

During earlier, applications have been established by 
monolithic methods, which represent a single code-base 

utilized for executing the whole applications. When the 
monolithic application design is considered to be slightly 

complex compared with high distribution method but 
executing it has faced several challenges. There are some 

inadequacy in significant features of monolithic applications 

such as elasticity and scalability [1].  In case of monolithic 
application which gets enhanced in a single piece that creates 

complex for modifying and this complex progress from high 
coupled nature of those applications. However, scaling of 

monolithic application is other main obstacle because of its 
huge volume of data. Therefore, the application of 

monolithic has been scaled completely while a specific 
portion required for scaling. Moreover, these problems may 

urge for introducing a novel approaches that has driven the 

software industry to search for an option whereas the 
microservices are considered to be a best solution in 

addressing various preceding problems. Thus, microservices 
has performed as set of services which assigned to manage 

together for designing an applications and every services can 
built for executing a single project [2].   In case of the 

smaller sizes implementation and restoration is simple and it 
empower the organization for accomplishing tasks but in 

other hand complex if feasible with monolithic applications. 

Technology diversity is the major feature in architecture of 
microservices that contribute better performance and it 

enhance to the programming language. Moreover, the service 
has been considered along with its technique in 

implementing the embodied ability using the components of 
microservices in the reference architecture and the 

communication pattern among the components. The 

application and system has  implemented a reactive princip le 
which is flexib le, reliable, loosely coupled and scalable. It 

consists of tolerant in failures and also failure occurs 
in responded gracefully instead of catastrophic crash. In 

addition, the reactive system is generally high reactive that 
offer with high user experience which is loosely-coupled, 

scalable and flexible. ”The Reactive Manifesto” [3] has 

discussed about four significant characteristics of reactive 
systems are given below 

Responsive: This assist in predictability with high degree.  

Event-driven: This helps in passing the asynchronous 

message with subscribed model or published model.  

Scalable: This characteristic has the ability for performing 

service with growing load when maximizing the usage 
resources.  

Resilience: This assist in isolating the faults. 

Hence, it makes quite easier for developing and responsive to 
modify whereas RM is an independent which has capability 

in accommodating to the services of availability or absence 
that surrounding them. Thus, the isolation is corresponding 

to independence and RM has ability to manage failure 
locally, performs independently and gets collaborated with 

other based on the requirement.  The utilization of RM for 

interacting an asynchronous message that passed is 
communicate with it peers and receives messages which 

even have the capability in generating responses for those 
messages. This study explored an introduction of the 

microservices architecture by reactive applications are 
the feasible solution and presents novel possibilities to 

minimize the improving demand for flexib le and robust 

structures to be created. It also highlights a specific use case 
for implementing microservices, contrasting the performance 

of alternatives to both reactive and non-reactive 
implementation. The organization of this paper is  as follows: 

Section 2 describes the related survey regarding technique 
based methodological contributions from existing work, 

Section 3 describes the proposed methodology based on RM 
Architecture via Vert.X , Section 4, d iscusses performance 

based on throughput , Section 5 concludes the work. 

 

Proceedings of the Second International Conference on Electronics and Sustainable Communication Systems (ICESC-2021)
IEEE Xplore Part Number: CFP21V66-ART; ISBN: 978-1-6654-2867-5

978-1-6654-2867-5/21/$31.00 ©2021 IEEE 146

20
21

 S
ec

on
d 

In
te

rn
at

io
na

l C
on

fe
re

nc
e 

on
 E

le
ct

ro
ni

cs
 a

nd
 S

us
ta

in
ab

le
 C

om
m

un
ic

at
io

n 
Sy

st
em

s (
IC

ES
C)

 |
 9

78
-1

-6
65

4-
28

67
-5

/2
1/

$3
1.

00
 ©

20
21

 IE
EE

 |
 D

O
I: 

10
.1

10
9/

IC
ES

C5
14

22
.2

02
1.

95
32

89
3

Authorized licensed use limited to: Nitte Meenakshi Institute of Technology. Downloaded on September 28,2021 at 07:22:37 UTC from IEEE Xplore.  Restrictions apply. 



II. LITERATURE REVIEW 

Santana et.al has proposed a model by enhancing IoT 
application reliability for RM based on availability aspect 

[4]. Similarly the researcher Lirade Santana et.al is 
discussing about microservices that may be distributed at the 

network edge for acknowledging system resilience and 
elasticity [5].  Rosa Righi et.al has addressed the ability to 

withstand failures of both internal and external based 

on flexibility and elasticity. It gets associated with the 
systems capability for performing in accordance 

with demand variations [6]. The framework may 
utilize asynchronous messages for guarantee less 

coupling, segregation and contact habit transparency to 
resilient. DevOps, cloud, virtualization and its relationship 

with microservice are the three main platform p lays a major 

role to implement microservice is introduced by 
Hamzehloui.et.al [7]. Moreover, the microservices 

are associated with virtualizat ion but it may release the actual 
microservice power. The applications of traditional 

development method is executed with DevOps may be 
complex in execution. Thus, the distributed components by 

cloud may be quiet easy when communicating microservice 

interest. Samanta et.al[8] has proposed FLAVOUR which is 
a novel scalable and latency-optimal microservice that act as 

a scheduling method to an edge computing network for 
accomplishing min imum service latency, when provided 

with approved  transmission rate to decrease the 
MicroService Completion Times (MSCT). Power and 

Kotonya has suggested a pluggable platform depending upon 
microservices architecture which integrates FT support as 

two comparable microservices: In Real-time FT detection 

has utilized dynamic event analysis in other hand Online ML 
is utilized for predicting fault patterns and resolving faults 

pre-emptively before they can be accessed [9]. Sun et al.[10] 
has proposed an architecture with microservices based IoT 

which disintegrate the network into nine units which interact 
in a REST interface whereas the core microservice is 

controlling the other eight that provide storage, security, 

bigdata analytics, etc. They have utilized microservices as it 
allows the platform to quickly extend, develop, and 

incorporate third party applications for enabling 
interoperability and scalability, with better capability to 

implement fault tolerance over scale. Celesti et al. has 
discovered a service for containerized microservices in 

monitoring software that is built on IoT devices as 

middleware [11]. The failure of microservice has repaired or 
replaced with clone whereas the solution has illustrated an 

adequate overhead at recovery. The researchers Goel and 
Nayak have introduced an architecture of microservice 

which focused on event streams and it has a decentralized the 
framework of microservice coordination [12]. The 

microservices architecture enables for enhancing information 

over event stream without any limitations on time or 
versatility. Orchestration includes a conductor, which act as a 

central service which sends requests to other services and by 
receiving replies supervises the operation. In order to build 

collaboration, choreography performs as a design that has not 
considered centralization which utilized the mechanism of 

events and publishes or subscribes [13] [14] [15].  The 
researcher Dastjerdi, R. Buyya have addressed reactive fault 

tolerance  whereas this method get initiated with strategy of 

error recovery once an error recognized  which need quick 
detection and decision making with the connection of low-

latency for the hardware or software at fault. The fog can 
able to provide service within cloud platform for network 

edge with data analytics of low-latency providing it an 

optimal applicant to analyze stream data [16].  Al-Fuqaha 
et.al has addressed several architecture of microservice that 

communicate among services gets managed through a style 
of RESTful architecture whereas the data is shared by JSON 

format. There are some other protocols applicable to IoT 
involves CoAP, MQTT and XMPP, but the benefit of REST 

can be considered to all cloud services that provide by 

accomplishing it with an adequate option to promote 
interoperability over IoT system [17]. The researchers Pedro 

and Luca has developed particularly over IoT middleware 
layer when this paper proposal focused on the IoT 

architecture of application layer [18] [19]. Similarly, this 
researcher has focused on this research based on the 

Microservices orchestration is incorporated in containers 
which can be conducted from Egde to Fog and Cloud [20]. 

In addition, the RM is considered to be elastic which 

assist the system by providing an ability to handle the load of 
several instance which signify constraints set namely 

eliminating in-memory state, sharing of state among instance 
when needed or it has capability in routing messages for the 

similar instance to massive services. It cannot be suited for 
existing legacy or prevailing systems. 

III. MICROSERVICES ARCHITECTURE 

Microservices architecture is architectural pattern to 

develop an application of software as a limited suite with 
autonomous services. It deliberately implemented on various 

solution stacks and also executed in several programming 

languages that can able to execute together by its certain 
process. In general, lightweight communication protocol 

isusedtocommunicatethe architecturebyeitherHTTPrequestre
sponseswithAPIresourcesorlightweightmessaging. 

Microservicearchitecturaltechniqueiscomparativelybetterthan
monolithicarchitecturaltechniquefor application development 

whereas, a single deployable unit is deployed and scaled to 

the full framework. The company logics in monolithic 
architecture have been bundled over a single package and 

implemented as a single operation. The applications are thus 
scaled by horizontally executing many instances. 

Reactive Systems 

Systems or applications are created based on reactive 

principles with loosely-coupled, flexible, scalable and 

reliable which generate it as simple as to improve and 
responsible to modify. Therefore, the failure tolerance is 

highly significant and it gets gracefully while the failure 
occurs instead of catastrophically failing. In addition, the 

reactive system is highly responsive in providing users with a 
better user experience. 

The reactive technique features has determine the 
reactive manifesto using four basic principles: 

 Responsive: Responds promptly in a timely manner 

and respond frequently has established its upper 
bound reliability and delivered a constant Quality of 

Services (QoS). 

 Resilient: According to the reactive failure, 

the presence of resilience may get accomplished by 
isolation, containment, replication and delegation.  

 Elastic: Is responsive while varying workloads and 
has ability in reacting to modify with request load 

Proceedings of the Second International Conference on Electronics and Sustainable Communication Systems (ICESC-2021)
IEEE Xplore Part Number: CFP21V66-ART; ISBN: 978-1-6654-2867-5

978-1-6654-2867-5/21/$31.00 ©2021 IEEE 147

Authorized licensed use limited to: Nitte Meenakshi Institute of Technology. Downloaded on September 28,2021 at 07:22:37 UTC from IEEE Xplore.  Restrictions apply. 



using decrease or increase of resources which 

allocated for servicing these requests.  

 Message driven: In order to establish the boundary 

between components using asynchronous message 
passing. It supports several characteristics like 

location transparency, isolation, and loose coupling. 

A. Reactive Microservices: 

The principle of reactive microservice technique has 
provided specific possibilit ies in which each part of the 

reference architecture present in microservice is involved. 
Components, are independently scale, develop, retire, 

released, deploy and update which has introduced the needed 

resilience into the method to avoid failure cascading which 
maintain the method as responsive while failure occurs. In 

addition, the communication of asynchronous has aided 
using reactive technique with communication challenges and 

load variation in modern systems. The implementation of 
reactive microservice framework is Node.js, Qbit, Netflix 

Spring Cloud, etc. but Vert.x has been considered as a basic 
toolkit to create RM. 

B. Implementating Reactive Microservices Architecture Via 

Vertx:The word “data” is plural, not singular. 

The toolkit Vert.x has performed to create reactive and 
distributed applications with the top of Java Virtual 

Machine (VM) by non-blocking asynchronous 
growth model. It is created for implementing an event 

bus that act as a broker for lightweight message and 

it’s enabled several components of the application 
in communicating over non-blocking and thread safe 

manner. Vert.x has offered several components to 
create RM based applications.  

The Vert.xVerticle is a logical code unit has capable for 
implementing over Vert.x which is proportionate to 

actor in the actor model. The similar Vert.x 
application has been collected in several 

verticle cases available in each vert.x. Therefore, the 

verticle has ability for communicating each by 
sending messages over event bus.  

The Vert.xevent Bus perform as a lightweight 
distributing messaging technique which involves 

various application parts or dissimilar applications 
and services for communicating with each other over 

loosely coupled method. The event bus is experienced 

with several messaging such as point-to-point, request 
response and publish subscribe. In the event bus, the 

verticle has performed to address  send and listen 
information whereas it is also called as channel. If a 

message is sent to the specific address then all 
Verticles which observe over specific address that has 

been received the message. The key features of Vert.x 

are suited for microservices architecture 

 Lightweight:Based on the distribution and runtime 

footprint, the Vert.x core has used limited size as 
650kB and light weighted which is completely 

integrated with existing applications. 

 Scalable:  Vert.x has ability to scale horizontally as 

well as vertically and it create cluster by Hazelcast or 
JGroups. It has the capability to use all CPUs in the 

Processor for the machine or cores. 

 Polyglot:Java, JavaScript, Ruby, Python and Groovy 

can be executed by Vert.x. through an event bus 
presented in different languages and the Vert.x 

components have communicate with each other 
easily. 

 Fast, Event-Driven and Non-blocking:However, there 
is no thread in Vert.x APIs block. Therefore, the 

Vert.x application can able to maintain a better 
adequacy with less thread counts. Thus, it provide an 

experts thread for handling the blocking calls.    

 Modular:The runtime of Vert.x is segregated into 
several components whereas  it is needed and 

available to the specific implementation to utilize. 

 Unopinionated:Vert.x is not a container or disruptive 

method but doesn't support an appropriate way of 
describing the application. Conversely, the Vert.x is 

offering various modules and empowered developers 
to build their individual applications. 

Moreover, 

thisimplementationincludestheinvokeofanexternallyappli
cablemicroservice, 

requestingfiveindividualmicroservices , 
computingtheresponsefromalltheseservicesandreturntheca

llertothecompositeresponse.TheFlightInfoServiceis 
a hybrid service which intended to be deployed by web 

portals and smartphone applications. Hence, it is intended 

to access information related to a respective flight such as 
flight timetable, current status of the flight, individual 

aircraft, and weather reports at the airports of arrival and 
departure. 

Our Approach 

Setup: Structural and core infrastructure, along 

with all organizational government initiative (for 

application navigation, tracking, call monitoring, 

application development, hierarchical log tracking 

and security), were deployed in remote backup 

virtual servers as individual Java applications. 

 

Process: the FlightInfoService composite service 

was invoked using Apache JMeter. With identical 

components running on the same virtual machines, 

the three scenarios (Spring Cloud Netflix-Synch, 

Spring Cloud Netflix Asynch and Vert.x) were 

executed serially in the same environment. 

 

Configuration settings: Composite and core 

services with their default configuration options, 

along with all governance components, have been 

executed. 

The implementation of asynchronous and reactive message 

in Vert.x has exchanged the pattern among core and 

composite services is shown in Figure I. The microservices 

are implemented as Vert.xVerticles. 

 

Proceedings of the Second International Conference on Electronics and Sustainable Communication Systems (ICESC-2021)
IEEE Xplore Part Number: CFP21V66-ART; ISBN: 978-1-6654-2867-5

978-1-6654-2867-5/21/$31.00 ©2021 IEEE 148

Authorized licensed use limited to: Nitte Meenakshi Institute of Technology. Downloaded on September 28,2021 at 07:22:37 UTC from IEEE Xplore.  Restrictions apply. 



 
Fig. 1. Block diagram for Reactive Microservices Architecture Via Vert.X 

 

The design of RM frameworks by Vert.x consists of 

subsequent features in which certain features are p romising 

for the deployment of enterprise-scale microservices: 

 

The components present in the vert.xmicroservice 

ecosystem which consists of composite and core 

microservices and various operational components for 

communicat ing each other Via the Event Bus introduced 

by a Hazelcast cluster.  

 

Vert.x has facilitates polyglot programming, indicating  that 

multip le microservices, namely Java, JavaScript, Groovy, 

Ruby and Ceylon, are being developed in various languages. 

 

1. Vert.xhas generated automatic fail-over as well as 

load balancing out of the box. 

 

2. Vert.xassists in establishing various components of 

usual microservices reference architecture need to 

be created. Thus, the microserviceshave been 

implemented as Verticles. 

 

IV. COMPARISON BASED ON THROUGHPUT  

Figure IIshows the throughput comparison between 

Spring Cloud Netflix (Sync and Async-REST) and the Vert.x 
implementation 

 

Fig. 2. Comparison of throughput performance between nonreactive and 
reactive implementation alternatives 

Spring Cloud Netflix–Sync implementation: The request 
number progressed per second has been observed as the least 

from the three sequences of events. Hence, it illustrate that 
the pools of server request thread are enervated as a complex 

for core service have invocate by blocking and synchronous. 

Thus, the processor and use of memory are not significant. 
Similarly, the I/O operations are blocked by the central and 

composite services. 

Spring Cloud Netflix–Async-REST implementation: The 

Asynch API of the Spring Framework and RxJavaare assist 
for incrementing the progress of ma ximum requestsper 

second. This is due to implement of core and composite 

services are utilized in  the Spring Framework’s alternative 
technique for asynchronous request processing. 

Vert.x implementation: The request number progressed 
per second has been observed as the least from the three 

sequences of events because of Vert.x’sevent-driven and 
non-blocking in nature. Vert.x uses a paradigm of an actor-

based interoperability which   considers it as a 

multiple pattern which utilizes various case sequences 
through available cores on VMs. Hence, the edge server is 

based on the non-blocking Vert.x Web module. Rather than 
conventional synchronous HTTP, Async RPC has been 

utilized for compositing the core service requests that 
resulted with better throughput. When comparing 

with blocking JDBC requests, asynchronous API is 
performing faster in interaction with database for Vert.x 

JDBC clients. Thus, the entire scales are better with 

incremental of virtual users. 

V. CONCLUSION 

The principle of reactive is not the recent one but it has 

been utilized and determined over a decade. 

The efficient influence of RM concepts with modern 

platform of software and hardware is for delivering 

autonomous microservices, loosely coupled and single 

responsibility by asynchronous message passed to 

0

200

400

600

800

1000

1200

1
0

2
5

5
0

8
0

1
0
0

1
5
0

2
0
0

2
5
0

3
0
0

3
5
0

4
0
0

4
5
0

5
0
0

Th
ro

u
gh

p
u

t 
(r

e
q

u
e

st
/s

e
c)

 

Virtual Users 

VertX

Proceedings of the Second International Conference on Electronics and Sustainable Communication Systems (ICESC-2021)
IEEE Xplore Part Number: CFP21V66-ART; ISBN: 978-1-6654-2867-5

978-1-6654-2867-5/21/$31.00 ©2021 IEEE 149

Authorized licensed use limited to: Nitte Meenakshi Institute of Technology. Downloaded on September 28,2021 at 07:22:37 UTC from IEEE Xplore.  Restrictions apply. 



interservice communication. This research has been 

implemented by highlighting the adoptive reactive 

microservices feasibility applicab le for implementing 

ecosystem of microservice to an enterprise application with 

the development of Vert.x as a fascinating reactive toolkit. 

Vert.x provides its own fault tolerance mechanisms in 

Vert.x Circu it Breaker project. It  is a  simple implementation 

of the circuit breaker pattern for Vert.x that keeps track of 

the number of failures and opens the circuit when a 

threshold is reached. This research has underscored the 

better operational effectiveness, which  can be acquired  from 

reactive microservices. 
 

ACKNOWLEDGMENT (Heading 5) 

The preferred spelling of the word “acknowledgment” in 
America is without an “e” after the “g”. Avoid the stilted 

expression “one of us (R. B. G.) thanks ...”.  Instead, try “R. 

B. G. thanks...”.Put sponsor acknowledgments in the 
unnumbered footnote on the first page. 

REFERENCES 

[1] D. Jaramillo, D. V. Nguyen, and R. Smart, “Leveraging microservices 
architecture by using Docker technology,” SoutheastCon, 2016. 

[2] A. D. Camargo, I. Salvadori, R. Mello, S. Dos, and F. Siqueira, “An 
architecture to automate performance tests on microservices,” in Proc. 18th 
Int. Conf. Inf. Integr. Web-based Appl. Serv, 2016. 
[3] J. Bon´er, D. Farley, R. Kuhn, and M. Thompson, “The reactive 

manifesto,” 
Dosegljivo: http://www. reactivemanifesto. org/.[Dostopano: 21. 08. 2017], 
2014. 
[4] Cleber Santana, Leandro Andrade, Brenno Mello, Ernando Batista, José 

VitorSampaio and CássioPrazeres, “A Reliable Architecture Based on 
Reactive Microservices for IoT applications”, Associat ion for Computing 
Machinery, ISBN 978-1-4503-6763-9/19/10, 2019. 
[5] Cleber Jorge Lirade Santana, Brennode Mello Alencar, and 

CássioV.SerafimPrazeres,    “Reactive Microservices for the Internet of 
Things:A Case Study in Fog Computing”,2019, https://doi.org/10. 
1145/3297280.3297402 

[6] Rodrigo da Rosa Righi, Everton Correa, M Ãąrcio Miguel Gomes and 
Cristiano AndrÃľda Costa, “Enhancing performance of IoT applications 
with load prediction and cloud elasticity”, Future Generation Computer 
Systems, 2018, pp-1–13. https://doi.org/10.1016/j.future.2018.06.026. 

[7] Mohammad SadeghHamzehloui, ShamsulSahibuddin, and 
ArdavanAshabi, “A Study on the Most Prominent Areas of Research in 
Microservices”,International Journal of Machine Learning and Computing, 
Vol. 9, No. 2, April 2019. 

[8] Amit Samanta, Yong Li and Flavio Esposito, “Battle of Microservices: 
Towards Latency-Optimal Heuristic Scheduling for Edge Computing”, 
IEEE,2019. 
[9] Alexander Power and Gerald Kotonya, “ AMicroservices Architecture 

for Reactive and Proactive Fault Tolerance in IoT Systems”, 2018.  
[10] L. Sun, Y. Li, and R. A. Memon, “An open iot framework based on 
microservices architecture,” China Communications, vol. 14, no. 2, pp. 

154–162, 2017.  
[11] A. Celesti, L. Carnevale, A. Galletta, M. Fazio, and M. Villari, “A 
watchdog service making container-based micro-services reliable in iot 
clouds,” in 2017 IEEE 5th International Conference on Future Internet of 

Things and Cloud (FiCloud). IEEE, 2017, pp. 372–378. 
[12] DivyaGoel and Amaresh Nayak, “Reactive Microservices in 
Commodity Resources”, IEEE, 2019. 
[13] N. Dragoni, S. Giallorenzo, A. L. Lafuente, M. Mazzara, F. Montesi, 

R. Mustafin, and L. Safina, “Microservices: yesterday, today, and 
tomorrow,” in Present and ulterior software engineering. Springer, 2017, 
pp. 195–216. 
[14] C. K. Rudrabhatla, “Comparison of event choreography and 

orchestration techniques in microservice architecture,” International Journal 
of Advanced Computer Science and Applications, vol. 9, no. 8, pp. 18–22, 
2018.  

[15] J. P. Macker and I. Taylor, “Orchestration and analysis of 
decentralized workflows within heterogeneous networking infrastructures,” 
Future Generation Computer Systems, vol. 75, pp. 388–401, 2017. 

[16] A. V. Dastjerdi and R. Buyya, “Fog computing: Helping the internet of 
things realize its potential,” Computer, vol. 49, no. 8, pp. 112–116, 2016. 

[17] A. Al-Fuqaha, M. Guizani, M. Mohammadi, M. Aledhari, and M. 
Ayyash, “Internet of things: A survey on enabling technologies, protocols, 
and applications,”IEEE Communications Surveys & Tutorials, vol. 17, no. 
4, pp. 2347–2376, 2015. 

[18] Pedro M.TaverasNÃžÃśez, “A Reactive Microservice Architectural 
Model with asynchronous Programming and Observable Streams as an 
Approach to Developing IoT Middleware”, 2017. 
[19]Lucas M.C.e Martins, Francisco L. de Caldas 

Filho,RafaelT.deSousaJúnior, William F. Giozza, and João Paulo C.L. da 
Costa, “Increasing the Dependability of IoT Middleware with Cloud 
Computing and Microservices”, In Companion Proceedings of the10th 
International Conference on Utility and Cloud Computing,2017.  

[20] Salman Taherizadeh, VladoStankovski, and Marko Grobelnik,  “A 
Capillary Computing Architecture for Dynamic Internet of 
Things:Orchestration of Microservices from Edge Devices to Fog and 

Cloud Providers”, Sensors vol-18,issues-9, 2018, pp-13–22. 
https://doi.org/10.3390/s18092938. 

 

Proceedings of the Second International Conference on Electronics and Sustainable Communication Systems (ICESC-2021)
IEEE Xplore Part Number: CFP21V66-ART; ISBN: 978-1-6654-2867-5

978-1-6654-2867-5/21/$31.00 ©2021 IEEE 150

Authorized licensed use limited to: Nitte Meenakshi Institute of Technology. Downloaded on September 28,2021 at 07:22:37 UTC from IEEE Xplore.  Restrictions apply. 
View publication stats

https://www.researchgate.net/publication/354808499

