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Abstract

Aluminium alloy (Al7075) based hybrid metal matrix composites reinforced with Silicon carbide
(SiC) and Tungsten carbide (WC), at 5 wt% each are considered for this investigation, which are
developed by stir casting methodology. Material characteristic analysis both at micro and macro
(Tensile strength and micro hardness) level were performed. This investigation is further progressed
with drilling of the composites using titanium aluminium nitride coated carbide drill (5mm diameter)
for varied point angle, feed rate and drill speed. The responses such as thrust force, surface roughness
and roundness error were investigated by adopting Response Surface Methodology (RSM). Multiple
linear regression (MLR) is developed along with Artificial Neural Networks (ANN) model for
predicting the outputs. Scanning Electron Microscope (SEM) image reveals the uniform distribution
of ceramic particles in matrix which ascertains enhanced mechanical properties. The parameters such
as feed rate and point angle are found to have significant influence during drilling process. The
roundness error is found higher with higher point angle which is due to the wider cutting edges in the
drill bit. For unconstrained multi-objective optimization, the optimal condition obtained are 128°-
point angle, 0.05 mm rev ™' feed rate and 1000 rpm drill speed. For constrained optimization
(roundness error <0.05 mm), optimal conditions are 118° point angle, 0.05 mm rev_ ! feed rate and
1000 rpm drill speed.

Abbreviations

SiC Silicon carbide

WC Tungsten carbide

TiAIN Titanium aluminium nitride
RSM Response Surface Methodology
ANN Artificial Neural Networks
SEM Scanning Electron Microscope
HAMMC Hybrid aluminium metal matrix composites
ANOVA Analysis of Variance

MLR Multiple linear regression

MSE Mean squared error
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1. Introduction

For usage in marine and automotive sectors lightweight materials are needed, which is fabricated by the addition
of ceramic particulates with suitable parent alloy material. With hard ceramic particles embedded in the matrix,
machining becomes more tedious due to involvement of higher cutting forces and tool wear. Hence, machining
of composite materials is very much in demand for high end engineering applications [ 1]. Hybrid intermixtures
form a group of materials that have been attracted by number of researchers because of their improved
properties when compared with monolithic materials. Attempts have been made to fabricate mechanical
components using these composite materials; however, some measure of finishing should be done to complete
the assembly process [2]. The metal removal mechanism in oblique machining like drilling, the variation in
cutting forces and their influence on the damages caused in the cutting tool and work piece is most significant
[3]. The drilling forces and damages caused can be minimized through proper selection of tool geometries and
machining parameters [4]. In any case, for assembly and joining, drilling becomes a predominant machining
process under demand. Because of the reinforcements, machining of hybrid composites became a challenging
task in the production industries as various factors affect the quality of drilled characteristics [5]. Material
removal rate, cutting forces, circularity and roundness error and surface roughness have been observed in
drilling hybrid aluminium alloy metal matrix composite (HAMMC), that are affected by various parameters like
drill point angle, speed and tool material [6].

The cryogenic machining nano-SiC reinforced aluminium composite using dry machining and minimum
quantity lubrication (MQL) using carbide drills of different point angles based on Box-Behnken design (BBD)
design of RSM and Teaching-Learning based optimization (TLBO) and found that, cushioning effect and
improved lubrication from cryogenic machining improves machining performance [7]. Also, nano filled
improves the drilling condition through higher ball-bearing effect. The investigation machining behavior of
Al7075 + SiC composite using high-speed steel (HSS) drill bit and HSS drill coated with titanium nitride (TiN)
drills and found that, rate of feed and spindle speed influences roughness of hole surface, which elevates with
higher rate of feed and lowers at higher drill speeds [8]. The drill damage on roundness error during drilling glass
fiber reinforced polypropylene (GFR/PP) using solid carbide spur and brad drills by adopting BBD design of
RSM and found that, roundness error elevates with higher diameter of drill and feed rate. The developed
empirical models with 95% confidence interval could effectively predict the roundness error [9].

The cutting forces during dry drilling of aluminium composites using neural network with feed forward
back propagation algorithm and found that absolute error is 2.03% and 3.46% among predicted and
experimental torque and thrust force [10]. The drilling experiments and measured circularity, roughness and
cylindricity of holes on silicon nitride composites by altering feed and speed. They also analyzed the results with
ANN model and found it a reliable method for prediction [11]. The investigation on the effect of drilling factors
on cutting forces for hybrid composites with multiple regression and ANN for prediction, found that ANN
showed better prediction than MRA [12]. Babu et al The impact of drilling variables on roughness of drilled
holes and compared with the predicted values by Fuzzy Logic and concluded that the results were close to each
other [13]. The drilled hybrid composites with carbide drill coated with TiAIN and concluded that the drill
material is most significant than speed and feed, and also suggested that the TiAIN coated drill showed the best
performance among the various drill tool materials [14]. The hybrid metal matrix composites with particulate
boron carbide reinforcement possess a good combination of good elastic property, specific strength, high
thermal stability and excellent wear resistance. The machining studies on HAMMC fabricated through powder
metallurgy technique by adopting Taguchi’s technique and optimized the inputs using grey relational analysis a
non-dominated sorting genetic algorithm [15].

From the survey, it is identified that, limited investigations were done on machining of hybrid aluminium
metal matrix composites (HAMMC) reinforced with primary (SiC) and secondary (WC) ceramic particulates
due to the difficulties in wettability and economic constraints. Hence, performing drilling studies on the
fabricated HAMMC using coated (TiAlIN) carbide drill with three different point angle, feed rate and drilling
speeds is considered novel in this investigation. Experimentations are planned and analyzed using response
surface methodology technique (RSM).Both unconstrained and constrained optimization is done. Prediction of
output responses is done using empirical models developed from MLR and from ANN model and subsequently
the outcomes are compared.

2. Fabrication and experimental methods

A stir casting process can be used to fabricate aluminum matrix composites and hybrid aluminum matrix
composites since it is an economical process that is ideal for mass production [16]. As the aluminum melt reacts
with the atmosphere and moisture, aluminum oxide forms a protective layer over the melting surface that
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Table 1. Drilling factors and their values.

Drilling parameter Level 1 Level 2 Level 3
Pointangle (°) 108 118 128
Feedrate (mmrev ") 0.05 0.1 0.15
Drill speed (rpm) 1000 2000 3000

shields the melt from further atmospheric reactions and hence it prevents causing serious damage from
atmosphere [17]. By considering this in the present study Fabrication of composites is done by stir-casting
technique, which is aliquid state technique for preparing the composites in an economical manner in which the
reinforced materials are blended together with the liquid aluminium (Al7075) matrix by stirring it mechanically
[18]. Small pieces of Al7075 bar is placed and melted in a crucible made of graphite. The reinforcement materials
are preheated separately and blended with molten slurry consistently utilizing a ceramic stirrer attached to
electric motor running at 300rpm for a period of 10 min followed by which the molten slurry is then transferred
to the mould cavity for solidification at room temperature. The ceramic strengthening particulates of SiC and
WC are added to the melt through the external sprue in amounts of 5wt% each. To get a homogeneous
distribution of reinforcement in the matrix materials, the stirring speed and stirring time was kept at 500 rpm
and 15 min, respectively [19]. When the ceramic particulates were added to the molten alloy, unwetted particles
caused the particles to float on the surface, even after the reinforcing particles were mixed mechanically. The
particles tended to return to the surface when stirring ceased, and most of the particles were still stuck together.
In casting, a minimum amount of porosity is present. By increasing the particle percentage in the matrix, more
porosity was formed as a result of SiO; layer cladding the ceramic particles, which put out moisture when
particles were introduced [20]. Upon pouring the molten slurry into the die cavity, the molten slurry was allowed
to cool at room temperature.

2.1. Taguchi’s design of experiments

Taguchi’s technique for parametric design is adopted for enhancing the system robustness, thereby assisting in
decisions during process and product designs [21]. For process variable optimization, this procedure can be
adopted due to its simplicity and adaptability [22]. This procedure delivers the required information from least
experimental trials with various levels of input conditions [23]. With three factors varied at three levels,
considering the interaction effects among them, Taguchi’s methodology is chosen, consecutively a L27
orthogonal array (OA) is selected. It is apprehended that OA based design characterizes the least likely section of
all probable combinations [24]. The minimal experimental trial that provide satisfactory outcomes are the two
prime aspects that OAs are chosen for investigational designs. The validation of results arises from carrying out
experiments with real conditions and by performing confirmation tests with optimal condition [25]. The
drilling parameters as shown in table 1 are analyzed for improving the performance by identifying an optimal
drilling condition.

2.2. Response surface methodology

Response Surface Methodology (RSM) associates the procedures of statistical tools and optimization through
appropriate model [26] RSM is usually projected for identifying the ideal condition after initial screening where
the responses are related only towards the significant input parameters. The results obtained are applied suitably
for performing experimental investigation by adopting RSM through the inclusion of replications of data points,
with the development of a suitable empirical model [27]. For m input factors x1, x2... xm, the effective
association between the output response and m input conditions be represented as:

n= f(xl) X5 eeeenn xm) (1)

3. Results and discussion

SEM images reveals the homogenous distribution of strengthening particulates in the base materials, without
indication of residual pore. Due to higher temperature characteristics the strengthening particles cannot be
solidified in the matrix alloy and hence appears as globular particles in parent material [28]. The matrix shows
the large grains with some Mg,Si precipitation and little amount of un-dissolved Al (Fe, Mn) in solid solution of
aluminium.

From XRD analysis it is clearly inferred that the base material aluminium alloy occupies a peak factor and
followed by the strengthening particulates. The peak factors of synthesized composites that are obtained from
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Figure 1. SEM and XRD of HAMMC.
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Figure 2. Tensile and micro-hardness of cast composite.

the XRD are Al (33.2°, 36.3°, 38.2°, 48.5°), SiC (34.2°, 58.6°, 64.2°) and WC (28.6°, 38.6°, 46.8°, 68.2°) at 20
respectively as shown in figures 1(a)—(b).

The Tensile strength is determined for the as cast A17075 and HAMMC as per ASTM-E8 standard and
micro-hardness as per ASTM-E384 standard [29]. It is observed from the figure 2 that, with inclusio n of ceramic
particles, improvement is found in micro-hardness and tensile strength [30]. With increase in tensile strength
the % elongation tends to reduce due to lowering of ductility of the HAMMC, ceramic particles hindering the
dislocation motion of cracks during the tensile test.

Using CNC based vertical machining centre, drilling experiments has been done. To record the thrust force,
Kistler dynamometer has been used. Kosaka—Surf coder SE700 is used for measuring the drilled hole roughness
value. Roundness error has been evaluated for all the holes using coordinate measuring machine [31]. The SEM
Image of drilled composites samples is shown in figure 3.

Asper L27 OA, machining tests are performed in HAMMC using traditional drilling process. Table 2
displays the outcomes of experimentation for all 27 tests with TiAIN coated carbide tool [32] of diameter 5 mm.

From investigational outcomes, thrust force are found to be higher for increasing point angle [33]
Roughness in drilled hole is least for drill bit with point angle of 118° due to less removal of chip area, whereas
roundness error tends to increase with increasing point angle. The significance of rate of feed on thrust force and
roundness error was higher [34], roundness error and thrust force tends to increase with increasing rate of feed
but surface roughness tends to reduce for 0.1 mm rev ' and further rise to 0.15 mm rev ™', surface roughness
increases as more amount of material is removed. Drill speed influences thrust force [35] and roundness error
[36]. With higher speeds, vibration takes places and hence increases the roundness error. With higher drilling
speed, surface roughness tends to increase [37].
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Figure 3. Drilled hole of Aluminium hybrid composites.

Table 2. Experimental outcomes.

Expt.No Point angle ° Feedmmrev ™" Speed rpm Thrust Force (N) Surface roughness (ytm) Roundness error (mm)
1 108 0.05 1000 43.027 10.352 0.0278
2 108 0.05 2000 97.839 10.986 0.0313
3 108 0.05 3000 161.588 9.658 0.04
4 108 0.1 1000 90.084 9.717 0.024
5 108 0.1 2000 169.093 10.51 0.0312
6 108 0.1 3000 257.041 9.341 0.0436
7 108 0.15 1000 123.843 10.37 0.0316
8 108 0.15 2000 227.050 11.322 0.0425
9 108 0.15 3000 339.196 10.312 0.0586
10 118 0.05 1000 110.091 6.996 0.0498
11 118 0.05 2000 154.252 7.818 0.0531
12 118 0.05 3000 207.350 6.678 0.0616
13 118 0.1 1000 134.375 6.193 0.0547
14 118 0.1 2000 202.734 7.174 0.0617
15 118 0.1 3000 280.030 6.193 0.0739
16 118 0.15 1000 145.361 6.678 0.071
17 118 0.15 2000 237.917 7.818 0.0817
18 118 0.15 3000 339.412 6.996 0.0976
19 128 0.05 1000 77.829 8.486 0.0152
20 128 0.05 2000 111.339 9.496 0.0183
21 128 0.05 3000 153.787 8.544 0.0266
22 128 0.1 1000 79.340 7.515 0.0288
23 128 0.1 2000 137.047 8.684 0.0356
24 128 0.1 3000 203.693 7.891 0.0476
25 128 0.15 1000 67.552 7.832 0.0538
26 128 0.15 2000 149.458 9.16 0.0643
27 128 0.15 3000 240.302 8.526 0.08
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Table 3. ANOVA table for Thrust force.

Source SS DoF MS F-value p-value
Model 1.47E + 05 6 24462.33 33.48434 2.06E-09 significant
Point Angle 19419.81 2 9709.903 13.29103 0.000213
Feed Rate 31764.83 2 15882.42 21.74005 9.64E-06
Drill Speed 95589.33 2 47794.67 65.42193 1.68E-09
Residual 14611.21 20 730.5603
Cor Total 1.61E + 05 26
Std. Dev. 27.02888 R? 0.909464
Mean 168.1715 Adjusted R? 0.882303
CV.% 16.07221 Predicted R® 0.834998

Adeq Precision 21.43566

3.1. Analysis of thrust force

Thrust forces arising from drilling process due to friction contains significant information that are correlated to
adequate generation of temperature towards improving quality of the product and lower wear of tools [38].
Thrust force acts along the spindle axis and in the direction of drill feed. Thrust force is greatly affected by the
drilling tool lips and the major contributor to thrust force is the chisel edge [39].
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Table 4. ANOVA table for surface roughness.

Source SS DoF MS F-value p-value

Model 58.49 6 9.75 182.87 < 0.0001 significant
Point Angle 50.23 2 25.11 471.12 < 0.0001

Feed Rate 2.49 2 1.24 23.34 < 0.0001

Drill Speed 5.77 2 2.89 54.16 < 0.0001

Residual 1.07 20 0.0533

Cor Total 59.56 26

Std. Dev. 0.230888 R? 0.982099

Mean 8.564667 Adjusted R 0.976728

C.V.% 2.695823 Predicted R 0.967375

Adeq Precision 42.19881

Statistical tool, Analysis of Variance (ANOVA) is used to identify the significant influence of independent
variables over the dependent variables by determining the variance among the selected input parametersm [40].
By adopting response surface design, the measured thrust force is analyzed and the ANOVA table obtained is
presented in table 3, which shows that a significant linear model is developed with an R2 value of 90.94%. The
contribution of drill speed is 59.37% towards the produced thrust force, followed by feed rate (19.73%) and
point angle by 12.06% [41]. Probability values lower than 0.05 specify significant terms in model, here all the
considered inputs are significant model terms. Adequate precision value determines adequate signal with lower
noise levels. Generally, the desired signal-to-noise (S/N) ratio higher than 4 is required, here 21.436 shows a
satisfactory signal.

A graph drawn between predicted and actual values of a response is actual versus predicted plot, which is
used to distinguish data’s that cannot be predicted well by the developed model. This scatter plot is the best
method of visualizing the data, with most of the points closer to the diagonal line formed indicating the obtained
responses are linear in nature. Model developed with higher R2 value provides all data points closer to the
formed diagonal line.

Response surface plots are beneficial for creating necessary operating situations and responses. Surface plot
usually exhibits a 3D view providing a distinctive nature of the output response. For first order empirical model
is framed considering main effects only, the response surface fitted is a plane with straight contour lines. If
interaction is considered in the fitted model, curved contour line is formed and the response surface will be non-
linear [42].

In figure 4(a), the predicted versus actual graph, all the dispersed points are scattered on both sides of the 45°
diagonal line and hence it can be stated that, a good prediction is possible with the developed model with a
predicted R2 value of 83.50%. Figure 4(b) shows the association among point angle, feed and thrust force. With
higher point angle, thrust force tends to lower; with higher feeds, thrust forces rises significantly. Similarly, with
higher drill speeds, thrust force tends to increase as presented in figure 4(c). Thrust force could be minimum for
higher point angle and lower values of speed and feed as in figure 4(d).

3.2. Analysis of surface roughness

Surface texture and topography is the primary representative amid surface integrity properties and dimensions
imparted by cutting tool employed in finishing process. Conventionally, texture of surface is measured as an
index for evaluating vibration, damage and wear of machine tools rather than measuring the component
performance. In industrial scenario, Ra (arithmetic average) value from a stable process is considered [41]. The
roughness of the drilled hole is analyzed to identify the parameters that influence the most. ANOVA table
formulated for hole roughness during analysis is presented in table 4. It is identified that, the influence of point
angle (84.34%) is higher, followed by speed (9.69%) and feed (4.18%) towards the roughness of hole [43]. The
ANOVA model is formulated with an R2 value of 98.21%, which satisfies the 95% confidence interval (CI)
adopted during statistical analysis [44]. With p-value less than 0.05, point angle, feed rate and drill speed are
found to be significant model terms. With adequate precision of 42.199, a lower noise levels (external
disturbances) is observed during experimentation.

In actual versus predicted value graph shown in figure 5(a), along the 45° straight diagonal line, the data
points are evenly scattered and are close enough to the diagonal line and the prediction is better with the
predicted R* value of 96.74%. From the response 3D surface graph drawn between point angles, feed rate and
surface roughness as presented in figure 5(b), with increase in point angle, surface roughness decreases and a
similar trend is observed for higher rate of feed, where roughness value is lower for higher feed rate. When drill
speed is considered, increase in drill speed leads to higher surface roughness as more amount of material is
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Figure 5. Diagnostic and model graphs for surface roughness.

removed during hole making as represented in figure 5(c). Figure 5(d) shows the relationship between feed rate,
drill speed and roughness. The roughness value inside the drilled hole is minimum for higher point angle and
feed rate along with lower drill speed.

3.3. Analysis of roundness error

The performance of rotary mechanical parts motion is mainly affected by the shape or geometrical error known
asroundness error. The roundness error rises considerably with feed rate [45]. The roundness error arises due to
the generation of burrs at the exit and entry of drilled hole, and also because of dynamic uncertainty of drilling
tool and rapid thrust force. A larger thrust force because of higher rate of feed can be the foremost reason for
higher roundness error [46].

Table 5 presents the ANOVA analysis results for roundness error, where a significant model is developed
with an R2 value 0f 90.70%. It is identified that, roundness error is highly influenced by point angle, whose
contribution is 42.39%, feed rate by 33.58% [47] and drill speed by 14.72%.

Figure 6(a), presents the diagnostic plot of actual versus predicted plot, where all the experimental values and
predicted values tend to lie scattered on both sides of the 45° straight diagonal line and a perfect fit is not possible
in this case as the points are away from the diagonal line which is also supported by a low predicted R2 value of
83.05%. The 3D surface plot of roundness error drawn between feed and point angle is presented in figure 6(b),
which presents that with increase in point angle, roundness error tends to increase due to the wider cutting edges
available in the drill bit. Similarly, with higher rate of feed, roundness error also tends to be higher due to higher
volume of removing material during hole formation. A similar trend is observed for increasing speed; increasing

8
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Table 5. ANOVA table for roundness error.
Source SS DoF MS F-value p-value
Model 0.010468 6 0.001745 32.51715 2.67E-09 significant
Point Angle 0.004892 2 0.002446 45.59439 3.55E-08
Feed Rate 0.003876 2 0.001938 36.11944 2.3E-07
Drill Speed 0.001699 2 0.00085 15.83762 7.54E-05
Residual 0.001073 20 5.37E-05
Cor Total 0.011541 26 R? 0.907021
Std. Dev. 0.007325 Adjusted R 0.879128
Mean 0.048367 Predicted R* 0.830546
C.V.% 15.14422 Adeq Precision 20.99431

the speed increases the roundness error as seen from figure 6(c). From figure 6(d) it is obvious that, lower feed
rate and lower drill speed produces lower roundness error along with lower point angle.

3.4. Multi-objective constrained optimization using desirability approach

In multi-criteria optimization, all the output responses are considered and a common optimal condition is
evolved (Reddy et al 2020). More than one response is considered simultaneously for building a suitable model
with response surface for individual outputs and then finding a suitable operating state so that all responses are
optimized within the desired ranges. The approach of desirability function is one among the most prevalent
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Figure 7. Desirability plot for unconstrained multi objective optimization.

approaches employed in optimizing multiple-responses. During implementing desirability, values that falls in
between the probable values of 1 and 0 will be assigned by the desirability function where 1 represent the
desirable or ideal value and 0 represent the non-desirable outcome [48].

0 lfﬁ(X)<A
s
A | (%) if A<f(X)<B
! if f,X) > B

S
drmm_‘(%) if A<f,(X) <B

0 if f(X)> B

R 1/R
D= (H d,) (1a)
r=1

The formulae to calculated desirability for minimization and maximization of responses are provided in
equation (1), where A and B are extreme limits of selected inputs and the exponent S governs the weightage
towards attaining the value of target; the input vector is X, and fr is the prediction model used and R is the
number of desirability functions (responses) considered in the study [49].

In unconstrained optimization procedure, the prime objective is minimization of thrust force, surface
roughness and roundness error. During simultaneous optimization using desirability, it is identified from the
ramp plot (figure 7) that, the optimal input conditions are 128°point angle, 0.05 mm rev " of fee, 1000 rpm of
speed with predicted outputs responses; thrust force of 20.207 N, roughness of 8.347 microns and roundness
error of 0.02 mm with a desirability value 0of 0.817, which is nearer to the ideal value of 1.

In most of the industrial need, a perfect hole is needed from assembly point of view. Hence, a constrained
optimization is performed with an objective of minimizing roughness and thrust force with roundness error as
constrained (<0.05 mm). During optimization, thrust force and roughness is set as minimum and roundness
error is set as target (0.05 mm). The optimal condition evolved is: 118°-point angle, 0.05 mm rev_ ' of feed and
1000 rpm speed. The predicted outputs are: thrust force of 85.89 N, surface roughness of 6.837 microns and
roundness error of 0.05 mm, as observed from ramp plot presented in figure 8. The thrust force and surface
roughness values predicted are lower than that of the unconstrained optimization predicted values. The
desirability value of constrained optimization is obtained as 0.872, which is also higher, when compared with
unconstrained optimization.

Figure 9 presents interaction plot obtained during constrained optimization, showing the relationship
between point angle and feed rate with desirability and other output responses for a drill speed of 1000 rpm. In
the plot, the red color line represents feed rate of 0.05 mm rev ™, green color represents 0.10 mmrev ™' feed rate
and 0.15mm rev ™' feed rate is represented by blue color. In interaction plot, if the relationship between two
inputs over the considered output is characterized with parallel lines, interaction effect is null among the
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Figure 9. Interaction plot for desirability and output responses.

considered variables. But if the association is characterized by non-parallel lines, noteworthy relationship occurs
among the considered inputs [12]. Among point angle and feed, no significant interaction exists; but for
desirability a substantial relationship is seen among point angle and rate of feed.
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3.5. Development of empirical model using multiple-linear regression models

A regression model involving higher than one regressor/input variable is known as multiple linear regression
(MLR) model. MLR are extensions of simple linear regression. MLR model is generally considered as
approximating or empirical functions that forms a definite relationship among dependent and independent
variable with satisfactory estimation to the unknown true function [50]. For predicting the outputs, empirical
models are framed for individual output by adopting multiple linear regression (MLR) technique [51] for thrust
force, surface roughness and roundness error as represented in equations (2)—(4). By using this developed
model, prediction is done and comparison is done withthe experimental values, as shown in figure 10. With
higher predicted R2 value, close prediction is possible and with lower predicted R2 value, a better prediction is

not possible as seen from the result of roundness error.

Thrust Force = —7453.34 + 122.287 x P + 5775.12 x F + 0.132235
x Speed — 45.5463 x P x F — 0.001065 x P x S + 0.483960

x F x § — 0496631 x P? — 2659.58 x F? + 0.000004 x S? 2)

Surface Roughness = 355.1 — 5.814 x P — 18.23 x F 4 0.001388 x S
—0.3360 x P x F 4 0.000019 x P x S + 0.003180
X F xS+ 0.02423 x P? + 257.6 x F? — 0.000001 x S* (3)

Roundness Error = —3.704 + 0.06531 x P — 2.371 x F — 0.000006 x S

+0.01740 x P x F — 0.000000 x P x S + 0.000074
x F x § — 0.000283 x P2 4 2.280 x F? 4 0.000000 x S?

3.6. Prediction of output responses through Neural Networks

(C9)

Neural networks mimic the brain of human beings artificially by simulating their process of learning [52]. The
artificially developed neuron will look alike the biological neurons and also functions in similar mode. The input
information will be delivered to the neurons based on the weights of incoming data and is managed by the
propagation function which sums the data values based on the weights of incoming functions [53]. With
reference to a threshold value, the resulting data value will be compared by the adopted activation function. If the
threshold value is exceeded the input value, neurons get activated and if not, it will be repressed. The activated
neurons send signal to the outgoing values based on the weights assigned to all interconnected neurons and so
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Figure 12. Neural network architecture.

forth. By deploying activation function (transfer function), the output signal transmitted by the neurons will be
determined based on the weighted input. Generally, each and every neuron in a particular layer will be
connected to the preceding and succeeding layer neurons except the output and input layer of the network.
Transmission of data from a neuron in neural network is done layer by layer starting from input, hidden and
output layer [54].

During training of neural network, if the output desired is known already, it is termed as supervisor learning
or else it is unsupervised [55] after measuring the outputs related to the inputs, weights are changed to minimize
the difference among desired and actual value of outputs. A common parameter, learning rate affects the speed
of ANN towards arriving the model for better prediction [56]. For preventing the model from converging
towards a saddle or local minima, momentum coefficient is used. The purpose ANN network is to predict the
response for the provided input without doing expensive experimentation [57, 58].

During the process of developing a perfect ANN model, various networks are framed with different neurons
in hidden layer, whereas the output neurons (3 responses) and input neurons (3 input parameters) are kept
constant. Apart from changing the number of hidden layer neurons, momentum coefficient and learning rate
are also changed to develop a perfect prediction model. Learning rate must be changed between the range of 0 to
1 whereas momentum coefficient must be changed between the values 0 to 2. In this present investigation, the
ANN network developed is made up of 7 hidden layer neurons with optimal learning rate 0£0.015 and 0.8
momentum coefficient towards achieving a better regression coefficient value. From the 27 trials, 21 data’s are
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Figure 13. Regression plot obtained in ANN training.

used for ANN model training and the balance 6 trial data’s are considered for testing ANN. Figure 11 presents
the developed architecture of ANN in MATLAB and figure 12 shows the interconnectivity among the neurons
from input layer, intermediate hidden layer and then to output layer.

Figure 13 presents the regression plot obtained during model development by ANN during training,
validation, testing and in combined condition. The R? value obtained during training is 99.64%, 99.68% during
validation check, 98.56% during testing and overall R* value obtained is 99.42%, which is close enough to the
ideal value of 100%. The limitation encountered during development of ANN model is the time duration of
training the ANN model for better prediction.

Mean squared error (MSE) variation during training of ANN model for an epoch (iteration) of 5000 is
displayed in figure 14. It is observed that, MSE is lowest for the best, followed by training, validation and testing
of ANN model. The confirmation value of 0.01224 is obtained during performance.

While training the developed model of ANN, during each epoch (iteration) validation check is performed
towards comparing input and output predicted values. Gradient descent approach is adopted for minimizing
the error function value by adjusting the weight factor in back-propagation feed forward neural network
algorithm. Figure 15 presents the results from gradient value obtained during each epoch and validation check.
The gradient value tends to lower towards zero during each iteration and finally, the gradient value gets stabilized
without any further reduction.

Finally, after predicting the output responses through MLR models and ANN model, it is compared with the
experimental values. Figure 16 presents comparison of predicted values with experimental condition for thrust
force, figure 17 presents the comparison of surface roughness values and figure 18 compares the results of
roundness error. It appears that, the prediction of outputs through ANN is closer enough to experimental values
than MLR models due to the higher regression coefficient value. In conclusion, the ANN models outplay the
MLR models for better prediction in this work.
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4. Conclusions

Various experiments are conducted for analyzing and developing models for roughness, thrust force and

roundness error prediction in drilled holes on HAMMC. The following conclusions are made from the

developed three different prediction models.

1. Stir casting is a low-cost method used to fabricate aluminium based composite with good distribution of
particulates as seen from the SEM image. The tensile strength and micro-hardness of the HAMMC tends to

increase when compared with as cast Al7075 alloy.
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2. For thrust force, the contribution of drill speed is 59.37% towards thrust force, 19.73% influence by feed
rate and point angle by 12.06%. With increasing point angle, lower thrust force is sensed; with increasing
rate of feed, thrust forces rises significantly. Similarly, with higher drill speeds, thrust force tends to increase.

3. Influence of point angle (84.34%) is higher, followed by drilling speed (9.69%) and feed rate (4.18%)
towards hole roughness. Roughness decreases with higher point angle and feed rate, increase in drill speed

leads to higher surface roughness as more amount of material is removed during hole making.

4. Roundness error is highly influenced by point angle, whose contribution is 42.39%, feed rate by 33.58% and
drill speed by 14.72%.With higher point angle, roundness error tends to increase due to the wider cutting
edges available in the drill bit. Similarly, with increment in feed rate and drill speed, roundness error also

tends to be higher due to higher amount of material removal during hole generation.
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5. For unconstrained optimization, the optimal condition is: 128°-point angle, 0.05 mm rev ' of feed and drill
speed of 1000 rpm. Whereas for constrained optimization, the optimal condition is: 118°-point angle, 0.05
mmrev ' feed and 1000 rpm of drill speed.

6. ANN model developed using back-propagation feed-forward network with gradient descent method
predicts the output responses closer to the experimental results when compared with the second order
polynomial equation generated using MLR models.
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