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Abstract
Nanotechnology has gained recentlymuch attention in research to develop new carbon
based materials with unique properties. It generates many new materials and devices
with a wide range of applications in medicine, electronics, and computer. Carbon
nanotubes (CNT s) are one of the most promising resources in the field of nanotech-
nology. Mathematically, assembling in predictable arrays is equivalent to packing in
graphs. An H -packing of a graphG is the set of vertex disjoint subgraphs ofG, each of
which is isomorphic to a fixed graph H . In this paper we determine perfect and almost
perfect H -packing and an induced H -packing k-partition number for Armchair car-
bon nanotube ACNT [n,m], Zigzag carbon nanotube ZCNT [n,m], Zigzag polyhex
carbon nanotube TUHC6[2m, n], Boron triangular carbon nanotubes BNTt [n,m],
TUC4C8(R), TUC4C8(S), H AC5C6C7[n,m] and H AC5C7[n,m] with H isomor-
phic to P3. Further we investicate C4-packing for TUC4C8(R).

Keywords P3-packing · C4-packing · Perfect P3-packing · Perfect C4-packing ·
Almost Perfect P3-packing · Induced P3-packing k-partition · Armchair carbon
nanotube ACNT [n,m] · Zigzag carbon nanotube ZCNT [n,m] · Zigzag polyhex
carbon nanotube TUHC6[2m, n] · Boron triangular carbon nanotubes BNTt [n,m] ·
TUC4C8(R) · TUC4C8(S) · H AC5C6C7[n,m] · H AC5C7[n,m]

1 Introduction

Carbon Nanotube Science is the most concise, accessible book for the field, presenting
the basic knowledge graduates and researchers need to know [10]. Carbon nanotubes
are largemacromolecules that are unique for their size, shape, and remarkable physical
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properties. They are molecular-scale tubes of graphitic carbon with outstanding prop-
erties. Carbon nanotubes are one of the most commonly mentioned building blocks of
nanotechnology. They show remarkable mechanical properties. Experimental studies
have shown that they belong to the stiffest and elastic known materials [14,27].

Chemical graph theory is a subdivision of mathematical chemistry in which we
apply tools of graph theory to represent the chemical phenomenon mathematically.
This theory plays a prominent role in the fields of chemical sciences. A chemical
graph is a simple finite graph in which vertices denote the atoms and edges denote the
chemical bonds in underlying chemical structure [18].

Carbon Nanostructures have attained significant attention due to their potential use
in many applications including biosensors, nano-electronic devices, chemical probes,
gas sensors and energy storage [14]. Nanotube structures havemany applications in the
general field of nanotechnology, which is a relatively recent field with much potential,
as well as some significant liabilities. Structures realized by arrangements of regular
hexagons in the plane are of interest in the chemistry of benzenoid hydrocarbons,where
perfect matchings correspond to kekule structures which feature in the calculation of
molecular energies associated with benzenoid hydrocarbon molecules [8]. Various
surface nanotemplates that are naturally or artificially designed at the nanometre scale
have been used to form periodic nanostructure arrays [20].

Mathematically, assembling in predictable patterns is equivalent to packing in
graphs. Packing in graphs is an effective tool as it has lots of applications in applied
sciences. Packing is one of the most extensively studied problem in computer science,
mainly due to its combinatorial aspects and algorithmic implementations. Packing
theory have useful applications to code optimization, clustering, component placing,
wireless sensor tracking, wiring-board design and many others [4,12,13]. The packing
problem is also used in dynamic channel assignment for cellular radio communica-
tion systems [16]. In addition to this, academic researchers work to create tiny circuits
using nodes that automatically arrange themselves into useful patterns [9].

An H -packing in a graph G = (V , E) is a set of vertex disjoint induced subgraphs
of G, each of which is isomorphic to a fixed graph H [23]. A cycle in graph theory is
a closed trail whose origin and internal vertices are distinct [2]. The maximum num-
ber of vertex disjoint copies of H in G is called the packing number and is denoted
by λ(G, H). A perfect H -packing in a graph G is a set of H -subgraphs of G such
that every vertex in G is incident with one H -subgraph in this set. An almost perfect
H -packing in a graph G is a set of H -subgraphs of G such that at most |V (H)| − 1
number of vertices are not incident on any H -subgraph in G [23]. The P3-packing
concepts have some applications in chemistry for representing chemical compounds
or to problems of pattern recognition and image processing, some of which involve
the use of hierarchical data structures of nanotubes [26]. An H -packing is of practi-
cal interest in the areas of scheduling [1], wireless sensor tracking [3], wiring-board
design, code optimization [11] andmany others. Packing lines in a hypercube has been
studied in [7]. H -packing is determined for honeycomb [25] and hexagonal network
[21]. An induced H -packing k-partition problem was studied for interconnection net-
works [23]. An induced P3-packing k-partition was studied for butterfly networks,
honeycomb networks and Circum Pyrene [30]. Xavier et al [28] proved an induced
P3 -packing k-partition number for Enhanced hypercubes, Augumented cubes and
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Crossed cubes with H�P3 and C4. An induced H -packing k-partition is determined
for V -Phenylenic nanotube, H -Naphtalenic nanotube, H -Anthracenic nanotube, H -
Tetracenic nanotube, CNC3[n] Nanocone and Circum tetracene with H � P3 [29].

Partitioning a network with respect to vertices, edges or subgraphs is a sig-
nificant aspect in enlarging resource utilization of parallel machines. Partitioning
large networks is often important for complexity reduction or parallelization. For
instance, in telecommunication networks, same frequency can be assigned to dif-
ferent subnetworks if the frequencies do not interfere with each other. Thus the
study of partitioning a H -packing such that no two members in the same parti-
tion interfere, becomes meaningful [23]. But partitioning nanotubes with respect to
vertices, edges and subgraph is a new concept that deal with representing chemi-
cal compounds and in the use of hierarchical data structures in Armchair carbon
nanotube ACNT [n,m], Zig-Zag carbon nanotube ZCNT [n,m], Zig-Zag polyhex
carbon nanotube TUHC6[2m, n], Boron triangular carbon nanotubes BNTt [n,m],
TUC4C8(R), TUC4C8(S), H AC5C6C7[n,m] and H AC5C7[n,m] having perfect
and almost perfect H -packing and an induced H -packing k-Partition when H � P3
and H � C4 where P3 is a path on three vertices and C4 is a cycle on 4 vertices. Thus
the study of partitioning a H -packing such that no two members in the same partition
interfere, becomes meaningful. We define this concept as follows:
A collection K = {H1, H2, . . . , Hr } of induced subgraphs of a graph G is said to be
sg-independent if (i) V (Hi )

⋂
V (Hj ) = φ, i �= j , 1 ≤ i, j ≤ r and (ii) no edge of

G has its one end in Hi and the other end in Hj , i �= j , 1 ≤ i, j ≤ r . If Hi � H , ∀
i , 1 ≤ i ≤ r , then K is referred to as a H -independent set of G. Let H be a perfect
or almost perfect H -packing of a graph G. Finding a partition {H1,H2, ...,Hk} of
H such that Hi is H -independent set, ∀ i , 1 ≤ i ≤ k, with minimum k is called
the induced H -packing k-partition problem of G. The minimum induced H -packing
k-partition number is denoted by i ppH(G, H). The induced H -packing k-partition
number denoted by i pp(G, H) is defined as i pp(G, H) = min i ppH(G, H) where
the minimum is taken over all H -packing of G [23].

The elementary concept and objective of the manuscript is to find H -packing and
an induced H -packing k-partition number for certain nanostructures when H � P3
and H � C4. Hence we determine and investicate an P3-packing and an induced P3-
packing k-partition number in section 2 for Armchair carbon nanotube ACNT [n,m],
in section 3 for Zigzag carbon nanotube ZCNT [n,m], in section 4 for Zigzag polyhex
nanotube TUHC6[2m, n], in section 5 for Boron triangular nanotubes BNTt [n,m],
in section 6 for TUC4C8(R) nanotube when H � P3 and C4, in section 7 for
TUC4C8(S) nanotube, in section 8 for H AC5C6C7[n,m] nanotube, and in section 9
for H AC5C7[n,m] nanotube .

2 Armchair carbon nanotube

Carbon nanotubes consist of carbon atoms bonded into a tube shape where carbon
atoms are located at apexes of regular hexagons on two-dimensional surfaces. There
are different shapes of carbon nanotubes such as armchair, chiral and zigzag based
on the rolling of 2D carbon hexagonal [5,10]. An armchair carbon nanotube of order
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n ×m is a tube obtained from a carbon hexagonal sheet of n rows and m columns by
merging the vertices of last column with the respective vertices of first column and is
denoted by ACNT [n,m]. ACNT [n,m] has nm vertices, m(3n−2)

2 edges and has only
odd number of rows and even number of columns. We investicate in this section on
perfect and almost perfect P3-packing and an induced P3-packing k-partition number
for armchair carbon nanotube.

Theorem 2.1 [25] Let G be a graph and H be a subgraph of G. Then λ (G, H) ≤
⌊ |V (G)|

|V (H)|
⌋
.

Packing with P3.
In view of Theorem 2.1 we have the following result.

Theorem 2.2 LetG beaArmchair nanotube ACNT [n,m]and H � P3, thenλ (G, P3)

≤
⌊nm

3

⌋
.

Lemma 2.3 Let G � ACNT [3k + 1, 2], k ≥ 1, H � P3. Then λ(G, H) =
⌊ (3k + 1)

2

⌋
.

Proof We prove the result by induction on k. When k = 1, λ (G, H) = 2. See Fig. 1.

Assume that λ (ACNT (3k − 1, 2), H) =
⌊ (3k − 1)

2

⌋
. Now (ACNT [3k + 1, 2]) is

obtained by adding hexagon C6 to (ACNT [3k − 1, 2]) sharing the top two vertices
of (ACNT [3k − 1, 2]) that induce path P3.

Thus λ (ACNT ([3k+1, 2], P3) = λ (ACNT ([3k−1, 2], P3) + 1=
⌊ (3k − 1)

2

⌋
+1=

⌊ (3k + 1)

2

⌋
.Weproceed to prove thatλ (ACNT [n,m], P3)=

⌊nm

3

⌋
. Let the subgraph

induced by the vertices of columns j and j + 1 be denoted by A j , 1 ≤ j ≤ m.
Procedure Packing (ACNT [n,m], P3) :
Input: An Armchair carbon nanotube ACNT [n,m] and H � P3.
Algorithm:

(i) Obtain a H -packing of A1 as in Lemma 2.3. Then obtain a H -packing of A3 by
taking the mirror image of H -packing of A1, placing the mirror perpendicular to
the horizontal edges of A2.

(ii) Repeat step (i) for the subgraphs A j ∪ A j+1 ∪ A j+2∪, . . . ,∪Am , where 1 ≤
j ≤ m.

(iii) Obtain a H -packing of Am as in A1 when m ≡ 0, 1, 2mod3.
Output: There exists a perfect and almost H -packing of armchair nanotube

ACNT [n,m] with
⌊nm

3

⌋
copies of H where H � P3.

Proof of correctness: In armchair nanotube ACNT [n,m], the induced sub-
graphs A j , 1 ≤ j ≤ m are vertex disjoint. The algorithm covers all vertices of
ACNT [n,m]whenm ≡ 0mod3 and leaves one or two vertices unsaturated when

m ≡ 1, 2mod3. Thus λ(G, H) =
⌊nm

3

⌋
. 	
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Fig. 1 a Induced P3-packing for ACNT [9, 8], b Induced P3-packing 2 - partition for ACNT [9, 8]

Theorem 2.4 [29] Let G be a graph which is connected, |V (G)| > 3 and if G has a
perfect P3 - Packing, then ipp(G) > 1.

In view of Theorem 2.4 we have the following result.

Lemma 2.5 The induced P3-packing k-partition number for armchair nanotube
ACNT [n,m] is 2.
Let G be a armchair nanotube ACNT [n,m]. We now give a procedure and its proof
of correctness to show that ipp(ACNT [n,m], P3) = 2.

Procedure Partition for (ACNT [n,m], P3)
Input: The armchair nanotube ACNT [n,m] i pp(G) = 2.
Algorithm:

(i) Consider any column of armchair nanotube ACNT [n,m] and cut it vertically as
in Fig. 1.

(ii) Label P3-packing [V1] and [V2] in the sequence of consecutive packing starting
at the top left most of the vertical plane.

(iii) Label P3-packing [V2] and [V1] in the sequence of consecutive packing starting
at the below left most of the vertical plane.

(iv) Continue the process as in (ii) and (iii) for the sequence of consecutive columns,
labelling [V1] [V2] or [V2] [V1] according as the label of (m−1)th column is [V2]
[V1] or [V1] [V2].
Output: Induced P3-packing k-partition number for armchair nanotube

ACNT [n,m] is 2.
Proof of correctness: Repeating the process of (iv) implies that there exists a
induced P3-packing 2-partition number for armchair nanotube ACNT [n,m].
Hence i pp(ACNT [n,m], P3) = 2.
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3 Zigzag carbon nanotube

One of the shapes of carbon nanotubes is zigzag nanotube. The Zigzag carbon nan-
otube ZCNT [n,m] has n rows and m columns. The Zigzag carbon nanotube has
only even number of rows and even number of columns and it has nm vertices [20].
The Zigzag carbon nanotubes possess electrical properties similar to semiconductors.
Armchair and Zigzag differ in chiral angle and diameter. We investicate in this sec-
tion on perfect P3-packing and an induced P3-packing k-partition number for Zigzag
carbon nanotube.
In view of Theorem 2.1 we have the following result.

Theorem 3.1 Let G be a Zigzag carbon nanotube ZCNT [n,m] and H � P3, then λ

(G, P3) ≤
⌊nm

3

⌋
.

Lemma 3.2 Let G � ZCNT [3k + 1, 2], k ≥ 1, H � P3. Then λ(G, H) = (3k + 1).

Proof We prove the result by induction on k. When k = 1, λ (G, H)= 4. See Fig.
2. Assume that λ (ZCNT (3k − 1, 2), H) = (3k − 1). Now (ZCNT [3k + 1, 2]) is
obtained by adding 2 hexagons C6 to (ZCNT [3k − 1, 2]) sharing the vertices in
(ZCNT [3k − 1, 2]) that induce path P3.
Thus λ (ZCNT ([3k + 1, 2], P3) = λ (ZCNT ([3k − 1, 2], P3) + 2 = (3k − 1)+2 =
(3k + 1).

We proceed to prove that λ (ZCNT [n,m], P3) =
⌊nm

3

⌋
. Let the subgraph induced

by the vertices of rows i and i + 1 be denoted by Ai , 1 ≤ i ≤ n.
Procedure Packing (ZCNT [n,m], P3) :
Input: An Zigzag carbon nanotube ZCNT [n,m] and H � P3.
Algorithm:

(i) Obtain a H -packing of A1 as in Lemma 3.2. Then obtain a H -packing of A3 by
taking the mirror image of H -packing of A1, placing the mirror perpendicular to
the obtuse, acute edges of A2.

(ii) Repeat step (i) for the subgraphs Ai ∪ Ai+1∪ Ai+2∪, . . . ,∪An where 1 ≤ i ≤ n.

(iii) Obtain a H -packing of Am as in A1 when n ≡ 0mod3.
Output:There exists a perfect H -packing of Zigzag nanotube ZCNT [n,m]with⌊nm

3

⌋
copies of H where H � P3.

Proof of correctness: In Zigzag nanotube ZCNT [n,m], the induced sub-
graphs Ai , 1 ≤ i ≤ n are vertex disjoint. The algorithm covers all vertices

of ZCNT [n,m] when n ≡ 0mod3. Thus λ(G, H) =
⌊nm

3

⌋
. 	


Lemma 3.3 The induced P3-packing k-partitionnumber forZigzagnanotube ZCNT [n,m]
is 2.

Proof Let G be a Zigzag nanotube ZCNT [n,m]. We now give a procedure and its
proof of correctness to show that i pp(ZCNT [n,m], P3) = 2.
Procedure Partition for (ZCNT [n,m], P3)
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Fig. 2 a Induced P3-packing for ZCNT [6, , 12] b Induced P3-packing 2 - partition for ZCNT [6, 12]

Input: The Zigzag nanotube ZCNT [n,m] i pp(G) = 2.
Algorithm:

(i) Consider any row of Zigzag nanotube ZCNT [n,m] and cut it horizontally as in
Fig. 2.

(ii) Label P3-packing [V1] and [V2] in the sequence of consecutive packing starting
at the top left most of the horizontal plane.

(iii) Label P3-packing [V2] and [V1] in the sequence of consecutive packing starting
at the below left most of the horizontal plane.

(iv) Continue the process as in (ii) and (iii) for the sequence of consecutive rows,
labelling [V1] [V2] or [V2] [V1] according as the label of (n − 1)th row is [V2]
[V1] or [V1] [V2].
Output: Induced P3-packing k-partitionnumber forZigzagnanotube ZCNT [n,m]
is 2.
Proof of correctness: Repeating the process of (iv) implies that there exists
an induced P3-packing 2-partition number for Zigzag nanotube ZCNT [n,m].
Hence i pp(ZCNT [n,m], P3) = 2. 	


4 Zigzag polyhex carbon nanotube TUHC6[2m,n]
The structure TUHC6[2m, n] has 2nm vertices and 3nm − n edges, where n is the
number of rows and m is the number of columns. The TUHC6[2m, n] nanotube is
knows as Zigzag polyhex nanotube with circumference 2m and length n and it is a
bi-regular graph [6,24].We investicate in this section on perfect and almost perfect P3-
packing and an induced P3-packing k-partition number for TUHC6[2m, n] carbon
nanotube.
In view of Theorem 2.1 we have the following result.

Theorem 4.1 Let G be a TUHC6[2m, n] nanotube and H � P3, then λ (G, P3) ≤
⌊2nm

3

⌋
.
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Fig. 3 a Induced P3-packing for TUHC6[6, 4] b P3-packing 3 - partition for induced subgraph of
TUHC6[6, 4] c Induced P3-packing 3 - partition for TUHC6[6, 4]

Lemma 4.2 Let G � TUHC6[2k+1, 4], k ≥ 1, H � P3. Then λ(G, H) =
⌊8

3
(2k+

1)
⌋
.

Proof We prove the result by induction on k. When k = 1, λ (G, H)= 8. See Fig. 3.

Assume that λ (TUHC6(2k−1, 4), H) =
⌊8

3
(2k−1)

⌋
. Now (TUHC6[2k+1, 4]) is

obtained by adding hexagons C6 of 2 copies (TUHC6[2k − 1, 4]) to (TUHC6[2k −
1, 4]) that induce path P3.

Thus λ (TUHC6([2k + 1, 4], P3) = λ (TUHC6([2k − 1, 4], P3) + 2 =
⌊8

3
(2k − 1)

⌋

+2 =
⌊8

3
(2k + 1)

⌋
.

We proceed to prove that λ (TUHC6[2m, n], P3) =
⌊2nm

3

⌋
. Let the subgraph

induced by the vertices of rows i and i + 1 be denoted by Ai , 1 ≤ i ≤ n.
Procedure Packing (TUHC6[2m, n], P3) :
Input: The Zigzag polyhex carbon nanotube TUHC6[2m, n] and H � P3.
Algorithm:

(i) Obtain a H -packing of A1 as in Lemma 4.2. Then obtain a H -packing of A2 by
taking the mirror image of H -packing of A1, placing the mirror horizontal to A1
and joining vertical edge between A1 A2.

(ii) Repeat step (i) for the subgraphs Ai ∪ Ai+1 ∪ Ai+2∪, . . . ,∪An where 1 ≤ i ≤ n.
(iii) Obtain a H -packing of An as in A1 when n ≡ 0, 1, 2mod3.

Output: There exists perfect and almost perfect H -packing of nanotube

TUHC6[2m, n] with
⌊2nm

3

⌋
copies of H where H � P3.

Proof of correctness: In nanotube TUHC6[2m, n], the induced subgraphs Ai ,
1 ≤ i ≤ n are vertex disjoint. The algorithmcovers all vertices of TUHC6[2m, n]
when n ≡ 0mod3 and leaves one or two vertices unsaturated when n ≡ 1, 2mod3.

Thus λ(G, H) =
⌊2nm

3

⌋
.

Lemma 4.3 The induced P3-packing k-partition number for TUHC6[2m, n] nan-
otube is 3.
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Proof Let G be a TUHC6[2m, n] nanotube. We now give a procedure and its proof
of correctness to show that i pp(TUHC6[2m, n], P3) = 3.

Procedure Partition for (TUHC6[2m, n], P3)
Input: The Zigzag polyhex carbon nanotube TUHC6[2m, n]i pp(G) = 3.
Algorithm:

(i) Consider any row of TUHC6[2m, n] and cut it horizontally as in Fig. 3.
(ii) Choose a P3 path on 3 vertices as shown in Fig. 3. The adjacent vertices of V1

cannot be partitioned into V2 alone. It fails the definition of induced P3-packing
k-partition.

(iii) Start a path of P3-packing of V1-partition. The adjacent path of partition of V1 is
either V2 or V3.

(iv) Start a path of P3-packing of V2-partition. The adjacent path of partition of V2 is
either V3 or V1.

(v) Construct a path of P3-packing of V3-partition. The adjacent path of partition of
V3 is either V2 or V1.

(vi) Continue the process of (iii), (iv) and (v) where all the vertices are covered and
partitioned into 3-partition.
Output: Induced P3-packing k-partition number for TUHC6[2m, n] nanotube
is 3.
Proof of correctness:Repeating the process (vi) implies, that there exists induced
perfect P3-packing 3-partition for TUHC6[2m, n] nanotube. 	


5 Boron triangular carbon nanotube BNTt[n,m]
Boron nanotubes are becoming increasingly interesting because of their remarkable
properties, such as their structural stability, work function, transport properties, and
electronic structure [19]. A boron triangular sheet is obtained from a carbon hexago-
nal sheet by adding an extra atom to the center of each hexagon. Boron nanomaterials
have been considered as excellent materials for enhancing the characteristics of opto-
electronic nanodevices because of their broad elastic modulus, high-melting point,
excessive conductivity, great emission uniformity, and low turn-on field. These mate-
rials can carry excessive emission current, which recommends that they may have
great prospective applications in the field emission area [17]. Scientists believe that
boron triangular nanotubes are a better conductor than carbon hexagonal nanotubes.
BNTt [n,m] of order n × m, where n and m represent the number of items in each

row and each column, respectively. There are
3nm

2
vertices and

3m(3n − 2)

2
edges

in the boron triangular nanotubes. We investicate in this section on perfect and almost
perfect P3-packing and an induced P3-packing k-partition number for BNTt [n,m]
carbon nanotube.
In view of Theorem 2.1 we have the following result.

Theorem 5.1 Let G be a BNTt [n,m] nanotube and H � P3, then λ (G, P3) ≤
⌊nm

2

⌋
.

Lemma 5.2 Let G � BNTt [2k + 1, 2], k ≥ 1, H � P3. Then λ(G, H) = (2k + 1).
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Fig. 4 (a) Induced P3-packing for BNT [5, 6] (b) Induced P3-packing 3 - partition for BNT [5, 6]

Proof We prove the result by induction on k. When k = 1, λ (G, H)= 3. See Fig. 4.
Assume that λ (BNTt (2k−1, 2), H) = (2k−1). Now (BNTt [2k+1, 2]) is obtained
by adding k3 of two copies (BNTt [2k − 1, 2]) to (BNTt [2k − 1, 2]) joining all the
edges from the middle vertices that induce the path P3.
Thus λ (BNTt ([2k + 1, 2], P3) = λ (BNTt ([2k − 1, 2], P3) + 2 = (2k − 1)+2 =
(2k + 1).

We proceed to prove that λ (BNTt [n,m], P3) =
⌊nm

2

⌋
. Let the subgraph induced

by the vertices of rows i and i + 1 be denoted by Ai , 1 ≤ i ≤ n.
Procedure Packing (BNTt [n,m], P3) :
Input: The Boron triangular nanotube BNTt [n,m] and H � P3.
Algorithm:

(i) Obtain a H -packing of A1 as in Lemma 5.2. Then obtain a H -packing of A2 by
taking the mirror image of H -packing of A1, placing the mirror horizontal to the
obtuse and acute edges from A1.

(ii) Repeat step (i) for the subgraphs Ai ∪Ai+1∪Ai+2∪, . . . ,∪An , where 1 ≤ i ≤ n.
(iii) Obtain a H -packing of An as in A1 when n ≡ 0, 1, 2mod3.

Output: There exists perfect and almost perfect H -packing of nanotube

BNTt [n,m] with
⌊nm

2

⌋
copies of H where H � P3.

Proof of correctness: In nanotube BNTt [n,m], the induced subgraphs Ai ,
1 ≤ i ≤ n are vertex disjoint. The algorithm covers all vertices of BNTt [n,m]
when n ≡ 0mod3 and leaves one or two vertices unsaturated when n ≡ 1, 2mod3.

Thus λ(G, H) =
⌊nm

2

⌋
.

Lemma 5.3 The induced P3-packing k-partition number for BNTt [n,m] nanotube is
3.

Proof Let G be a BNTt [n,m] nanotube. We now give a procedure and its proof of
correctness to show that i pp(BNTt [n,m], P3) = 3.

Procedure Partition for (BNTt [n,m], P3)
Input: The Boron triangular carbon nanotubes BNTt [n,m] i pp(G) = 3.
Algorithm:
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(i) Consider any row A1 of BNTt [n,m] and cut it horizontally as in Fig. 4.
(ii) Label P3-packing of A1 as [V1], [V2] and [V3] starting at the top left most of

horizontal plane.
(iii) Label P3-packing of A1 as [V2], [V3] and [V1] starting at the below left most of

horizontal plane.
(iv) A2 is labeled as [V1], [V2], [V3] or [V2], [V3], [V1] or [V3], [V1], [V2] or [V3],

[V2], [V1] etc. . . according to the labeling of A1.
(v) Continue as in (iv) for A3, A4, . . . , An till it is possible to find 3-partition in G.

Output:
There exists an induced H -packing 3-partition for BNTt [n,m] nanotube.
Proof of Correctness: The labeling process of (i) to (v) in algorithm implies that
it is possible to pack the BNTt [n,m] nanotube with 3-partition. Hence i pp(G)

= 3. 	


6 TUC4C8(S) carbon nanotube

The structure TUC4C8(S) has 8nm vertices and 12nm−2m edges,where n is the num-
ber of rows and m is the number of columns. The TUC4C8(S) nanotube is bi-regular
graph [24].We investicate in this section on perfect and almost perfect P3-packing and
an induced P3-packing k-partition number for TUC4C8(S) carbon nanotube, where
n is the number of octagons in each row and m is the number of octagons in each
column, where n and m are positive integers.
In view of Theorem 2.1 we have the following result.

Theorem 6.1 Let G be a TUC4C8(S) nanotube and H � P3, then λ (G, P3) ≤
⌊8nm

3

⌋
.

Lemma 6.2 Let G � TUC4C8(S)[2k + 1, 3], k ≥ 1, H � P3. Then λ(G, H) =
8(2k + 1).

Proof We prove the result by induction on k. When k = 1, λ (G, H)= 24. See Fig. 5.
Assume that λ (TUC4C8(S)(2k − 1, 3), H) =8 (2k − 1). Now (TUC4C8(S)(2k +
1, 3) is obtained by adding C4C8 of two copies (TUC4C8(S)(2k − 1, 3) to
(TUC4C8(S)(2k − 1, 3) sharing the vertices in (TUC4C8(S)(2k − 1, 3) that induce
the path P3. Thus λ ((TUC4C8(S)(2k + 1, 3), P3) = λ ((TUC4C8(S)(2k − 1, 3), P3)
+ 2 = 8(2k − 1)+2 = 8(2k + 1).

We proceed to prove that λ (TUC4C8(S), P3) =
⌊8nm

3

⌋
. Let the subgraph induced

by the vertices of columns j and j + 1 be denoted by A j , 1 ≤ j ≤ m.
Procedure Packing (TUC4C8(S), P3) :
Input: The Carbon nanotube TUC4C8(S) and H � P3.
Algorithm:

(i) Obtain a H -packing of A1 as in Lemma 6.2. Then obtain a H -packing of A2 by
taking the mirror image of H -packing of A1, placing the mirror perpendicular to
A1 and joining A1 and A2 by an horizontal edges.
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Fig. 5 a Induced P3-packing for TUC4C8(S)[4, 3], b Induced P3-packing 3 - partition for
TUC4C8(S)[4, 3]

(ii) Repeat step (i) for the subgraphs A j ∪ A j+1 ∪ A j+2∪, . . . ,∪Am , where 1 ≤
j ≤ m.

(iii) Obtain a H -packing of Am as in A1 when m ≡ 0, 1, 2mod3.
Output: There exists perfect and almost perfect H -packing of nanotube

TUC4C8(S) with
⌊8nm

3

⌋
copies of H where H � P3.

Proof of correctness: In Carbon nanotube TUC4C8(S), the induced subgraphs
A j , 1 ≤ j ≤ m are vertex disjoint. The algorithm covers all vertices of
TUC4C8(S)[n,m] when m ≡ 0mod3 and leaves one or two vertices unsatu-

rated when m ≡ 1, 2mod3. Thus λ(G, H) =
⌊8nm

3

⌋
. 	


Lemma 6.3 The induced P3-packing k-partition number for TUC4C8(S) is 3.

Procedure Partition for (TUC4C8(S), P3)
Input: The induced P3-packing k-partition number for TUC4C8(S) nanotube is 3.
Algorithm:

(i) Choose a P3 path on 3 vertices in A1, A2, . . . as in Fig. 5. The adjacent vertices of
V1 cannot be partitioned into V2 alone. It fails the definition of induced P3-packing
k-partition.

(ii) Start a path of P3-packing of V1-partition. The adjacent path of partition of V1 is
either V2 or V3.

(iii) Start a path of P3-packing of V2-partition. The adjacent path of partition of V2 is
either V3 or V1.

(iv) Construct a path of P3-packing of V3-partition. The adjacent path of partition of
V3 is either V2 or V1.

(v) Continue the process of (ii), (iii) and (iv) where all the vertices are covered and
partitioned into 3-partition.
Output: Induced P3-packing k-partition number for TUC4C8(S) nanotube is 3.
Proof of correctness:Repeating the process (v) implies, that there exists induced
P3-packing 3-partition for TUC4C8(S) nanotube.
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7 TUC4C8(R) carbon nanotube

TUC4C8(R) has 4pq vertices and 6pq − p edges, where n and m denote the number
of squares in a row and the number of rows of squares respectively [22].We investicate
in this section on perfect and almost perfect P3-packing and an induced P3-packing k-
partition number for TUC4C8(R) carbon nanotube, where n is the number of octagons
in each rowandm is the number of octagons in each column,where n andm are positive
integers. Further in this section, we prove that perfect C4-packing 2-partition exists
for TUC4C8(R) nanotube.
In view of Theorem 2.1 we have the following result.

Theorem 7.1 Let G be a TUC4C8(R) nanotube and H � P3, then λ (G, P3) ≤
⌊4pq

3

⌋
.

Lemma 7.2 Let G � TUC4C8(R)[2k + 1, 3], k ≥ 1, H � P3. Then λ(G, H) =
4(2k + 1).

Proof We prove the result by induction on k. When k = 1, λ (G, H) = 12. See Fig. 6.
Assume that λ (TUC4C8(R)(2k − 1, 3), H) = 4(2k − 1). Now (TUC4C8(R)(2k +
1, 3) is obtained by adding squares of two copies (TUC4C8(R)(2k − 1, 3) to
(TUC4C8(R)(2k − 1, 3) sharing the vertices in (TUC4C8(R)(2k − 1, 3) that induce
the path P3.
Thus λ ((TUC4C8(R)(2k + 1, 3), P3) = λ ((TUC4C8(S)(2k − 1, 3), P3) + 2 =
4(2k − 1)+2 = 4(2k + 1).

We proceed to prove that λ (TUC4C8(R), P3) =
⌊4pq

3

⌋
. Let the subgraph induced

by the vertices of rows i and i + 1 be denoted by Ai , 1 ≤ i ≤ n.
Procedure Packing (TUC4C8(R), P3) :
Input: The Carbon nanotube TUC4C8(R) and H � P3.
Algorithm:

(i) Obtain a H -packing of A1 as in Lemma 7.2. Then obtain a H -packing of A3 by
taking the mirror image of H -packing of A1, placing the mirror horizontal to the
vertical edges of A2.

A1

A2

A3

V1 V2 V1 V2
V1 V2

V2 V1 V2
V1 V2 V1

V3 V3 V3
V3 V3 V3

V2 V1 V2
V1

V2 V1

V1

V2

V1

V3 V2

V1

V2

V3

A1

A2

A3

(a) (b)

Fig. 6 a Induced P3-packing for TUC4C8(R)[6, 4], b Induced P3-packing 3 - partition for
TUC4C8(R)[6, 4]

123



Journal of Mathematical Chemistry

(ii) Repeat step (i) for the subgraphs Ai ∪ Ai+1 ∪ Ai+2∪, . . . ,∪An where 1 ≤ i ≤ n.
(iii) Obtain a H -packing of An as in A1 when n ≡ 0, 1, 2mod3.

Output: There exists perfect and almost perfect H -packing of nanotube

TUC4C8(R) with
⌊4pq

3

⌋
copies of H where H � P3.

Proof of correctness: In nanotube TUC4C8(R)[n,m], the induced subgraphs Ai ,
1 ≤ i ≤ n are vertex disjoint. The algorithm covers all vertices of TUC4C8(R)

when n ≡ 0mod3 and leaves one or two vertices unsaturated when n ≡ 1, 2mod3.

Thus λ(G, H) =
⌊4pq

3

⌋
. 	


Lemma 7.3 The induced P3-packing k-partition number for (TUC4C8(R)) nanotube
is 3.

Proof Let G be a TUC4C8(R) nanotube. We now give a procedure and its proof of
correctness to show that i pp(TUC4C8(R), P3) = 3.
Procedure Partition for (TUC4C8(R), P3)
Input: The induced P3-packing k-partition number for TUC4C8(R) nanotube is 3.
Algorithm:

(i) Consider A1 and label P3-packing as in Fig. 6.
(ii) Label P3-packing of A1 as [V1] and [V2] or [V2] and [V1] starting at the top left

most of horizontal plane.
(iii) Label P3-packing of A2 as [V3] and [V2] and [V1] starting at the below left most

of horizontal plane.
(iv) A3 is labeled as [V1], [V2] or [V2], [V1], or [V1], [V2], [V3] or [V2], [V3], [V1] or

[V3], [V1], [V2] etc. . . according to the labeling of A2.
(v) Continue as in (iv) for A4, A5, . . . , An till it is possible to find 3-partition in G.

Output:
There exists an induced P3-packing 3-partition for TUC4C8(R) nanotube.
Proof of Correctness: The labeling process of (ii) to (v) in algorithm implies that
it is possible to pack the TUC4C8(R) nanotube with 3-partition. Hence i pp(G)

= 3. 	

In view of Theorem 2.1 we have the following result.

Theorem 7.4 Let G be a TUC4C8(R)[n,m] nanotube and H � C4, then λ (G,C4)

≤ pq.

Lemma 7.5 Let G � TUC4C8(R)[2k + 1, 2], k ≥ 1, H � C4. Then λ(G, H) =
2(2k + 1).

Proof We prove the result by induction on k. When k = 1, λ (G, H) = 6. See Fig. 7.
Assume that λ (TUC4C8(R)(2k − 1, 2), H) =2(2k − 1). Now (TUC4C8(R)(2k +
1, 2) is obtained by adding C4C8 of two copies (TUC4C8(R)(2k − 1, 2) to
(TUC4C8(R)(2k − 1, 2) sharing the vertices in (TUC4C8(R)(2k − 1, 2) that induce
the cycle C4.
Thus λ (TUC4C8(R)(2k + 1, 2), C4) = λ (TUC4C8(S)(2k − 1, 2), C4) + 2 = 2(2k −
1)+2 =2(2k + 1).
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Fig. 7 a Induced C4-packing for TUC4C8(R)[6, 4], b Induced C4-packing 2 - partition for
TUC4C8(R)[6, 4]

We proceed to prove that λ (TUC4C8(R),C4) = pq. Let the subgraph induced by
the vertices of rows i and i + 1 be denoted by Ai , 1 ≤ i ≤ n.
Procedure Packing (TUC4C8(R),C4) :
Input: The nanotube TUC4C8(R) and H � C4.
Algorithm:

(i) Obtain a H -packing of A1 as in Lemma 7.5. Then obtain a H -packing of A3 by
taking the mirror image of H -packing of A1, placing the mirror horizontal to the
vertical edges of A2.

(ii) Repeat step (i) for the subgraphs Ai ∪ Ai+1∪ Ai+2∪, . . . ,∪An , where 1 ≤ i ≤ n.
(iii) Obtain a H -packing of An as in A1 when n ≡ 0mod3.

Output: There exists perfect H -packing of nanotube TUC4C8(R)[n,m] with
pq copies of H where H � C4.
Proof of correctness: In nanotube TUC4C8(R)[n,m], the induced subgraphs
Ai , 1 ≤ i ≤ n are vertex disjoint. The algorithm covers all vertices of
TUC4C8(R)[n,m] when n ≡ 0mod3. Thus λ(G, H) = pq. 	


Lemma 7.6 The induced C4-packing k-partition number for (TUC4C8(R) nanotube
is 2.

Proof Let G be a (TUC4C8(R)) nanotube. We now give a procedure and its proof of
correctness to show that i pp(TUC4C8(R)[n,m],C4) = 2.
Procedure Partition for (TUC4C8(R), C4)

Input: The Induced C4-packing k-partition number for TUC4C8(R) nanotube is 2.
Algorithm:

(i) Consider any row of (TUC4C8(R)) nanotube and cut it horizontally as in Fig. 7.
(ii) Label C4-packing [V1] and [V2] in the sequence of consecutive packing starting

at the top left most of the horizontal plane.
(iii) Label C4-packing [V2] and [V1] in the sequence of consecutive packing starting

at the below left most of the horizontal plane.
(iv) Continue the process as in (ii) and (iii) for the sequence of consecutive rows,

labelling [V1] [V2] or [V2] [V1] according as the label of (n − 1)th row is [V2]
[V1] or [V1] [V2].
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Output: Induced C4-packing k-partition number for (TUC4C8(R)[n,m]) nan-
otube is 2.
Proof of correctness: Repeating the process of (iv) implies that there exists
a Induced C4-packing 2-partition number for (TUC4C8(R) nanotube. Hence
i pp((TUC4C8(R),C4) = 2. 	


8 HAC5C6C7[n,m] carbon nanotube

H AC5C6C7[n,m] is constructed by alternatingC5,C6 andC7 carbon cycles. It is tube
shaped material but we consider it in the form of sheet shown in Fig. 8. The number
of pentagons in the first row is denoted by n. In H AC5C6C7[n,m] , the three first
rows of vertices and edges are repeated alternatively, and the number of this repetition
denoted by m. In each phase there are 16n vertices and 2n vertices which are joined
to the end of the graph and hence the number of vertices in this nanotube is equal to
16nm + 2n [15]. In this section we compute the perfect P3-packing and an induced
P3-packing k-partition number for H AC5C6C7[n,m] nanotube.
In view of Theorem 2.1 we have the following result.

Theorem 8.1 Let G be a H AC5C6C7[n,m] nanotube and H � P3, then λ (G, P3) ≤
⌊16nm + 2n

3

⌋
.

Lemma 8.2 Let G � H AC5C6C7[3, k + 1], k ≥ 1, H � P3. Then λ(G, H) =
17(k + 1).

Proof We prove the result by induction on k. When k = 1, λ (G, H) = 34. See Fig.
8. Assume that λ H AC5C6C7[3, k − 1], H) =17(k − 1). Now H AC5C6C7[3, k + 1]
is obtained by adding two phases C5 C6 C7 to H AC5C6C7[3, k − 1] that induce the
path P3.
Thus λ (H AC5C6C7[3, k+1] , P3) = λ (H AC5C6C7[3, k−1] , P3) + 2 =17(k−1)+2
=17(k + 1).

We proceed to prove that λ (H AC5C6C7[n,m], P3) =
⌊ (16nm + 2n)

3

⌋
. Let the

subgraph induced by the vertices of rows i and i + 1 be denoted by Ai , 1 ≤ i ≤ n.
Procedure Packing (H AC5C6C7[n,m], P3) :
Input: The nanotube (H AC5C6C7[n,m]) and H � P3.
Algorithm:

(i) Obtain a H -packing of A1 as in Lemma 8.2. Then obtain a H -packing of A2 by
taking the mirror image of H -packing of A1, placing the mirror horizontal to A1,
and joining an edge from A1.

(ii) Repeat step (i) for the subgraphs Ai ∪ Ai+1 ∪ Ai+2∪, . . . ,∪An where 1 ≤ i ≤ n.
(iii) Obtain a H -packing of An as in A1 when n ≡ 0mod3.

Output: There exists perfect H -packing of nanotube H AC5C6C7[n,m], with
⌊ (16mn + 2n)

3

⌋
copies of H where H � P3.

Proof of correctness: In nanotube H AC5C6C7[n,m], the induced subgraphs
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Fig. 8 a Induced P3-packing for H AC5C6C7[n,m], b Induced P3-packing 3 - partition for
H AC5C6C7[n,m]

Ai , 1 ≤ i ≤ n are vertex disjoint. The algorithm covers all vertices of

H AC5C6C7[n,m] when n ≡ 0mod3. Thus λ(G, H) =
⌊ (16mn + 2n)

3

⌋
. 	


Lemma 8.3 The induced P3-packing k-partition number for H AC5C6C7[n,m] nan-
otube is 3.

Proof Let G be a H AC5C6C7[n,m] nanotube. We now give a procedure and its proof
of correctness to show that i pp(H AC5C6C7[n,m], P3) = 3.
Procedure Partition for (H AC5C6C7[n,m], P3)
Input:The Induced P3-packing k-partition number for H AC5C6C7[n,m] nanotube
is 3 .
Algorithm:

(i) Consider A1 and label P3-packing as in Fig. 8.
(ii) Label P3-packing of A1 as [V1] and [V2] or [V2] and [V1] or [V3], [V1] and [V2] or

[V1], [V3] and [V2] or [V2], [V3] and [V1] starting at the top left most of horizontal
plane.

(iii) Label P3-packing of A2 as [V2], [V1] and [V3] or [V1], [V3] and [V2] or [V3], [V2]
and [V1] etc. . . starting at the below left most of horizontal plane, according to
the labeling of A1.

(v) Continue as in (ii) and (iii) for A3, A4, . . . , An till it is possible to find 3-partition
in G.
Output:
There exists an induced P3-packing 3-partition for H AC5C6C7[n,m] nanotube .
Proof of Correctness: The labeling process of (ii) to (iii) in algorithm implies
that it is possible to pack the H AC5C6C7[n,m] nanotube with 3-partition. Hence
i pp(G) = 3. 	


123



Journal of Mathematical Chemistry

A1

A2

A3

V1
V2

V3
V1V2V3

V2

V1

V1 V3 V2

V3

V2

V1

V2 V3

V1

V3

V2

V1

V2

V1

V3

V3

V1

V2

V2

V3

V3

V2

V1
V2

A1

A2

A3

(a) (b)

V3

Fig. 9 a Induced P3-packing of H AC5C7[4, 3], b Induced P3-packing 3 - partition for H AC5C7[4, 3]

9 HAC5C7[n,m] carbon nanotube

AC5C7 net is a trivalent decorationmade by alternatingC5 andC7. In H AC5C7[n,m],
the three first rows of vertices and edges are repeated alternatively. In each phase there
are 8n vertices and n vertices which are joined to the end of the graph and hence
the number of vertices in this nanotube is equal to 8nm + n [15]. In this section we
compute the perfect P3-packing and an induced P3-packing k-partition number for
H AC5C7[n,m] nanotube. In H AC5C7[n,m] nanotube, n denotes number of hep-
tagons in one row and m denotes the number of repetition of the first three rows of
vertices and edges.
In view of Theorem 2.1 we have the following result.

Theorem 9.1 Let G be a H AC5C7[n,m] nanotube and H � P3, then λ (G, P3) ≤
⌊8nm + n

3

⌋
.

Lemma 9.2 Let G � H AC5C7[4, k+1], k ≥ 1, H � P3. Then λ(G, H) = 11(k+1).

Proof We prove the result by induction on k. When k = 1, λ (G, H) = 22. See Fig.
9. Assume that λ H AC5C7[4, k − 1], H) = 11(k − 1). Now H AC5C7[4, k + 1] is
obtained by adding two phases C5 C7 to H AC5C7[4, k − 1] that induce the path P3.
Thus λ (H AC5C7[4, k + 1] , P3) = λ (H AC5C7[4, k − 1] , P3) + 2 =11(k − 1)+2
=11(k + 1).

We proceed to prove thatλ (H AC5C7[n,m], P3)=
⌊ (8nm + n)

3

⌋
. Let the subgraph

induced by the vertices of rows i and i + 1 be denoted by Ai , 1 ≤ i ≤ n.
Procedure Packing (H AC5C7[n,m], P3) :
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Input: The nanotube (H AC5C7[n,m]) and H � P3.
Algorithm:

(i) Obtain a H -packing of A1 as in Lemma 9.2. Then obtain a H -packing of A2 by
taking the mirror image of H -packing of A1, placing the mirror horizontal to the
vertical, acute, obtuse edges from A1.

(ii) Repeat step (i) for the subgraphs Ai ∪ Ai+1∪ Ai+2∪, . . . ,∪An , where 1 ≤ i ≤ n.
(iii) Obtain a H -packing of An as in A1 when n ≡ 0, 1, 2mod3.

Output: There exists perfect H -packing of nanotube H AC5C7[n,m],with
⌊ (8mn + n)

3

⌋
copies of H where H � P3.

Proof of correctness: In nanotube H AC5C7[n,m], the induced subgraphs Ai ,
1 ≤ i ≤ n are vertexdisjoint. The algorithmcovers all vertices of H AC5C7[n,m],
when n ≡ 0mod3 and and leaves one or two vertices unsaturated when n ≡
1, 2mod3. Thus λ(G, H) =

⌊ (8mn + n)

3

⌋
. 	


Lemma 9.3 The induced P3-packing k-partition number for H AC5C7[n,m] nanotube
is 3.

Proof Let G be a H AC5C7[n,m] nanotube. We now give a procedure and its proof
of correctness to show that i pp(H AC5C6C7[n,m], P3) = 3. 	


Procedure Partition for (H AC5C7[n,m], P3)
Input: The induced P3-packing k-partition number for H AC5C7[n,m] nanotube is
3.
Algorithm:

(i) Choose a P3 path on 3 vertices as in Fig. 9. The adjacent vertices of V1 cannot be
partitioned into V2 alone. It fails the definition of induced P3-packing k-partition.

(ii) Start a path of P3-packing of V1-partition. The adjacent path of partition of V1 is
either V2 or V3.

(iii) Start a path of P3-packing of V2-partition. The adjacent path of partition of V2 is
either V3 or V1.

(iv) Construct a path of P3-packing of V3-partition. The adjacent path of partition of
V3 is either V2 or V1.

(v) Continue the process of (ii), (iii) and (iv) where all the vertices are covered and
partitioned into 3-partition.
Output: Induced P3-packing 3-partition number for H AC5C7[n,m] nanotube
is 3.
Proof of correctness:Repeating the process (v) implies, that there exists induced
perfect P3-packing 3-partition for H AC5C7[n,m] nanotube.

10 Summary and future work

In this paper we have computed perfect and almost perfect H -packing and an induced
H -packing k-partition number for Armchair carbon nanotube ACNT [n,m], Zig-Zag
carbon nanotube ZCNT [n,m], Zig-Zag Polyhex Carbon nanotube TUHC6[2m, n],

123



Journal of Mathematical Chemistry

Boron triangular carbon nanotubes BNTt [n,m], TUC4C8(S), TUC4C8(R),
H AC5C6C7[n,m] and H AC5C7[n,m] where H � P3 and C4-packing for
TUC4C8(R). It is interesting to explore further results in future to compute H -packing
and an induced H -packing k-partition number for other nanostructures andother chem-
ical graphs.
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