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MEAN LABELING FOR STAR AND PATH GRAPH

K. VISWANATHAN, V. SWATHY, V. MAHESHWARI, AND V. BALAJI1

ABSTRACT. In this paper, we proved that for α ≤ β, the graph K1,α ∧ Pβ is a
mean graph if α ≤ 6; β > 1 and not a mean graph if α ≥ 9; β > 1.

1. INTRODUCTION

Somasundaram and Ponraj [8] have introduced the notion of mean
labelings of graphs. A graph G with p nodes and q links is called a mean graph
if there is an one to one function ϕ from the nodes of G to {0, 1, 2, · · · q} such
that when each link λµ is labeled with (ϕ(λ)+ϕ(µ))

2
if ϕ(λ) + ϕ(µ) is even, and

(ϕ(λ)+ϕ(µ)+1)
2

if ϕ(λ) + ϕ(µ) is odd, then the resulting link labels {1, 2, · · · q} are
distinct. In [1], [2], [8], [9], [10], [11], [4], and [5] they proved the following
graphs are mean graphs: Pβ; Cβ; K2,α; K2 +mK1; Kn + 2K2; Cα ∪ Pβ; Pα × Pβ;
Pα × Cβ; Cα � K1; Pβ � K1, triangular snakes, quadrilateral snakes, Kα if and
only if α < 3; K1,α if and only if α < 3, bistars Bα,β (α > β) if and only if
α < β + 2, the subdivision graph of the star K1,α if and only if α < 4. In [3],
they proved that two star K1,α ∧K1,β is a mean graph if and only if |α− β| ≤ 4.
In [6], they proved that if α ≤ β < γ , then the three star K1,α ∧ K1,β ∧ K1,γ

is a mean graph if and only if α + β − 8 ≤ γ ≤ α + β + 4 when α > 9 and
β + 1 ≤ γ ≤ α + β + 4 when 1 ≤ α ≤ 9. In [7], they have proved that the four
star K1,g1 ∧K1,g2 ∧K1,g3 ∧K1,g4 , g1 ≤ g2 ≤ g3 ≤ g4 is a mean graph if and only
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if 1. g4 ∈ [g3, g1 + g2 + g3 + 5] if g1 ≤ 9 and
2. g4 ∈ [g3, g3 + 7] ∪ [g1 + g2 + g3 − 11, g1 + g2 + g3 + 5] if g1 > 9.

By refering these results we got motivated and worked on Mean labeling for star
and path graphs.

Definition 1.1. A wedge is a link which is used for connecting two components
of a graph. It is denoted as ∧, λ(G∧) < λ(G). where λ denotes the number of
components of graph.

Definition 1.2. A graph G with p nodes and q links is called a mean graph if there
is an one to one function ϕ from the nodes of G to {0, 1, 2, · · · q} such that when
each link λµ is labeled with (ϕ(λ)+ϕ(µ))

2
if ϕ(λ) + ϕ(µ) is even, and (ϕ(λ)+ϕ(µ)+1)

2
if

ϕ(λ) + ϕ(µ) is odd, then the resulting link labels {1, 2, · · · q} are distinct.

2. MAIN RESULTS

Theorem 2.1. For α ≤ β, the graph K1,α ∧ Pβ is mean graph if α ≤ 6 and β > 1.

Proof. Let the graph G = K1,α ∧ Pβ. Let α ≤ β. Let {ρ} ∪ {ρi : 1 ≤ i ≤ α};
{κj : 1 ≤ j ≤ β} be the nodes of G. Then We have,

V (G) = {ρ} ∪ {ρi : 1 ≤ i ≤ α} ∪ {κj : 1 ≤ j ≤ β}

and

E(G) = {ρρi : 1 ≤ i ≤ α}∪{κjκj+1 : 1 ≤ j ≤ β − 1}∪{ρiκj : for some i and j} .

Then G has α+β+1 nodes and α+β links. Node and link labeling of G is given
by the function ϕ anf ϕ∗ respectively, where, ϕ : V (G) → {0, 1, 2, · · · q = α + β}
and ϕ∗ : E(G) → {1, 2, · · · q = α + β}. Now we have to prove that G is mean
graph if α ≤ 6 and β > 1.

Case 1 When α = 1, 2, 3 and β > 1. The node labeling of G:

ϕ(ρ) = q − 1; ϕ(ρ1) = q;

ϕ(ρ2) = q − 2; ϕ(ρ3) = ϕ(ρ2)− 1

and
ϕ(κj) = j − 1 for 1 ≤ j ≤ β.

The link labeling of G: ϕ∗(ρρ1) = q; ϕ∗(ρρ2) = q − 1; ϕ∗(ρρ3) = q − 2 and
ϕ∗(κjκj+1) = j for 1 ≤ j ≤ β − 1.
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The wedge ρακβ is ϕ∗(κβ−1κβ) + 1. Hence all the node and link labels are
distinct. Therefore G is mean graph when α = 1, 2, 3 and β > 1.

Case 2 When α = 4 and β > 1. The node labeling of G:

ϕ(ρ) = q − 1;ϕ(ρ1) = q; ϕ(ρ2) = q − 2;

ϕ(ρ3) = ϕ(ρ2)− 1; ϕ(ρ4) = ϕ(ρ3)− 2;

ϕ(κj) = j − 1 for 1 ≤ j ≤ β − 1 and ϕ(κβ) = ϕ(κβ−1) + 2.

The link labeling of G: ϕ∗(ρρ1) = q; ϕ∗(ρρi) = ϕ∗(ρρi−1) − 1 for i = 2, 3, 4 and
ϕ∗(κjκj+1) = j for 1 ≤ j ≤ β − 1. The wedge ρ4κβ is ϕ∗(κβ−1κβ) + 1.

Hence all the node and link labels are distinct. Therefore G is mean graph
when α = 4 and β > 1.

Case 3 When α = 5 and β > 1. The node labeling of G:

ϕ(ρ) = q − 1;ϕ(ρ1) = q; ϕ(ρ2) = q − 2;ϕ(ρ3) = ϕ(ρ2)− 1;

ϕ(ρi) = ϕ(ρi−1)− 2 for i = 4, 5; ϕ(κj) = j − 1 for 1 ≤ j ≤ β − 2

and
ϕ(κj) = ϕ(κj−1) + 2 for j = β − 1, β.

The link labeling of G:

ϕ∗(ρρ1) = q; ϕ∗(ρρi) = ϕ∗(ρρi−1)− 1 for i = 2, 3, 4, 5;

ϕ∗(κjκj+1) = j for 1 ≤ j ≤ β − 2; and ϕ∗(κβ−1κβ) = ϕ∗(κβ−2κβ−1) + 2.

The wedge ρ5κβ−1 is ϕ∗(κβ−2κβ−1) + 1.
Hence all the node and link labels are distinct. Therefore G is mean graph

when α = 5 and β > 1.

Case 4 When α = 6 and β > 1. The node labeling of G:

ϕ(ρ) = q − 1;ϕ(ρ1) = q; ϕ(ρ2) = q − 2; ϕ(ρ3) = ϕ(ρ2)− 1;

ϕ(ρi) = ϕ(ρi−1)− 2 for i = 4, 5; ϕ(ρ6) = ϕ(ρ5)− 4;

ϕ(κj) = j − 1 for 1 ≤ j ≤ β − 5;ϕ(κβ−4) = ϕ(κβ−5) + 2;

ϕ(κj) = j for j = β − 3, β − 2

and
ϕ(κj) = ϕ(κj−1) + 2 for j = β − 1, β.
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The link labeling of G:

ϕ∗(ρρ1) = q; ϕ∗(ρρi) = ϕ∗(ρρi−1)− 1 for i = 2, 3, 4, 5;

ϕ∗(ρρ6) = ϕ∗(ρρ5)− 2; ϕ∗(κjκj+1) = j for 1 ≤ j ≤ β − 6;

ϕ∗(κβ−5κβ−4) = ϕ∗(κβ−6κβ−5) + 1; ϕ∗(κβ−4κβ−3) = ϕ∗(κβ−5κβ−4) + 2;

ϕ∗(κjκj+1) = ϕ∗(κj−1κj) + 1 for j = β − 3, β − 2

and ϕ∗(κβ−1κβ) = ϕ∗(κβ−2κβ−1) + 2. The wedge ρ6κβ−4 is ϕ∗(κβ−5κβ−4) + 1.
Hence all the node and link labels are distinct. Therefore G is mean graph

when α = 6 and β > 1. Hence, For α ≤ β, the graph K1,α ∧ Pβ is mean graph if
α ≤ 6. �

Remark 2.1. For the graphs K1,7 ∧ Pβ and K1,8 ∧ Pβ, β > 1 the labeling exists if
α ≤ β but we are not able to generalise it.

FIGURE 1. K1,7 ∧ P25

Theorem 2.2. For α ≤ β, the graph K1,α ∧ Pβ is not a mean graph if α ≥ 9 and
β > 1.

Proof. Let G = K1,α∧Pβ. Let α ≤ β. Now we have to prove that G is not a mean
graph if α ≥ 9 and β > 1. Suppose G is a mean graph for α ≥ 9 and β > 1. Let
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FIGURE 2. K1,8 ∧ P20

us now consider the case when α = 9 and β = 9 then G has 19 nodes and 18
links. we define,

V (G) = {ρ} ∪ {ρi : 1 ≤ i ≤ α = 9} ∪ {κj : 1 ≤ j ≤ β = 9}

and

E(G) = {ρρi : 1 ≤ i ≤ α = 9} ∪ {κjκj+1 : 1 ≤ j ≤ β − 1 = 8} .

Suppose G is a mean graph and let p = 19 and q = 18. Then there is an one to
one function ϕ from the nodes of G to {0, 1, 2, · · · q} such that when each link λµ
is labeled with (ϕ(λ)+ϕ(µ))

2
if ϕ(λ) + ϕ(µ) is even, and (ϕ(λ)+ϕ(µ)+1)

2
if ϕ(λ) + ϕ(µ)

is odd, then the resulting link labels {1, 2, · · · q} are distinct. Let us first label
nodes of K1,α such that its links are labeled as {10, 11, 12, · · · 18}. The possibility
of the link label 18 are 17 and 18. Therefore 18 should be the label of the graph
G. Let it be ϕ(ρ) = 18. The possibilities for ϕ(ρi), for 1 ≤ i ≤ 9 for obtaining
the link labels {10, 11, 12, · · · 18} are 17, (16 or 15), (14 or 13), ( 12 or 11 ), (10
or 9), (8 or 7), (6 or 5), (4 or 3), (2 or 1) which implies ϕ(ρ1) = 17. Now we
label the nodes of P9 such that its links are among {1, 3, 4, 5, 6, 7, 8, 9} and 2 be
the wedge label.

Case 1: The possibilities to get link label 1 are (0 and 1) or (0 and 2). Let
ϕ(κ2) = 0 then, ϕ(ρ9) should be either 1 or 2. Suppose ϕ(ρ9) = 1 then 2 should
be the label of any one of the nodes of P9. Let ϕ(κ3) = 2 then ϕ∗(κ2κ3) = 1.

Case 2: consider ϕ(ρ8) should be either 3 or 4. If ϕ(ρ8) = 3 then 4 will be the
label of any one of the nodes of P9. If we assume ϕ(κ4) = 4 then ϕ∗(κ3κ4) = 3.
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Case 3: Let us fix ϕ(ρ7) should be either 5 or 6. In case ϕ(ρ7) = 5 then 6 should
be the label of any one of the nodes of P9. Let ϕ(κ5) = 6 then ϕ∗(κ4κ5) = 5.

Case 4: Let us set ϕ(ρ6) should be either 7 or 8. Suppose ϕ(ρ6) = 7 then 8 must
be the label of any of the nodes of P9. Let ϕ(κ6) = 8 then ϕ∗(κ5κ6) = 7.
Case 5: consider ϕ(ρ5) should be either 9 or 10. If ϕ(ρ5) = 9 then 10 should be

the label of any of the nodes of P9. Assume ϕ(κ7) = 10 then ϕ∗(κ6κ7) = 9.

Case 6: Let us set ϕ(ρ4) should be either 11 or 12. In case ϕ(ρ4) = 11 then
12 must be the label of any of the nodes of P9. Now Consider ϕ(κ8) = 12 then
ϕ∗(κ7κ8) = 11 (which is not possible). Therefore, ϕ(κ8) 6= 12. Let ϕ(κ1) = 12

then ϕ∗(κ1κ2) = 6.

Case 7: Let us fix ϕ(ρ3) should be either 13 or 14. Suppose ϕ(ρ3) = 13 then 14
should be the label of any of the nodes of P9. Let us assume that ϕ(κ8) = 14

then ϕ∗(κ7κ8) = 12 (which is not possible). Therefore, ϕ(κ8) 6= 14. suppose
ϕ(κ8) = 13 then ϕ∗(κ7κ8) = 12 (which is not possible). Therefore, ϕ(κ8) 6= 13.
since ϕ(ρ2) should be either 14 or 15. If we assume ϕ(κ8) = 14 then ϕ∗(κ7κ8) =

13 (which is not possible). Therefore, ϕ(κ8) 6= 14. suppose ϕ(κ8) = 15 then
ϕ∗(κ7κ8) = 13 (which is not possible). Therefore, ϕ(κ8) 6= 15. The remaining
possible link labels are {4, 8} which is not possible when ϕ(κj) = 13 or 14 or
15 or 16. Therefore, G is not a mean graph when α = β = 9. Similarly we can
prove for all other cases. Therefore, G is not a mean graph when α ≥ 9 and
β > 1 for α ≤ β. Therefore, K1,α ∧ Pβ is not a mean graph if α ≥ 9 and β > 1

for α ≤ β. �

3. CONCLUSION

In this paper we proved that for α ≤ β, the graph K1,α ∧ Pβ is a mean graph
if α ≤ 6; β > 1 and not a mean graph if α ≥ 9; β > 1. In future, we planned to
work on Mean labeling for two star and a path graph.
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