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A COMMON FIXED POINT THEOREM USING COMPATIBLE MAPS OF
TYPE (γ) AND (δ)

J. JEYACHRISTY PRISKILLAL AND G. SHEEBA MERLIN1

ABSTRACT. In this article, we prove a common fixed point theorems using com-
patible mapping of type (γ) and (δ) in fuzzy metric spaces.

1. INTRODUCTION

The generalization of the commuting mapping concept is compatible mapping
which is introduced by Gerald Jungck [3]. This concept was generalized to
fuzzy metric spaces by Mishra et al. [8]. Y. J. Cho introduced the concept of
compatible mapping of type (α) [1] and compatible mapping of type (β) [2].
The authors defined intuitionistic (ψ, η) contractive mapping in [7]. Using the
definition of ψ, we gave a common fixed point theorem. Also, The authors
introduced compatible mapping of type (γ) and compatible mapping of type (δ)

in [6]. Further, the theorem is discussed for two different types of compatible
mappings. In this paper [7], ψ is defined as follows.

Definition 1.1. Let Ψ be the class of all mappings ψ : [0, 1]→ [0, 1] such that:

(i) ψ is non-decreasing and limn→∞ ψ
n(s) = 1,∀s ∈ (0, 1];

(ii) ψ(s) > s,∀s ∈ (0, 1);
(iii) ψ(1) = 1.
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Also in [6], compatible mapping of type (γ) and compatible mapping of type
(δ) are defined as follows:

Definition 1.2. Let (U, µ, ∗) be a fuzzy metric space. We say that the two self
mappings A and B are called:

(a) compatible of type (γ) if for all t > 0, limn→∞ µ(AAun, Bw, t) = 1 and
limn→∞ µ(BBun, Aw, t) = 1 whenever {un} is a sequence in U such that
limn→∞Aun = limn→∞Bun = w for some w ∈ U .

(b) compatible of type (δ) if for all t > 0, limn→∞AAun = limn→∞ABun = Bw

and limn→∞BBun = limn→∞BAun = Aw, whenever {un} is a sequence in U
such that limn→∞Aun = limn→∞Bun = w for some w ∈ U .

2. PRELIMINARIES

Definition 2.1. [5] Let U be a nonempty set and ∗ a continuous t-norm. A fuzzy
set µ on U2× [0,∞) is called a fuzzy metric on U if for all u, v, w ∈ U and s, t > 0,
the following conditions hold:

(i) µ(u, v, 0) = 0;
(ii) µ(u, v, t) = 1 iff u = v;

(iii) µ(u, v, t) = µ(v, u, t);
(iv) µ(u,w, t+ s) ≥ µ(u, v, t) ∗ µ(v, w, s);
(v) µ(u, v, .) : [0,∞)→ [0, 1] is left continuous.

Then (U, µ, ∗) is said to be a fuzzy metric space.

Definition 2.2. [4] Let (U, µ, ∗) be a fuzzy metric space. A sequence {un} in U is
called:

(a) convergent to a point u ∈ U iff limn→+∞ µ(un, u, t) = 1 for all t > 0,
(b) Cauchy if limn→∞ µ(un, un+a, t) = 1 for all t > 0 and a > 0.

Definition 2.3. [4] A fuzzy metric space (U, µ, ∗) is called complete if every Cauchy
sequence in U is convergent.

Definition 2.4. [8] In a fuzzy metric space (U, µ, ∗), two self mappings A and B
are called compatible if limn→∞ µ(ABun, BAun, t) = 1 whenever un is a sequence
in U and if for all t > 0, limn→∞Aun = limn→∞Bun = w for some w ∈ U .
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Definition 2.5. [9] Two self mapsA andB of a fuzzy metric space (U, µ, ∗) are said
to be reciprocally continuous on U if limn→∞ABun = Aw and limn→∞BAun =

Bw whenever {un} is a sequence in U such that limn→∞Aun = limn→∞Bun = w

for some w in U .

Proposition 2.1. [6] Let A and B be compatible mappings of a fuzzy metric space
(U, µ, ∗) into itself. If Aw = Bw for some w ∈ U, then ABw = BAw.

Proposition 2.2. [6] Let A and B be compatible mapping of type (δ) of a fuzzy
metric space (U, µ, ∗) into itself. Let one of A and B be continuous. Suppose that
limn→∞Aun = limn→∞Bun = w for some w ∈ U . Then Aw = Bw.

Lemma 2.1. [8] If A and B are compatible mappings on a fuzzy metric space U
and Aun, Bun → w for some w in U(unbeing a sequence in U) then ABun → Bw

provided B is continuous (at w).

3. MAIN RESULTS

Theorem 3.1. Let A and B be self maps on a complete fuzzy metric space U and
ψ ∈ Φ such that satisfy the following conditions:

(I) A(U) ⊂ B(U),
(II) µ(Au,Av, t) ≥ ψ(µ(Bu,Bv, t)) for all u, v ∈ U and t > 0,

(III) A or B is continuous.
(IV) the sequence un and vn in U are such that {un} → u, {vn} → v, t > 0 implies

µ(un, vn, t)→ µ(u, v, t).

Assume that A and B are compatible. Then A and B have a unique common fixed
point in U .

Proof. Let u0 ∈ U and A(U) ⊂ B(U) define a sequence un in U , for all n ∈ N as
follows:

Aun = B(un+1).
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Then for all t > 0 and suppose n is odd,

µ(Aun, Aun+1, t) ≥ ψµ(Bun, Bun+1, t)

= ψµ(Aun−1, Aun, t)

≥ ψ2(µ(Bun−1, Bun, t))

. . .

≥ ψn(µ(Au0, Au1, t)).

That is,µ(Aun, Aun+1, t) ≥ ψn(µ(Au0, Au1, t)). By taking limit as n → ∞, and
since limn→∞ ψ

n(s) = 1, for all s ∈ (0, 1],

lim
n→∞

µ(Aun, Aun+1, t) = 1.

For all a > 0,

µ(Aun, Aun+a, t) ≥ µ(Aun, Aun+1, t/a) ∗ . . . ∗ µ(Aun+a−1, Aun+a, t/a).

By taking limit n→∞,

lim
n→∞

µ(Aun, Aun+a, t) ≥ lim
n→∞

µ(Aun, Aun+1, t/a) ∗ . . . ∗ lim
n→∞

µ(Aun+a−1, Aun+a, t/a)

≥ 1 ∗ . . . ∗ 1

= 1.

That is,

lim
n→∞

µ(Aun, Aun+a, t) = 1.

Similarly suppose n is even, µ(Aun, Aun+1, t) ≥ ψn(µ(Bu0, Bu1, t)). By taking
limit as n→∞, and since limn→∞ ψ

n(s) = 1, for all s ∈ (0, 1],

lim
n→∞

µ(Aun, Aun+1, t) = 1.

Also, we can prove

lim
n→∞

µ(Aun, Aun+a, t) = 1.

Hence,{Aun} is a Cauchy sequence in U .
Since (U, µ, ∗) is a complete fuzzy metric space, there exists w ∈ U such that

limn→∞ µ(Aun, w, t) = 1 and limn→∞ µ(Bun, w, t) = 1, for each t > 0. Suppose A
is continuous, since A and B are compatible and by Lemma 2.1, BAun → Aw.

Now,

µ(Aun, AAun, t) ≥ ψ(µ(Bun, BAun, t)).
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By taking limit as n→∞,

µ(w,Aw, t) ≥ ψ(µ(w,Aw, t)) ≥ µ(w,Aw, t).

This is possible only when µ(w,Aw, t) = 1. That is Aw = w. Since A(U) ⊂ B(U)

there exists w1 in U such that w = Aw = Bw1. From

µ(AAun, Aw1, t) ≥ ψ(µ(BAun, Bw1, t)),

by taking limit as n→∞,

µ(Aw,Aw1, t) ≥ ψ(µ(Aw,Bw1, t)) = ψ(1) = 1.

That is Aw1 = Bw1.
Now, we have Aw = Aw1. By Proposition 2.1, ABw1 = BAw1.

µ(Aw,Bw, t) = µ(ABw1, BAw1, t) = 1.

Hence, Aw = Bw = w. Hence A and B have a common fixed point in U .

Uniqueness:
Assume w 6= w for some w ∈ U , is another common fixed point in U . Then for
t > 0, we have,

µ(w,w, t) = µ(A(w), A(w), t)

≥ ψ(µ(B(w), B(w), t))

. . .

≥ ψn(µ(B(w), B(w), t)).

Taking limit as n→∞ and by our assumption,

µ(w,w, t) ≥ lim
n→∞

ψn(µ(B(w), B(w), t)) = 1.

That is, µ(w,w, t) = 1. Therefore, w = w. Hence A and B have a unique
common fixed point in U . �

Example 1. Let U = [0,∞) with the metric d defined by d(u, v) = |u− v|, define
µ(u, v, t) = t

t+d(u,v)
, for all u, v ∈ U and t > 0. Note that, (U, µ, ∗) where a ∗ b = ab

is a complete fuzzy metric space.
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The maps A,B : U → U are defined by A(u) = 2+u
3

and B(u) = u. Let
un = (1− 1

n
). Then

lim
n→∞

µ(ABun, BAun, t) = lim
n→∞

µ

(
Aun, B

2 + un
3

, t

)
= lim

n→∞
µ

(
2 + un

3
,
2 + un

3
, t

)
= 1,

i.e., limn→∞ µ(ABun, BAun, t) = 1,

lim
n→∞

Aun = lim
n→∞

2 + un
3

= lim
n→∞

2 + (1− 1
n
)

3
= 1

and

lim
n→∞

Bun = lim
n→∞

un = lim
n→∞

(
1− 1

n

)
= 1.

Therefore, A and B are compatible mapping. Also AU ⊂ BU and B is continuous.
Now, define the map ψ : [0, 1] → [0, 1] by ψ(s) = 2s

s+1
for each s ∈ [0, 1] and

ψ ∈ Φ. Then
µ(A(u), A(v), t) ≥ ψ(µ(B(u), B(v), t))

if

µ

(
2 + u

3
,
2 + v

3
, t

)
≥ ψ(µ(u, v, t)),

or equivalently if
t

t+ d(2+u
3
, 8−v

3
)
≥

2t
t+d(u,v)

t
t+d(u,v)

+ 1

⇐ t

t+
∣∣2+u

3
− 2+v

3

∣∣ ≥ 2t
t+|u−v|
t

t+|u−v| + 1

⇐ t

t+ |u−v|
3

≥ t

t+ |u−v|
2

⇐ t+
|u− v|

2
≥ t+

|u− v|
3

⇐ 3 ≥ 2.

All the conditions of the previous theorem are verified. Then, 1 is the unique
fixed point. Hence, A and B have the unique common fixed point in U .

Now, we prove the following theorem for compatible of type (γ).
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Theorem 3.2. Let A and B be self maps on a complete fuzzy metric space U and
ψ ∈ Φ such that satisfy the above conditions (I), (II) and (IV). Assume that A and
B are reciprocally continuous and compatible of type (γ). Then A and B have a
unique common fixed point in U .

Proof. From the previous theorem, {Aun} and {Bun} are a Cauchy sequences
in U . Since (U, µ, ∗) is a complete fuzzy metric space, there exists w ∈ U such
that limn→∞ µ(Aun, w, t) = 1 and limn→∞ µ(Bun, w, t) = 1, for each t > 0. Since
A and B are compatible of type (γ), we have AAun → Bw and BBun → Aw

as n → ∞. Also since A and B are reciprocally continuous, ABun → Aw and
BAun → Bw as n→∞. We claim that Aw = Bw. Indeed, from

µ(AAun, ABun, t) ≥ ψ(µ(BAun, BBun, t))

by taking limit as n→∞, we receive

µ(Bw,Aw, t) ≥ ψ(µ(Bw,Aw, t)) ≥ µ(Bw,Aw, t).

It is possible only when µ(Bw,Aw, t) = 1. That is, Aw = Bw.
Now, from

µ(Aun, AAun, t) ≥ ψ(µ(Bun, BAun, t))

by taking limit as n→∞, we have

µ(w,Bw, t) ≥ ψ(µ(w,Bw, t)) ≥ (µ(w,Bw, t)).

This is possible only when µ(w,Bw, t) = 1. That is Bw = w.
Hence Aw = Bw = w.

Easily, we can verify the uniqueness as in the previous theorem. �

Finally, we prove the following theorem for compatible of type (δ).

Theorem 3.3. Let A and B be self maps on a complete fuzzy metric space U and
ψ ∈ Φ such that satisfy the above conditions (I), (II), (III) and (IV). Assume that
A and B are compatible of type (δ). Then A and B have a unique common fixed
point in U .

Proof. From the Theorem 3.1, {Aun} and {Bun} are a Cauchy sequences in U .
Since (U, µ, ∗) is a complete fuzzy metric space, there exists w ∈ U such that
limn→∞ µ(Aun, w, t) = 1 and limn→∞ µ(Bun, w, t) = 1, for each t > 0. Since A
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and B are compatible of type (δ) and one of A and B is continuous, by Proposi-
tion 2.2, Aw = Bw. Now, from

µ(Aun, AAun, t) ≥ ψ(µ(Bun, BAun, t)),

by taking limit as n→∞,

µ(w,Bw, t) ≥ ψ(µ(w,Aw, t))

Since Aw = Bw,

µ(w,Aw, t) ≥ ψ(µ(w,Aw, t)) ≥ µ(w,Aw, t).

This is possible only when µ(w,Aw, t) = 1. That is, Aw = w. Hence Aw = Bw =

w.

Easily, we can verify the uniqueness as in the Theorem 3.1. �

Remark 3.1. Example 1 is also suitable for Theorem 3.2 and Theorem 3.3.
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