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1. Introduction

G.C.Rao, Ravi Kumar, Banadaru, and N.Rafi proposed the concept of Generalized Almost
Distributive Lattices (GADFL) as a generalisation of Almost Distributive Lattices (ADLSs), which
were a common abstraction of almost all existing ring theoretic generalisations of a Boolean
algebra on the one hand and distributive lattices on the other. However, L.A.Zadeh [7]
introduced the concept of a fuzzy setin 1965. A fuzzy ordering, according to L.A. Zadeh [8, is
a transitive fuzzy relation that is a generalisation of the concept of ordering. A fuzzy partial ordering
is a reflexive and antisymmetric fuzzy ordering in particular. N.Ajmal and K.V.Thomas [1]
established a fuzzy lattice as a fuzzy algebra in 1994 and defined fuzzy sub lattices in 1995. In
2009, 1.Chon [4] presented a novel notion of fuzzy lattices and examined the level sets of fuzzy
lattices, based on Zadeh's fuzzy order concept. He also discussed the basic features of fuzzy lattices
and presented the concepts of distributive and modular fuzzy lattices.

In this paper, the fuzzy congruence relation of GADFL ( Generalized nearly distributive fuzzy
lattices). The ideas of 6 - ideal and 6 - Prime ideal are introduced in GADFL, and the fuzzy
congruence relation is used to explain these ideals.

2. Basic Definitions
The basic definitions of GADFL ideals are offered in this section, which is helpful in developing the
subsequent sections.
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2.1 Definition

Let L(R,V,A,0) be a fuzzy poset and (2,2,0) be an algebra type. If L(R, A) satisfies the following
axioms, we call L(R, A) is a Generalized Almost Distributive Fuzzy Lattice.

1 A(Can DA ¢, an(bA ©))=ACaA(bA ¢),(an B)A ¢)=1

2 ACan(bVv o), (an bD)v(arc)=A(Can bD)Vv(aA c), an(bv ¢))=1

3. ACav(bA o),(av b)A(CaVv ¢))=A((av B)A(aV ¢, av(bA ¢)=1
4, ACan(Cav b), a)=A(a an(av b)) =1

5. A((av b)Aa, a)=A( a,(aVv b)A a)=1

6. A((a/\ b)V b, b)=A( b,(an b)V b)=1Va,b,c ER.

2.2 Definition

Let L(R,A) be a GADFL and Ibe any R set that is not empty. If I meets the following
characteristics, it is said to be an ideal of a GADFL L(R,A).

1. abel=>avVvbel
2. a€ l,beE R=> aNnbe ]
2.3 Definition

An equivalence relation 6 on an ADL, L(R, A) is called a congruence relation on L if
(anc,bnd),(aVc,bvd)ebV (ab)(c,d)€ES?.

2.4 Definition
For any congruence relation 6 on an ADL and a € L , we define [a]g = {b € L | (a,b) € 6} and it
called the congruence class containing a.

2.5 Definition
Let (R,A) be a GADFL. An equivalent relation 6 on (R, A) is called a congruence on (R, A)if,
fora,b,c,d € R,holds (a,b),(c,d) €8 = (aVc,bvd),(anc,bnd)€EB.

3. Fuzzy Congruence relations in GADFL

3.1 Definition
A fuzzy congruence relations in GADFL 'A"is defined as a fuzzy relation that meets the following
requirements.

1. 6(a,a) = 1forall ae A

2 6(ab) = 6(b,y) foralla,b € A

3. 6( a, b) = 6(a, b) A 0(b,c),forall a,b,c € A

4 6CaVv ¢,bv d)yAbB(a A ¢c,bA d)=60(ab)AN 0(c, d)foralla,b,c,d € A

3.2 Definition
Forall a € A is afuzzy ideal of 4, the fuzzy subset ug(a) is defined by g (a n)=(a, 0)..

3.3 Definition
In GADFL A, let 6 be a fuzzy congruence relation. The fuzzy congruence class that includes a € A
is defined as follows: [a]g ={b € A | (a,b) €0 }.

3.4 Example
Let R = {a, b, c} On GADFL, define the two binary operations v and A follows.
v a |b c

a a b a
b b b |b
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A a |b c
a a |a |c
b |a b |c
e Te Tc [c b a Ib e

Cayley’s tables 1 & 2
And let R = {0’,a’} be a discrete GADFL with the Hasse diagram shown in the diagram.

|I1

c

0
Figure 1 Hasse diagram, discrete GADFL R = {0',a"}

Define the following fuzzy relation A: R x R — [0,1]:

L(R, A) ={(0',0),(0', a),(0', b),(0', ¢),(0',1),(a’, 0),(a’, a),(a, b),(a’, ¢),(a’,1)} is
GADFL under point-wise operations.

Take 6 = {((0',0), (0',0)), ((0", @), (0',a)), ((0",b), (0", b)), ((0", ), (0', ), ((0, 1), (0, 1)),

((a" 0)' (a,' 0))’ ((a,, a)' (a,’ a))' ((a" b)’ (a‘,’ b))' ((a,’ C)' (a,' C))' ((a,' 1)’ (a,’ 1))’ ((OI' C)' (OII 1))!
(0", 1), (0", 0))}.

Clearly, 6 is a fuzzy congruence relation on L(R, A4).

3.5 Theorem
In GADFL “A', let 8 be a fuzzy congruence relation. Then py is a fuzzy ideal of A.
Proof
Let 8 is a fuzzy congruence relation in GADFL ‘A’. The pe is the mapping defined by 6: A —
Band pg(a) is defined by pe( a) = 6( a, 0) for all a e A. Therefore, we get py(0) = 6(0,0) = 1.
For any x, y € 8this implies
we(x v y) =6((xVvy), 0)
= sup{08(x, a)A 6(y, b)| a, be A}
pe(xVv y) =2{6(x, a)A 6(y, b)| a,be A}
Assume b = 0, we get
no(x Vy) 2 {8(x,a) A6(y, 0)}
pe(xV y) = 1A pe(y)
pe(xV y) = pe(y)
Similarly, we find
no(x Ay) = 6((xV y),0)
= sup{0(x,a) A 6( y, b)| a, b €A}

pe(xA y) = {6(x, a)AB(y, b)| a,b €A}

Assume a =0, we get
no(x A y) 2 0{(xV0)A6(y, b)}
Ho(x A ¥) = pe(x, 0) A1
pa( X A y) = po(x, 0)
Ho( X A y) = po(x)
Therefore, we get po(x A y) > po(x)A pe(y). This implies pg(a) is a fuzzy ideal of GADFL ‘A°.
Hence Proved.
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3.6 Theorem
In GADFL ‘A’ let 8 be a fuzzy congruence relation. Then Vg is afuzzy ideal of A. Vy(x) is defined
as follows: Vo ( x) = Inf{6(a A x,x) ¥V a € A}.
Proof
Let 6 is a fuzzy congruence relation in GADFL ‘A’. Then Vg is a fuzzy ideal of A. Here Vy(x)
is defined by Vo ( x) = Inf{8(a A x, x)V a € A}.
Consider Vg(x) = Inf{8(an x, x)V a€ A}.=6(0,0)= 1
For any x,y € A, this implies
Vo(xV y)=Inf{0( an(xV y), xV y)|V a€ A}
=Inf{6(an( xV y),xVy)|V a€A}
=Inf{o(an x, x) AO(aAy,y)|V a€ A}
=Inf{8(an x, x)|V a€A}A Inf{B(aA y, y)|V a€ A}
=Ve( )NV (y)
Therefore Vg(x vV y) >V ( x)AVg( y)
Vo(xVv y)=Inf{0(an(xAYy), xA y)|Va€A}
=Inf{6(an x, x)ANO(yV y)|V a€ A4}
> Inf{0(an x), x)|V a €A}
=Inf{6(aA x, x)|V a €A}
=Vo( x)
Vo(xV y)2Vg(x)
Similarly, we get Vg(x VvV y) > Vg(y). Therefore, we get Vy(x Vy) = Vg (y)AVg(y). Hence vy is a
fuzzy ideal of GADFL ‘A’.

3.7 Definition
If there #is a fuzzy congruence relation in A that implies [a]gEl., then an ideal ¢ I' of GADFL ¢ A'
is said tobead- ideal of A.

3.8 Theorem

The following criteria are identical if 6 is a fuzzy congruence relation in GADFL ‘A" and I is an
ideal of A.

1. lis a - Ideal

2. For any a,b € A(a, b)eBandae [ = b€ I

3. I=U geil alo

Proof

Let §is a GADFL ‘A" fuzzy congruence relation, and I is an ideal of A. Assume [ is a @ —Ideal,
which means that if there is a fuzzy congruence relation in A for each a € I, it entails [a]g<SI.

Hence (1) = (2).

Assume for any a, b€ A, (a,b)€Ef and a€ = be [. Let ae€ I, this implies a €[ alo.
therefore we get | = U g alo. Conversely, we assume b €U ,¢;[ alsThen,
( a, b)edfor some b € I. Using condition (2) we get a€ | this implies | = U ,¢;[ alo. Hence,
we get (2) = (3).

Assume | = Ugg[ alo. Let b € I, this implies (a,b)€d, for some a € I. Let x €[ a]q this
implies we get (x, a) €. Therefore, we get ( x, a)ef<l. This implies | is a §— Ideal of A.
Hence (3) = (1).

3.8.  Definition

In GADFL “A', let 6 be a fuzzy congruence relation. If any a, b € I, such that a A be[a]g implies
either a € P or b € P, then a proper 0 —Ideal P of a GADFL ‘A" is said to be a & —Prime ideal of A.

3.9.  Theorem

In GADFL ‘A, let O be a fuzzy congruence relation. Then, in A, every prime ideal isa @ —Prime
ideal of A.

Proof
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Let & isa fuzzy congruence relationin GADFL ‘A’ and P be a prime ideal in A.

Therefore, forany a,b € I, such that a A b€[a]g this implies either a € Por b € P.

This implies [ a]g< P.

Therefore, Pisa 6-Ideal of A. Leta,b € I, such that a A b€[ a]g this implies either

[ a A b]s€[ 0]g since & be a fuzzy congruence relation in GADFL ‘A’.

Therefore, we get a A b=0€P.

Hence, we get Pisa @ — Prime ideal of A.

3.10. Theorem

Let A be a 6 ideal of # and be a fuzzy congruence relation in GADFL ‘A'. Then the statements that
follow are equivalent.

1. P is a 8 — Prime ideal of A.

2. Any ideals I, Je Awith I N Jg[ 0]g= I< Por JCP.
3. Any a,b€A, [ alg N[ b]lg=[0]g=>a€PorbeP
Proof

Assume 6 be afuzzy congruence relation in GADFL < A” and P be a6 - Prime ideal of A. Let
any ideals I,J €A with InJ<[0]g. For any a€lorb€], such that anbe Injc
[ 0]g this implies either a € Porb e P. Hence I € Por J< P. (1) = (2).

Assume any ideals I,J e Awith InjJ S [0]g= I S Porjc P. Suppose that [alg N [b]g for
any a, b € A, therefore we get a A b € [a]g this implies a € Por b € P.

Hence (2) = (3).

Assume forany a, b € A, [alg N [b]g = [0]g=a € P or b € P . Therefore, we get a A b € [0]g. This
implies [alg N [b]g = [a A b]g =[0]g. Hence, wegeta € P or b € P. This impliesP is a

6 —Prime ideal of A.

Hence (3) = (1).

3.11. Definition

Let 6 is a fuzzy congruence relation in GADFL ‘A’ andVgbe a fuzzy ideal of A. The subset
Vo (x) is defined by Vy(x) = Inf{B(a A x,x)V a € A}.

3.12.  Theorem

In GADFL “A', let 6 be a fuzzy congruence relation. Then Vgbe a fuzzy ideal of A.

Proof

Let @ is a fuzzy congruence relation in GADFL ¢ A’. By the definition of 0 € V.

Let x,y € Asuch that (x, a) € 0 & (y,b) € 6 for somea,b € 6.

Therefore, we get ((xVy),(aV b)) € 6. Since #is fuzzy congruence relation in GADFL * A’.
This implies we get (xVy) € Vg Now assume x € Vg and y € A. This implies (x, a) € 8 for
somea € 8. Hence, we get ((xAy),(aA y)) €.

Since is fuzzy congruence relation in GADFL © A’. This implies ( x Ay) € Vy. Therefore
Vpis a fuzzy ideal of A.

3.13.  Theorem

Let & is afuzzy congruence relation in GADFL < A> and m be a maximal element in A, then
every maximal ideal M such that M N [ m]g= @, is af— ideal of A.

Proof

Let #is a fuzzy congruence relation in GADFL ‘A’ and m be a maximal element in A. Let
Mbe a maximal ideal in A such that M N [ m]g= @. Let x,y€ A such that (x,y)€f and
x€ M. Assume Yy & M, therefore we get M N (y] = A= aVyisa maximal element of A for
some x € M.

Let (x,y)€6 therefore we get ((a V x),(a vV y)) € @this implies (aV x) €[ aV y]ssince
(av x)eMwe get MNn[aVy]=@. This is contradicting to our assumption. Therefore, we
gety € M .Hence Mis a6 — ideal of A.

3.14.  Theorem

Let 6 be fuzzy congruence relation GADFL (R,8). Then the following are equivalent
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1. (R,0)isa GADFL.
2. For any fuzzy ideal Vyof (R, 0), ¢Vy isa fuzzy congruence relation on (R, 0).
3. @agis a fuzzy congruence relationon (R,0) V a € R.
Proof
1=

Assume (1), Let Vgbe an ideal of (R, 0). Clearly, @Vyis an equivalence relation
Q) Let (a,a) € pVy.ThenB(aV x, aVv x) =1land(aV y, aVv y)=1forsome, y € V.
Let (a, b) € oVy.Then O(aV x, bv x) =1 and 6(aVvy, bv y)=(bVy, aVv y)= 1for
some x,y € Vp.Therefore 6(a, b) =0(b,a) ¥V a,b € @Vy.
2 Let(a, b,c) € pVyThenb(aVv x, cv x) =20(aVv x, bV x)AG(bVx, cvx)=1 and
6(av y, cv y)=0(aVv y, bV y)AO(bV y, cVv y)=1forsome x, y,€ Vy
Therefore 8(a, ¢c) = (a, b) A(b, c)V a, b, c € pVy
3) Let(a, b),(c, d) € pVyThenO(aV x, bv x) =6(bV x, aV x) =1and
6(cvy dvy)=60(dVv y cv y)=1forsome x, y,€Vy
Since Vp isa fuzzy ideal of (R, 0), x, y,€ Vy
Now,8(aVv cV xV y,bv dV xV y)
=60( aVvV xVcVy bvdvxVv y)
=60(aVv xvdVy bvdvxV y)
=6(bv xv dV y,bv dV xV y)
=0( bvdv xVy,bvdVv xvy =1
Similarly, 6(bVv dVv xVy, aV cvxV y)=1andhence (aV c, bV d) € ¢V
Also,8((an o)V xV y,(bV d)V xV y)
=0((aV xV y)A(cV xV y),(bAd)V xV y)
=0(( bvxv yY)A(xVcV y),(bAd)V xV y)
=0(bv(xVv Y]A[(xvdVy],(bAd)VxVY)
=0([bV(xV IA(AV(xVYL( DAV XV y)
=0((bA AV xVy,(bAdV xV y)=1
Similarly, 6((bA d)VvxV ,(aA )V xV y)=1
Therefore (aA ¢, bA d) € pVy
Thus @Vpis a fuzzy congruence relation on (R, 9)
(2) = (3) Itis obivious (3) = (1)
Assume (3) Leta,b € R
Since8(avb,(avb)Vvb)=6((avb)vbavb)=1
Then (a,aV b) € pag.Also 8(bV b,bvd) =1
Hence (b, b) € pay
Since gagis a congruence relation on (R,8),(aA b,( aV b) A b) € pag
Hence 6(( aA b)V b,[(aV b)A b]V b)
=0([(aVv b)A bV b,(an b)V b)=1
=20((aA b)Vvb,bv b)y=0(bV b,(an b)Vv b)=1
=20((aAb)V b, b)>0and8(b,(an b)V b)>0
Therefore (R, 8) is a GADFL.

4. Conclusion

The fuzzy congruence relation of Generalized Almost Distributive Fuzzy Lattices is defined in this
study (GADFL). The ideas of 8 - ideal and 0 - Prime ideal are introduced in GADFL. with the fuzzy
congruence relation used to characterize these ideals. We will also address the features and
fundamental theorem of fuzzy homomorphism on Generalized Almost Distributive Fuzzy Lattices in
the future paper
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