

ScienceDirect[®]

Materials Letters Volume 330, 1 January 2023, 133311

Study of the structural, magnetic and dielectric properties of GdMnO₃-GdMn₂O₅ nanocomposites via sol-gel route

<u>J. Gajendiran ^a ^A ⊠</u>, <u>S. Gnanam ^b, K. Ramachandran ^c, V.C. Bharath Sabarish ^d, A. Durairajan ^e, M.P.F. Graça ^e, M.A. Valente ^e, S. Gokul Raj ^f, G. Ramesh Kumar ^d ^A ⊠</u>

Show more 🗸

😪 Share 🍠 Cite

https://doi.org/10.1016/j.matlet.2022.133311 オ Get rights and content オ

Highlights

- GdMnO₃-GdMn₂O₅ nanocomposite was synthesized via sol-gel route.
- Raman, magnetic and <u>dielectric</u> studies were analyzed for GdMnO₃-GdMn₂O₅ samples.
- GdMnO₃-GdMn₂O₅ was also analyzed by <u>XRD</u>, W-H plot, <u>EDX</u> and TEM studies.
- Weak ferromagnetic behavior was found from the HT-VSM measurement.
- Applied frequency & temperature play a vital role on electrical properties.

Abstract

Using the sol–gel route, GdMnO₃-GdMn₂O₅ nanocomposite was synthesized at 1000°C. For the first time, in the above room temperature conditions, Raman, magnetic, and dielectric measurements were taken of the synthesized GdMnO₃-GdMn₂O₅ composite.The diffraction peak position resulting from a XRD pattern confirmed the formation of GdMnO₃ and GdMn₂O₅, as well as an orthorhombic structure. Using the Raman spectra, three Raman peaks (363,475 and 608 cm⁻¹) were detected for the synthesized composite at 350 and 400K, indicating the formation of a bi-phase of gadolinium manganese oxide. A TEM image of the synthesized product revealed agglomerated spherical particles with a polycrystalline structure. A weak ferromagnetic behavior was found for the synthesized composite using the high-temperature vibrating sample magnetometer. From the dielectric study, it is inferred that the applied frequency and temperature play a vital role affecting the dielectric constant, dielectric loss and AC conductivity values in the synthesized composite.

Graphical abstract

Download: Download high-res image (210KB) Download: Download full-size image

Introduction

Gadolinium manganese oxides, such as GdMnO₃ and GdMn₂O₅ composites, have an orthorhombic crystal structure with paramagnetic behavior at room temperature, whereas they have an antiferromagnetic nature at low temperatures [1], [2]. In addition, the above-said materials have been studied for electrical and magnetic characterization by many researchers, and they claimed that GdMnO₃ and GdMn₂O₅ materials have multifunctional properties like ferroelectricity, good dielectric constant, and magnetic electric couple effect [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11], [12]. The above properties are very useful in spintronics-based devices and electrical device applications [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11], [12]. Strong or weak interaction between magneto-electric couple effects depends on the formation of GdMnO₃ or GdMn₂O₅ material. According to recent reports, dopants such as Ba, Ca, Yb, Fe, Zr, and Cr introduced into the GdMnO₃ or Nd-doped GdMn₂O₅ material improve the electrical and magnetic behavior when compared to the undoped GdMnO₃ or GdMn₂O₅ material [2], [13], [14], [15], [16], [17], [18]. Deepa Singh et al. [2], Ye et al. [4], Guo et al. [19] and Wang et al. [20] investigated the electrical and

magnetism behavior, catalytic activity, and optical properties of the GdMn₂O₅ admixture on GdMnO₃ compounds using various chemical routes including co-precipitation method, solid-state reaction, sol–gel method followed by in-situ generated by acid treatment and polymerized complex method. In the present work, using the sol–gel reaction, GdMn₂O₅ admixture on the GdMnO₃ material has been synthesized and followed by investigation into the structural (Raman spectra) characteristics, magnetic and dielectric properties at above room temperature conditions for the first time. In addition, the above sol–gel methods have some merits for synthesizing of the title compound, such as fast hydrolysis and condensation at short reaction intervals, size control and low cost.

Section snippets

Experimental

 $GdMnO_3-GdMn_2O_5$ nanocomposite was synthesized by mixing 1.734g of gadolinium nitrate $(Gd(NO_3)_3\cdot 6H_2O)$ and 0.6877g of manganese nitrate $(Mn(NO_3)_2\cdot 4H_2O)$ in 50mL of water medium under magnetic stirring. 1.164g of carbonyl diamide $(NH_2-CO-NH_2)$ was added to the above solution and magnetically stirred for 5 hrs at 70–80°C. Following this chemical reaction, a carbonyl diamide-gadolinium-manganese oxide precursor gel was formed, which was heat-treated at 400°C to yield the as-prepared GdMnO_3-GdMn_2O_5...

Results and discussion

Using an X-ray instrument, X-rays passed on the synthesized GdMnO₃ powder, diffraction angles were scanned, and the XRD pattern is shown in Fig. 1b. After that, a careful examination of the XRD pattern of the synthesized material reveals that all the diffraction peaks' positions are indexed as well as their respective miller index planes. When the obtained diffraction peak positions are compared to the previously reported XRD patterns of GdMnO₃ and GdMn₂O₅, the formation of the orthorhombic...

Conclusion

In summary, a GdMnO₃-GdMn₂O₅ nanocomposite was synthesized using the sol–gel route and its crystalline structure, particle size, vibration modes, magnetism behavior, and dielectric properties were investigated. XRD analysis revealed that the synthesized product has an orthorhombic crystal structure with a bi-phase compound (GdMnO₃ and GdMn₂O₅). The slight variation in the Raman shift was detected in the Raman spectra of the GdMnO₃-GdMn₂O₅ at temperatures applied from 350 to 400K. The Raman...

CRediT authorship contribution statement

J. Gajendiran: Methodology, Investigation, Writing – original draft, Writing – review & editing, Conceptualization. S. Gnanam: Investigation, Writing – original draft, Writing – review & editing, Conceptualization. K. Ramachandran: Formal analysis. V.C. Bharath Sabarish: Methodology, Conceptualization. A. Durairajan: Formal analysis. M.P.F. Graça: Formal analysis. M.A. Valente: Formal analysis. S. Gokul Raj: Writing – review & editing. G. Ramesh Kumar: Conceptualization, Investigation, Writing...

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper....

Recommended articles

References (20)

M. Wang et al.

The effects of hot isostatic pressing temperature on the structure and properties in GdMnO₃ ceramics

Ceramic Int. (2022)

Y. Romaguera-Barcelay *et al.* Structural, electrical and magnetic properties of magnetoelectric GdMnO₃ thin films prepared by a sol-gel method

Thin Solid Films. (2014)

S. Samantaray *et al.* Correlation between structural, electrical and magnetic properties of GdMnO₃ bulk ceramics

J. Magn. Magn. Mater. (2013)

A. Rasras et al.

Study of the magnetocaloric effect in single-phase antiferromagnetic GdMnO₃

J. Phys. Chem. Solids. (2021)

```
J. Chen et al.
```

An evaluation of the impact of Ca substitution on the structural and magnetic properties of GdM_nO3 ceramics

Ceramic Int. (2020)

F. Yan et al.

The influence of Zr doping on the structure, vacancy defects, and magnetic properties of GdMnO₃ ceramics

```
J. Magn. Magn. Mater. (2022)
```

M. Guo et al.

Enhanced catalytic activity of oxygenated VOC deep oxidation on highly active insitu generated GdMn2O5/GdMnO3 catalysts

J. Colloid Interface Sci. (2020)

R. Sarkar et al.

Dielectric properties and thermally activated relaxation in monovalent (Li⁺¹) doped multiferroic GdMnO₃

Appl. Phys A. (2021)

D. Singh *et al.* Effect of neodymium doping on structural, electrical and magnetic properties of multiferroic $GdMn_2O_5$

```
J. Mater. Sci: Mater. Electron. (2017)
```

F. Ye *et al.* The structural, dielectric, and magnetic properties of GdMnO₃ multiferroic ceramics J. Mater. Sci: Mater. Electron. (2020) There are more references available in the full text version of this article.

Cited by (0)

View full text

9/12/24, 2:10 PM

© 2022 Elsevier B.V. All rights reserved.

All content on this site: Copyright © 2024 Elsevier B.V., its licensors, and contributors. All rights are reserved, including those for text and data mining, AI training, and similar technologies. For all open access content, the Creative Commons licensing terms apply.

