
Engineering Research Express
     

PAPER • OPEN ACCESS

Parametric analysis on drilling of aluminium alloy
hybrid composites reinforced with SIC/WC
To cite this article: S Senthil Babu et al 2022 Eng. Res. Express 4 025036

 

View the article online for updates and enhancements.

You may also like
Correlation between quarter-point angle
and nuclear radius
Wei-Hu Ma,  , Jian-Song Wang et al.

-

Mechanical and machinability study on
discontinuously reinforced sisal fibre
polyester composite laminates
Raviraj Shetty, Augustine B V Barboza
and Rajesh Nayak

-

Comparison between MAST-U
conventional and Super-X configurations
through SOLPS-ITER modelling
A. Fil, B. Lipschultz, D. Moulton et al.

-

This content was downloaded from IP address 14.139.187.125 on 20/01/2024 at 09:33

https://doi.org/10.1088/2631-8695/ac7038
/article/10.1088/1674-1137/41/4/044103
/article/10.1088/1674-1137/41/4/044103
/article/10.1088/2053-1591/ab3665
/article/10.1088/2053-1591/ab3665
/article/10.1088/2053-1591/ab3665
/article/10.1088/1741-4326/ac81d8
/article/10.1088/1741-4326/ac81d8
/article/10.1088/1741-4326/ac81d8


Eng. Res. Express 4 (2022) 025036 https://doi.org/10.1088/2631-8695/ac7038

PAPER

Parametric analysis on drilling of aluminium alloy hybrid composites
reinforced with SIC/WC

S Senthil Babu1 , CDhanasekaran1, GAnbuchezhiyan2 andKumaran Palani3

1 Department of Mechanical Engineering, Vels Institute of Science, Technology and Advanced Studies, Chennai-600117, Kancheepuram,
TamilNadu, India

2 Department ofMechanical Engineering, Saveetha School of Engineering, Saveetha Institute ofMedical and Technical Sciences, Chennai-
602105, TamilNadu, India

3 Department ofMechanical Engineering, College of Engineering,Wolaita SodoUniversity,Wolaita Sodo, P.O. Box: 138, Ethiopia

E-mail: pkumaran2003@gmail.com and rssenthilbabu@gmail.com

Keywords: hybrid composites, stir casting, drilling, desirability analysis, ANN, regressionmodeling

Abstract
Aluminium alloy (Al7075) based hybridmetalmatrix composites reinforcedwith Silicon carbide
(SiC) andTungsten carbide (WC), at 5wt% each are considered for this investigation, which are
developed by stir castingmethodology.Material characteristic analysis both atmicro andmacro
(Tensile strength andmicro hardness) level were performed. This investigation is further progressed
with drilling of the composites using titanium aluminiumnitride coated carbide drill (5mmdiameter)
for varied point angle, feed rate and drill speed. The responses such as thrust force, surface roughness
and roundness errorwere investigated by adopting Response SurfaceMethodology (RSM).Multiple
linear regression (MLR) is developed alongwithArtificial NeuralNetworks (ANN)model for
predicting the outputs. Scanning ElectronMicroscope (SEM) image reveals the uniformdistribution
of ceramic particles inmatrixwhich ascertains enhancedmechanical properties. The parameters such
as feed rate and point angle are found to have significant influence during drilling process. The
roundness error is found higher with higher point anglewhich is due to thewider cutting edges in the
drill bit. For unconstrainedmulti-objective optimization, the optimal condition obtained are 128°-
point angle, 0.05mmrev−1 feed rate and 1000 rpmdrill speed. For constrained optimization
(roundness error�0.05mm), optimal conditions are 118° point angle, 0.05mmrev−1 feed rate and
1000 rpmdrill speed.

Abbreviations

SiC Silicon carbide

WC Tungsten carbide

TiAlN Titanium aluminiumnitride

RSM Response SurfaceMethodology

ANN Artificial Neural Networks

SEM Scanning ElectronMicroscope

HAMMC Hybrid aluminiummetalmatrix composites

ANOVA Analysis of Variance

MLR Multiple linear regression

MSE Mean squared error
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1. Introduction

For usage inmarine and automotive sectors lightweightmaterials are needed, which is fabricated by the addition
of ceramic particulates with suitable parent alloymaterial.With hard ceramic particles embedded in thematrix,
machining becomesmore tedious due to involvement of higher cutting forces and tool wear. Hence,machining
of compositematerials is verymuch in demand for high end engineering applications [1]. Hybrid intermixtures
form a group ofmaterials that have been attracted by number of researchers because of their improved
properties when comparedwithmonolithicmaterials. Attempts have beenmade to fabricatemechanical
components using these compositematerials; however, somemeasure offinishing should be done to complete
the assembly process [2]. Themetal removalmechanism in obliquemachining like drilling, the variation in
cutting forces and their influence on the damages caused in the cutting tool andwork piece ismost significant
[3]. The drilling forces and damages caused can beminimized through proper selection of tool geometries and
machining parameters [4]. In any case, for assembly and joining, drilling becomes a predominantmachining
process under demand. Because of the reinforcements,machining of hybrid composites became a challenging
task in the production industries as various factors affect the quality of drilled characteristics [5].Material
removal rate, cutting forces, circularity and roundness error and surface roughness have been observed in
drilling hybrid aluminium alloymetalmatrix composite (HAMMC), that are affected by various parameters like
drill point angle, speed and toolmaterial [6].

The cryogenicmachining nano-SiC reinforced aluminium composite using drymachining andminimum
quantity lubrication (MQL) using carbide drills of different point angles based onBox-Behnken design (BBD)
design of RSMandTeaching-Learning based optimization (TLBO) and found that, cushioning effect and
improved lubrication from cryogenicmachining improvesmachining performance [7]. Also, nano filled
improves the drilling condition through higher ball-bearing effect. The investigationmachining behavior of
Al7075+SiC composite using high-speed steel (HSS) drill bit andHSS drill coatedwith titaniumnitride (TiN)
drills and found that, rate of feed and spindle speed influences roughness of hole surface, which elevates with
higher rate of feed and lowers at higher drill speeds [8]. The drill damage on roundness error during drilling glass
fiber reinforced polypropylene (GFR/PP) using solid carbide spur and brad drills by adopting BBDdesign of
RSMand found that, roundness error elevates with higher diameter of drill and feed rate. The developed
empiricalmodels with 95%confidence interval could effectively predict the roundness error [9].

The cutting forces during dry drilling of aluminium composites using neural networkwith feed forward
back propagation algorithm and found that absolute error is 2.03% and 3.46% among predicted and
experimental torque and thrust force [10]. The drilling experiments andmeasured circularity, roughness and
cylindricity of holes on silicon nitride composites by altering feed and speed. They also analyzed the results with
ANNmodel and found it a reliablemethod for prediction [11]. The investigation on the effect of drilling factors
on cutting forces for hybrid composites withmultiple regression andANN for prediction, found that ANN
showed better prediction thanMRA [12]. Babu et alThe impact of drilling variables on roughness of drilled
holes and comparedwith the predicted values by Fuzzy Logic and concluded that the results were close to each
other [13]. The drilled hybrid composites with carbide drill coatedwith TiAlN and concluded that the drill
material ismost significant than speed and feed, and also suggested that the TiAlN coated drill showed the best
performance among the various drill toolmaterials [14]. The hybridmetalmatrix composites with particulate
boron carbide reinforcement possess a good combination of good elastic property, specific strength, high
thermal stability and excellent wear resistance. Themachining studies onHAMMC fabricated through powder
metallurgy technique by adopting Taguchi’s technique and optimized the inputs using grey relational analysis a
non-dominated sorting genetic algorithm [15].

From the survey, it is identified that, limited investigations were done onmachining of hybrid aluminium
metalmatrix composites (HAMMC) reinforcedwith primary (SiC) and secondary (WC) ceramic particulates
due to the difficulties inwettability and economic constraints. Hence, performing drilling studies on the
fabricatedHAMMCusing coated (TiAlN) carbide drill with three different point angle, feed rate and drilling
speeds is considered novel in this investigation. Experimentations are planned and analyzed using response
surfacemethodology technique (RSM).Both unconstrained and constrained optimization is done. Prediction of
output responses is done using empiricalmodels developed fromMLR and fromANNmodel and subsequently
the outcomes are compared.

2. Fabrication and experimentalmethods

A stir casting process can be used to fabricate aluminummatrix composites and hybrid aluminummatrix
composites since it is an economical process that is ideal formass production [16]. As the aluminummelt reacts
with the atmosphere andmoisture, aluminumoxide forms a protective layer over themelting surface that
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shields themelt from further atmospheric reactions and hence it prevents causing serious damage from
atmosphere [17]. By considering this in the present study Fabrication of composites is done by stir-casting
technique, which is a liquid state technique for preparing the composites in an economicalmanner inwhich the
reinforcedmaterials are blended together with the liquid aluminium (Al7075)matrix by stirring itmechanically
[18]. Small pieces of Al7075 bar is placed andmelted in a cruciblemade of graphite. The reinforcementmaterials
are preheated separately and blendedwithmolten slurry consistently utilizing a ceramic stirrer attached to
electricmotor running at 300rpm for a period of 10 min followed bywhich themolten slurry is then transferred
to themould cavity for solidification at room temperature. The ceramic strengthening particulates of SiC and
WCare added to themelt through the external sprue in amounts of 5wt%each. To get a homogeneous
distribution of reinforcement in thematrixmaterials, the stirring speed and stirring timewas kept at 500 rpm
and 15 min, respectively [19].When the ceramic particulates were added to themolten alloy, unwetted particles
caused the particles tofloat on the surface, even after the reinforcing particles weremixedmechanically. The
particles tended to return to the surface when stirring ceased, andmost of the particles were still stuck together.
In casting, aminimumamount of porosity is present. By increasing the particle percentage in thematrix,more
porosity was formed as a result of SiO2 layer cladding the ceramic particles, which put outmoisturewhen
particles were introduced [20]. Upon pouring themolten slurry into the die cavity, themolten slurrywas allowed
to cool at room temperature.

2.1. Taguchi’s design of experiments
Taguchi’s technique for parametric design is adopted for enhancing the system robustness, thereby assisting in
decisions during process and product designs [21]. For process variable optimization, this procedure can be
adopted due to its simplicity and adaptability [22]. This procedure delivers the required information from least
experimental trials with various levels of input conditions [23].With three factors varied at three levels,
considering the interaction effects among them, Taguchi’smethodology is chosen, consecutively a L27
orthogonal array (OA) is selected. It is apprehended thatOAbased design characterizes the least likely section of
all probable combinations [24]. Theminimal experimental trial that provide satisfactory outcomes are the two
prime aspects thatOAs are chosen for investigational designs. The validation of results arises from carrying out
experiments with real conditions and by performing confirmation tests with optimal condition [25]. The
drilling parameters as shown in table 1 are analyzed for improving the performance by identifying an optimal
drilling condition.

2.2. Response surfacemethodology
Response SurfaceMethodology (RSM) associates the procedures of statistical tools and optimization through
appropriatemodel [26]RSM is usually projected for identifying the ideal condition after initial screeningwhere
the responses are related only towards the significant input parameters. The results obtained are applied suitably
for performing experimental investigation by adopting RSM through the inclusion of replications of data points,
with the development of a suitable empiricalmodel [27]. Form input factors x1, x2K xm, the effective
association between the output response andm input conditions be represented as:

f x x x, , ....... 1m1 2( ) ( )h =

3. Results and discussion

SEM images reveals the homogenous distribution of strengthening particulates in the basematerials, without
indication of residual pore. Due to higher temperature characteristics the strengthening particles cannot be
solidified in thematrix alloy and hence appears as globular particles in parentmaterial [28]. Thematrix shows
the large grains with someMg2Si precipitation and little amount of un-dissolvedAl6 (Fe,Mn) in solid solution of
aluminium.

FromXRDanalysis it is clearly inferred that the basematerial aluminiumalloy occupies a peak factor and
followed by the strengthening particulates. The peak factors of synthesized composites that are obtained from

Table 1.Drilling factors and their values.

Drilling parameter Level 1 Level 2 Level 3

Point angle (°) 108 118 128

Feed rate (mmrev−1) 0.05 0.1 0.15

Drill speed (rpm) 1000 2000 3000
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the XRDare Al (33.2°, 36.3°, 38.2°, 48.5°), SiC (34.2°, 58.6°, 64.2°) andWC (28.6°, 38.6°, 46.8°, 68.2°) at 2θ
respectively as shown infigures 1(a)–(b).

The Tensile strength is determined for the as cast Al7075 andHAMMCas per ASTM-E8 standard and
micro-hardness as per ASTM-E384 standard [29]. It is observed from the figure 2 that, with inclusio n of ceramic
particles, improvement is found inmicro-hardness and tensile strength [30].With increase in tensile strength
the% elongation tends to reduce due to lowering of ductility of theHAMMC, ceramic particles hindering the
dislocationmotion of cracks during the tensile test.

Using CNCbased verticalmachining centre, drilling experiments has been done. To record the thrust force,
Kistler dynamometer has been used. Kosaka—Surf coder SE700 is used formeasuring the drilled hole roughness
value. Roundness error has been evaluated for all the holes using coordinatemeasuringmachine [31]. The SEM
Image of drilled composites samples is shown infigure 3.

As per L27OA,machining tests are performed inHAMMCusing traditional drilling process. Table 2
displays the outcomes of experimentation for all 27 tests with TiAlN coated carbide tool [32] of diameter 5mm.

From investigational outcomes, thrust force are found to be higher for increasing point angle [33]
Roughness in drilled hole is least for drill bit with point angle of 118° due to less removal of chip area, whereas
roundness error tends to increase with increasing point angle. The significance of rate of feed on thrust force and
roundness errorwas higher [34], roundness error and thrust force tends to increase with increasing rate of feed
but surface roughness tends to reduce for 0.1mm rev−1 and further rise to 0.15mm rev−1, surface roughness
increases asmore amount ofmaterial is removed. Drill speed influences thrust force [35] and roundness error
[36].With higher speeds, vibration takes places and hence increases the roundness error.With higher drilling
speed, surface roughness tends to increase [37].

Figure 1. SEMandXRDofHAMMC.

Figure 2.Tensile andmicro-hardness of cast composite.
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Figure 3.Drilled hole of Aluminiumhybrid composites.

Table 2.Experimental outcomes.

Expt.No Point angle ° Feedmmrev−1 Speed rpm Thrust Force (N) Surface roughness (μm) Roundness error (mm)

1 108 0.05 1000 43.027 10.352 0.0278

2 108 0.05 2000 97.839 10.986 0.0313

3 108 0.05 3000 161.588 9.658 0.04

4 108 0.1 1000 90.084 9.717 0.024

5 108 0.1 2000 169.093 10.51 0.0312

6 108 0.1 3000 257.041 9.341 0.0436

7 108 0.15 1000 123.843 10.37 0.0316

8 108 0.15 2000 227.050 11.322 0.0425

9 108 0.15 3000 339.196 10.312 0.0586

10 118 0.05 1000 110.091 6.996 0.0498

11 118 0.05 2000 154.252 7.818 0.0531

12 118 0.05 3000 207.350 6.678 0.0616

13 118 0.1 1000 134.375 6.193 0.0547

14 118 0.1 2000 202.734 7.174 0.0617

15 118 0.1 3000 280.030 6.193 0.0739

16 118 0.15 1000 145.361 6.678 0.071

17 118 0.15 2000 237.917 7.818 0.0817

18 118 0.15 3000 339.412 6.996 0.0976

19 128 0.05 1000 77.829 8.486 0.0152

20 128 0.05 2000 111.339 9.496 0.0183

21 128 0.05 3000 153.787 8.544 0.0266

22 128 0.1 1000 79.340 7.515 0.0288

23 128 0.1 2000 137.047 8.684 0.0356

24 128 0.1 3000 203.693 7.891 0.0476

25 128 0.15 1000 67.552 7.832 0.0538

26 128 0.15 2000 149.458 9.16 0.0643

27 128 0.15 3000 240.302 8.526 0.08
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3.1. Analysis of thrust force
Thrust forces arising fromdrilling process due to friction contains significant information that are correlated to
adequate generation of temperature towards improving quality of the product and lowerwear of tools [38].
Thrust force acts along the spindle axis and in the direction of drill feed. Thrust force is greatly affected by the
drilling tool lips and themajor contributor to thrust force is the chisel edge [39].

Table 3.ANOVA table for Thrust force.

Source SS DoF MS F-value p-value

Model 1.47E+05 6 24462.33 33.48434 2.06E-09 significant

Point Angle 19419.81 2 9709.903 13.29103 0.000213

FeedRate 31764.83 2 15882.42 21.74005 9.64E-06

Drill Speed 95589.33 2 47794.67 65.42193 1.68E-09

Residual 14611.21 20 730.5603

CorTotal 1.61E+05 26

Std.Dev. 27.02888 R2 0.909464

Mean 168.1715 Adjusted R2 0.882303

C.V.% 16.07221 Predicted R2 0.834998

Adeq Precision 21.43566

Figure 4.Diagnostic andmodel graphs for thrust force.
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Statistical tool, Analysis of Variance (ANOVA) is used to identify the significant influence of independent
variables over the dependent variables by determining the variance among the selected input parametersm [40].
By adopting response surface design, themeasured thrust force is analyzed and the ANOVA table obtained is
presented in table 3, which shows that a significant linearmodel is developedwith anR2 value of 90.94%. The
contribution of drill speed is 59.37% towards the produced thrust force, followed by feed rate (19.73%) and
point angle by 12.06% [41]. Probability values lower than 0.05 specify significant terms inmodel, here all the
considered inputs are significantmodel terms. Adequate precision value determines adequate signal with lower
noise levels. Generally, the desired signal-to-noise (S/N) ratio higher than 4 is required, here 21.436 shows a
satisfactory signal.

A graph drawn between predicted and actual values of a response is actual versus predicted plot, which is
used to distinguish data’s that cannot be predictedwell by the developedmodel. This scatter plot is the best
method of visualizing the data, withmost of the points closer to the diagonal line formed indicating the obtained
responses are linear in nature.Model developedwith higher R2 value provides all data points closer to the
formed diagonal line.

Response surface plots are beneficial for creating necessary operating situations and responses. Surface plot
usually exhibits a 3D view providing a distinctive nature of the output response. For first order empiricalmodel
is framed consideringmain effects only, the response surfacefitted is a planewith straight contour lines. If
interaction is considered in the fittedmodel, curved contour line is formed and the response surfacewill be non-
linear [42].

Infigure 4(a), the predicted versus actual graph, all the dispersed points are scattered on both sides of the 45°
diagonal line and hence it can be stated that, a good prediction is possible with the developedmodel with a
predicted R2 value of 83.50%. Figure 4(b) shows the association among point angle, feed and thrust force.With
higher point angle, thrust force tends to lower; with higher feeds, thrust forces rises significantly. Similarly, with
higher drill speeds, thrust force tends to increase as presented infigure 4(c). Thrust force could beminimum for
higher point angle and lower values of speed and feed as infigure 4(d).

3.2. Analysis of surface roughness
Surface texture and topography is the primary representative amid surface integrity properties and dimensions
imparted by cutting tool employed infinishing process. Conventionally, texture of surface ismeasured as an
index for evaluating vibration, damage andwear ofmachine tools rather thanmeasuring the component
performance. In industrial scenario, Ra (arithmetic average) value from a stable process is considered [41]. The
roughness of the drilled hole is analyzed to identify the parameters that influence themost. ANOVA table
formulated for hole roughness during analysis is presented in table 4. It is identified that, the influence of point
angle (84.34%) is higher, followed by speed (9.69%) and feed (4.18%) towards the roughness of hole [43]. The
ANOVAmodel is formulatedwith anR2 value of 98.21%,which satisfies the 95% confidence interval (CI)
adopted during statistical analysis [44].With p-value less than 0.05, point angle, feed rate and drill speed are
found to be significantmodel terms.With adequate precision of 42.199, a lower noise levels (external
disturbances) is observed during experimentation.

In actual versus predicted value graph shown infigure 5(a), along the 45° straight diagonal line, the data
points are evenly scattered and are close enough to the diagonal line and the prediction is better with the
predicted R2 value of 96.74%. From the response 3D surface graph drawnbetween point angles, feed rate and
surface roughness as presented infigure 5(b), with increase in point angle, surface roughness decreases and a
similar trend is observed for higher rate of feed, where roughness value is lower for higher feed rate.When drill
speed is considered, increase in drill speed leads to higher surface roughness asmore amount ofmaterial is

Table 4.ANOVA table for surface roughness.

Source SS DoF MS F-value p-value

Model 58.49 6 9.75 182.87 < 0.0001 significant

Point Angle 50.23 2 25.11 471.12 < 0.0001

FeedRate 2.49 2 1.24 23.34 < 0.0001

Drill Speed 5.77 2 2.89 54.16 < 0.0001

Residual 1.07 20 0.0533

CorTotal 59.56 26

Std.Dev. 0.230888 R2 0.982099

Mean 8.564667 Adjusted R2 0.976728

C.V.% 2.695823 Predicted R2 0.967375

Adeq Precision 42.19881
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removed during holemaking as represented infigure 5(c). Figure 5(d) shows the relationship between feed rate,
drill speed and roughness. The roughness value inside the drilled hole isminimum for higher point angle and
feed rate alongwith lower drill speed.

3.3. Analysis of roundness error
The performance of rotarymechanical partsmotion ismainly affected by the shape or geometrical error known
as roundness error. The roundness error rises considerably with feed rate [45]. The roundness error arises due to
the generation of burrs at the exit and entry of drilled hole, and also because of dynamic uncertainty of drilling
tool and rapid thrust force. A larger thrust force because of higher rate of feed can be the foremost reason for
higher roundness error [46].

Table 5 presents the ANOVAanalysis results for roundness error, where a significantmodel is developed
with anR2 value of 90.70%. It is identified that, roundness error is highly influenced by point angle, whose
contribution is 42.39%, feed rate by 33.58% [47] and drill speed by 14.72%.

Figure 6(a), presents the diagnostic plot of actual versus predicted plot, where all the experimental values and
predicted values tend to lie scattered on both sides of the 45° straight diagonal line and a perfect fit is not possible
in this case as the points are away from the diagonal linewhich is also supported by a low predicted R2 value of
83.05%. The 3D surface plot of roundness error drawn between feed and point angle is presented infigure 6(b),
which presents that with increase in point angle, roundness error tends to increase due to thewider cutting edges
available in the drill bit. Similarly, with higher rate of feed, roundness error also tends to be higher due to higher
volume of removingmaterial during hole formation. A similar trend is observed for increasing speed; increasing

Figure 5.Diagnostic andmodel graphs for surface roughness.
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the speed increases the roundness error as seen from figure 6(c). Fromfigure 6(d) it is obvious that, lower feed
rate and lower drill speed produces lower roundness error alongwith lower point angle.

3.4.Multi-objective constrained optimization using desirability approach
Inmulti-criteria optimization, all the output responses are considered and a commonoptimal condition is
evolved (Reddy et al 2020).More than one response is considered simultaneously for building a suitablemodel
with response surface for individual outputs and thenfinding a suitable operating state so that all responses are
optimizedwithin the desired ranges. The approach of desirability function is one among themost prevalent

Figure 6.Diagnostic andmodel graphs for roundness error.

Table 5.ANOVA table for roundness error.

Source SS DoF MS F-value p-value

Model 0.010468 6 0.001745 32.51715 2.67E-09 significant

Point Angle 0.004892 2 0.002446 45.59439 3.55E-08

FeedRate 0.003876 2 0.001938 36.11944 2.3E-07

Drill Speed 0.001699 2 0.00085 15.83762 7.54E-05

Residual 0.001073 20 5.37E-05

CorTotal 0.011541 26 R2 0.907021

Std.Dev. 0.007325 Adjusted R2 0.879128

Mean 0.048367 Predicted R2 0.830546

C.V.% 15.14422 Adeq Precision 20.99431
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approaches employed in optimizingmultiple-responses. During implementing desirability, values that falls in
between the probable values of 1 and 0will be assigned by the desirability functionwhere 1 represent the
desirable or ideal value and 0 represent the non-desirable outcome [48].
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The formulae to calculated desirability forminimization andmaximization of responses are provided in
equation (1), where A andB are extreme limits of selected inputs and the exponent S governs theweightage
towards attaining the value of target; the input vector is X, and fr is the predictionmodel used andR is the
number of desirability functions (responses) considered in the study [49].

In unconstrained optimization procedure, the prime objective isminimization of thrust force, surface
roughness and roundness error. During simultaneous optimization using desirability, it is identified from the
rampplot (figure 7) that, the optimal input conditions are 128°point angle, 0.05mmrev−1 of fee, 1000 rpmof
speedwith predicted outputs responses; thrust force of 20.207N, roughness of 8.347microns and roundness
error of 0.02mmwith a desirability value of 0.817, which is nearer to the ideal value of 1.

Inmost of the industrial need, a perfect hole is needed fromassembly point of view.Hence, a constrained
optimization is performedwith an objective ofminimizing roughness and thrust force with roundness error as
constrained (�0.05mm). During optimization, thrust force and roughness is set asminimumand roundness
error is set as target (0.05mm). The optimal condition evolved is: 118°-point angle, 0.05mm rev−1 of feed and
1000 rpm speed. The predicted outputs are: thrust force of 85.89N, surface roughness of 6.837microns and
roundness error of 0.05mm, as observed from rampplot presented infigure 8. The thrust force and surface
roughness values predicted are lower than that of the unconstrained optimization predicted values. The
desirability value of constrained optimization is obtained as 0.872, which is also higher, when comparedwith
unconstrained optimization.

Figure 9 presents interaction plot obtained during constrained optimization, showing the relationship
between point angle and feed rate with desirability and other output responses for a drill speed of 1000 rpm. In
the plot, the red color line represents feed rate of 0.05mmrev−1, green color represents 0.10mmrev−1 feed rate
and 0.15mm rev−1 feed rate is represented by blue color. In interaction plot, if the relationship between two
inputs over the considered output is characterizedwith parallel lines, interaction effect is null among the

Figure 7.Desirability plot for unconstrainedmulti objective optimization.
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considered variables. But if the association is characterized by non-parallel lines, noteworthy relationship occurs
among the considered inputs [12]. Among point angle and feed, no significant interaction exists; but for
desirability a substantial relationship is seen among point angle and rate of feed.

Figure 8.Desirability plot for constrainedmulti objective optimization.

Figure 9. Interaction plot for desirability and output responses.
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3.5.Development of empiricalmodel usingmultiple-linear regressionmodels
A regressionmodel involving higher than one regressor/input variable is known asmultiple linear regression
(MLR)model.MLR are extensions of simple linear regression.MLRmodel is generally considered as
approximating or empirical functions that forms a definite relationship among dependent and independent
variable with satisfactory estimation to the unknown true function [50]. For predicting the outputs, empirical
models are framed for individual output by adoptingmultiple linear regression (MLR) technique [51] for thrust
force, surface roughness and roundness error as represented in equations (2)–(4). By using this developed
model, prediction is done and comparison is donewiththe experimental values, as shown infigure 10.With
higher predicted R2 value, close prediction is possible andwith lower predicted R2 value, a better prediction is
not possible as seen from the result of roundness error.

Thrust Force P F
Speed P F P S

F S P F S

7453.34 122.287 5775.12 0.132235
45.5463 0.001065 0.483960

0.496631 2659.58 0.000004 22 2 2 ( )

= - + ´ + ´ +
´ - ´ ´ - ´ ´ +
´ ´ - ´ - ´ + ´

Surface Roughness P F S

P F P S

F S P F S

355.1 5.814 18.23 0.001388

0.3360 0.000019 0.003180

0.02423 257.6 0.000001 32 2 2 ( )

= - ´ - ´ + ´
- ´ ´ + ´ ´ +
´ ´ + ´ + ´ - ´

Roundness Error P F S
P F P S

F S P F S

3.704 0.06531 2.371 0.000006
0.01740 0.000000 0.000074

0.000283 2.280 0.000000 42 2 2 ( )

= - + ´ - ´ - ´
+ ´ ´ - ´ ´ +
´ ´ - ´ + ´ + ´

3.6. Prediction of output responses throughNeuralNetworks
Neural networksmimic the brain of human beings artificially by simulating their process of learning [52]. The
artificially developed neuronwill look alike the biological neurons and also functions in similarmode. The input
informationwill be delivered to the neurons based on theweights of incoming data and ismanaged by the
propagation functionwhich sums the data values based on theweights of incoming functions [53].With
reference to a threshold value, the resulting data valuewill be compared by the adopted activation function. If the
threshold value is exceeded the input value, neurons get activated and if not, it will be repressed. The activated
neurons send signal to the outgoing values based on theweights assigned to all interconnected neurons and so

Figure 10.Comparing values from experiment and regression.
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forth. By deploying activation function (transfer function), the output signal transmitted by the neuronswill be
determined based on theweighted input. Generally, each and every neuron in a particular layer will be
connected to the preceding and succeeding layer neurons except the output and input layer of the network.
Transmission of data from aneuron in neural network is done layer by layer starting from input, hidden and
output layer [54].

During training of neural network, if the output desired is known already, it is termed as supervisor learning
or else it is unsupervised [55] aftermeasuring the outputs related to the inputs, weights are changed tominimize
the difference among desired and actual value of outputs. A commonparameter, learning rate affects the speed
of ANN towards arriving themodel for better prediction [56]. For preventing themodel from converging
towards a saddle or localminima,momentum coefficient is used. The purpose ANNnetwork is to predict the
response for the provided inputwithout doing expensive experimentation [57, 58].

During the process of developing a perfect ANNmodel, various networks are framedwith different neurons
in hidden layer, whereas the output neurons (3 responses) and input neurons (3 input parameters) are kept
constant. Apart from changing the number of hidden layer neurons,momentum coefficient and learning rate
are also changed to develop a perfect predictionmodel. Learning ratemust be changed between the range of 0 to
1whereasmomentum coefficientmust be changed between the values 0 to 2. In this present investigation, the
ANNnetwork developed ismade up of 7 hidden layer neurons with optimal learning rate of 0.015 and 0.8
momentum coefficient towards achieving a better regression coefficient value. From the 27 trials, 21 data’s are

Figure 11.ANNarchitecture developed inMATLAB environment.

Figure 12.Neural network architecture.

13

Eng. Res. Express 4 (2022) 025036 S S Babu et al



used for ANNmodel training and the balance 6 trial data’s are considered for testing ANN. Figure 11 presents
the developed architecture of ANN inMATLAB and figure 12 shows the interconnectivity among the neurons
from input layer, intermediate hidden layer and then to output layer.

Figure 13 presents the regression plot obtained duringmodel development byANNduring training,
validation, testing and in combined condition. The R2 value obtained during training is 99.64%, 99.68%during
validation check, 98.56%during testing and overall R2 value obtained is 99.42%,which is close enough to the
ideal value of 100%. The limitation encountered during development of ANNmodel is the time duration of
training theANNmodel for better prediction.

Mean squared error (MSE) variation during training of ANNmodel for an epoch (iteration) of 5000 is
displayed infigure 14. It is observed that,MSE is lowest for the best, followed by training, validation and testing
of ANNmodel. The confirmation value of 0.01224 is obtained during performance.

While training the developedmodel of ANN, during each epoch (iteration) validation check is performed
towards comparing input and output predicted values. Gradient descent approach is adopted forminimizing
the error function value by adjusting theweight factor in back-propagation feed forward neural network
algorithm. Figure 15 presents the results fromgradient value obtained during each epoch and validation check.
The gradient value tends to lower towards zero during each iteration and finally, the gradient value gets stabilized
without any further reduction.

Finally, after predicting the output responses throughMLRmodels andANNmodel, it is comparedwith the
experimental values. Figure 16 presents comparison of predicted valueswith experimental condition for thrust
force,figure 17 presents the comparison of surface roughness values and figure 18 compares the results of
roundness error. It appears that, the prediction of outputs throughANN is closer enough to experimental values
thanMLRmodels due to the higher regression coefficient value. In conclusion, the ANNmodels outplay the
MLRmodels for better prediction in this work.

Figure 13.Regression plot obtained inANN training.
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4. Conclusions

Various experiments are conducted for analyzing and developingmodels for roughness, thrust force and
roundness error prediction in drilled holes onHAMMC.The following conclusions aremade from the
developed three different predictionmodels.

1. Stir casting is a low-cost method used to fabricate aluminium based composite with good distribution of
particulates as seen from the SEM image. The tensile strength andmicro-hardness of theHAMMC tends to
increase when comparedwith as cast Al7075 alloy.

Figure 15.Training state obtained in ANN.

Figure 14.Performance plot attained fromANN training.
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2. For thrust force, the contribution of drill speed is 59.37% towards thrust force, 19.73% influence by feed
rate and point angle by 12.06%.With increasing point angle, lower thrust force is sensed; with increasing
rate of feed, thrust forces rises significantly. Similarly, with higher drill speeds, thrust force tends to increase.

3. Influence of point angle (84.34%) is higher, followed by drilling speed (9.69%) and feed rate (4.18%)
towards hole roughness. Roughness decreases with higher point angle and feed rate, increase in drill speed
leads to higher surface roughness asmore amount ofmaterial is removed during holemaking.

4. Roundness error is highly influenced by point angle, whose contribution is 42.39%, feed rate by 33.58% and
drill speed by 14.72%.With higher point angle, roundness error tends to increase due to thewider cutting
edges available in the drill bit. Similarly, with increment in feed rate and drill speed, roundness error also
tends to be higher due to higher amount ofmaterial removal during hole generation.

Figure 17.Comparing experimental, regressions andANNpredicted values for roughness.

Figure 16.Comparing thrust force for experimental, regression andANNvalues.
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5. For unconstrained optimization, the optimal condition is: 128°-point angle, 0.05mm rev−1 of feed and drill
speed of 1000 rpm.Whereas for constrained optimization, the optimal condition is: 118°-point angle, 0.05
mmrev−1 feed and 1000 rpmof drill speed.

6. ANN model developed using back-propagation feed-forward network with gradient descent method
predicts the output responses closer to the experimental results when comparedwith the second order
polynomial equation generated usingMLRmodels.
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