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ABSTRACT
The minimum induced H-packing k-partition number is denoted by
ippH (G,H). The induced H-packing k-partition number denoted by
ipp(G,H) is defined as ipp(G,H) = min ippH (G,H) where the minimum is
taken over all H-packings of G. In this paper, we obtain the induced P3-
packing k-partition number for trees, slim trees, split graphs, complete
bipartite graphs, grids and circulant graphs. We also deal with networks
having perfect K1,3-packing where K1,3 is a claw on four vertices. We prove
that an induced K1,3-packing k-partition problem is NP-Complete. Further
we prove that the induced K1,3-packing k-partition number of Qr is 2 for all
hypercube networks with perfect K1,3-packing and prove that ipp(LQr) = 4
for all locally twisted cubes with perfect K1,3-packing.
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1. Introduction

The degree or valency dG(v) of a vertex v in G is the number of edges of G incident with v, each loop
counted as two edges. The diameter of G denoted by d(G) is the maximum distance between two
vertices of G. In other words, d(G) = max{dG(u, v) : u, v ∈ V(G)}. For each vertex v ∈V, the open
neighbourhood of v is the set N(v) containing all the vertices u adjacent to v and the closed neigh-
bourhood of v is the set N(v) = N(v) ∪{v}. A simple graph in which each pair of distinct vertices
is joined by an edge is called a complete graph. A bipartite graph is one whose vertex set can be par-
titioned into two subsets X and Y, so that each edge has one end in X and one end in Y. Such a
partition (X,Y) is called a bipartition of the graph. A graph is bipartite if and only if it contains no
odd cycle. A complete bipartite graph is a simple bipartite graph such that two vertices are adjacent
if and only if they are in different partite sets. The complete bipartite graph with partite sets of size
m and n is denoted as Km,n. An H-packing in a graph G = (V ,E) is a set of vertex disjoint induced
subgraphs of G, calledH-subgraphs, each of which is isomorphic toH. The vertices belonging to the
H-subgraphs are said to be saturated by theH-subgraphs. The remaining vertices are unsaturated. A
perfect H-packing in a graph G is a set of H-subgraphs of G such that every vertex in G is incident
with one H-subgraph in this set. An almost perfect H-packing in a graph G is a set of H-subgraphs
of G such that at most |V(H)| − 1 number of vertices are not incident on any H-subgraph in G [10].
The matching problem [2] is a particular case of packing problem when H � K2.

Partitioning a network with respect to vertices, edges or subgraphs is a significant aspect in
enlarging resource utilization of parallel machines. Partitioning large networks is often important
for complexity reduction or parallelization. For instance, in telecommunication networks, same fre-
quency can be assigned to different subnetworks if the frequencies do not interfere with each other.
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Thus the study of partitioning a H-packing such that no two members in the same partition inter-
fere becomes meaningful [10]. A collection K = {H1,H2, . . . ,Hr} of induced subgraphs of a graph
G is said to be sg-independent if (i) V(Hi)

⋂
V(Hj) = φ, i �= j, 1 ≤ i, j ≤ r and (ii) no edge of G has

its one end in Hi and the other end in Hj, i �= j, 1 ≤ i, j ≤ r. If Hi � H, ∀i, 1 ≤ i ≤ r, then K is
referred to as aH-independent set ofG. LetH be a perfect or almost perfectH-packing of a graph G.
Finding a partition {H1,H2, . . . ,Hk} of H such that Hi is H-independent set, ∀i, 1 ≤ i ≤ k, with
minimum k is called the induced H-packing k-partition problem of G. The minimum induced H-
packing k-partition number is denoted by ippH (G,H). The inducedH-packing k-partition number
denoted by ipp(G,H) is defined as ipp(G,H) = min ippH (G,H) where the minimum is taken over
all H-packing of G [10, 13, 14]. The induced H-packing k-partition problem was studied for certain
interconnection networks such as hypercubes, Sierpiñski graphs [10]. Jesu Raja et al [10] proved that
the induced P3-packing k-partition problem isNP-complete, and the inducedC4-packing k-partition
problem is NP-complete. An induced P3-packing k-partition number was studied for butterfly net-
works, honeycomb networks and circum pyrene [14]. Xavier et al [14, 15] obtained the induced
H-packing k-partition number for augmented cube, crossed cube, enhanced hypercube withH �P3
andC4 and anH-packing and an inducedH-packing k-partition number forV-phenylenic nanotube,
H-naphtalenic nanotube, H-anthracenic nanotube, H-tetracenic nanotube, CNC3[n] nanocone and
circum tetracene with H � P3. The objective and basic concept of the paper is to find H-packing
and an inducedH-packing k-partition number for certain graphs and networks. Hence we obtain the
induced P3-packing k-partition number for trees, slim trees, split graphs, complete bipartite graphs,
grids and circulant graphs.We deal with networks having perfectK1,3-packing whereK1,3 is a claw on
four vertices. We prove that an induced K1,3-packing k-partition problem is NP-Complete. Further
we prove that the induced K1,3-packing k-partition ofQr is 2 for all hypercube networks with perfect
K1,3-packing and prove that ipp(LQr) = 4 for all locally twisted cubes with perfect K1,3-packing.

Remark 1.1 ([10]): In the sequel, we represent the vertex set ofHi asVi, 1 ≤ i ≤ k and the subgraph
induced by Vi as [Vi]. Let |[Vi]| denote the number of H-independent sets in [Vi].

The following example illustrates the concept in cycle, whenH �P3. A cycle is a closed path such
that the start vertex and end vertex are the same. The cycle graph with n vertices is denoted by Cn.
The number of vertices in Cn equals the number of edges, and every vertex has degree 2. A cycle
is also referred to as ring architecture. A cycle is often used as a connection structure for local area
networks, and can also be used as a control or data flow structure for distributed computation in
arbitrary networks [3].

Example 1.1: Let Cn be a cycle of order n with perfect P3-packing. Then

ipp(Cn,P3) =
{
2 if n is even
3 if n is odd

Proof: Cn has perfect P3-packing, n ≡ 0mod 3. LetP = {H1,H2, . . . ,Hn/3} be a perfect P3-packing
of Cn. This implies that each Hi is isomorphic to P3, 1 ≤ i ≤ n/3. Label the vertices of Cn in a
clockwise direction with consecutive integers 1, 2, . . . , n.

Case i: n is even.
Then the paths Pi : (6i − 5, 6i−4, 6i − 3), 1 ≤ i ≤ n/6 are vertex disjoint P3-paths in Cn. Clearly

[V1] = ⋃n/6
i=1 V(Pi) and [V2] = V \ [V1] induce P3- partition, where V denotes the vertex set of G.

Hence ipp(Cn,P3) = 2.
Case ii: n is odd.
The paths Pi1 : (9i − 8, 9i−7, 9i − 6), 1 ≤ i ≤ n/9 are vertex disjoint P3-paths in Cn and the paths

Pi2 : (9i − 5, 9i−4, 9i − 3), 1 ≤ i ≤ n/9 are also vertex disjoint P3-paths in Cn. Clearly [V1] = ⋃n/9
i=1
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Figure 1. Tree T and Tree T∗ .

V(Pi1), [V2] = ⋃n/9
i=1 V(Pi2) and [V3] = V\ [V1] ∪[V2] induce P3- partition, where V denotes the

vertex set of G. This implies ipp(Cn,P3) = 3. �

2. Induced P3-packing k-partition of graphs

In this section we considerH �P3 and discuss the induced P3-packing k-partition number for trees,
slim trees, split graphs, complete bipartite graphs, grids and circulant graphs.

2.1. Trees

The networkwhose topological structure is a tree is called a tree network. A tree network is a common
sight, simple, and easy to construct and expand. Its importance and interest are due to their simple
structures and remarkable properties [8, 16]. We have the following theorem for trees with a perfect
P3-packing or an almost perfect P3-packing.

Theorem 2.1 ([12]): Let T be a tree with perfect P3-packing. Then ipp(T,P3) = 2.

Proof: Let P be a perfect P3-packing of T. For Pi, Pj in P , G[Pi ∪Pj], the graph induced by Pi ∪Pj is
a subtree of T on 5 edges or is the union of two disjoint subtrees Pi and Pj. We generate levels in P as
follows:

Step 1: Arbitrarily select P0 ∈P at Level 0.
Step 2: Having selected members of P at Level i, for each such member P at Level i, include all

members Q of P , such that |E(G[P ∪Q])|= 5 at Level i+ 1. Call such members Q of P as children
of P.

Step 3: Repeat Step 2 till all members in P are exhausted.
Replace eachmember ofP in each of the levels by the corresponding P3-paths. Add all the induced

edges of T between levels i and i+ 1, i ≥ 0. We claim that the tree T∗ generated is isomorphic to T.
There are no induced edges of T between members of P at the same level, as this would generate
a cycle in T a contradiction. Again for the same reason there are no induced edges of T between
children of two distinct members ofP at the same level. This implies that T∗ � T. See Figure 1. Now
partitionV(T) as [V1] and [V2], where [V1] contains all vertices at even levels ofT∗ and [V2] contains
all vertices of odd levels of T∗. This implies ipp(T,P3) = 2. �

Remark 2.2: Let T be a tree with an almost perfect P3-packing. Then ipp(T,P3) = 2.
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Figure 2. The slim tree ST(3)with a P3-packing.

2.2. Slim trees

Definition 2.3: The sth slim tree ST(s) is defined as a 5-tuple ST(s) = (V ,E, u, l, r), where V is the
node set, E is the edge set, u ∈V is the root node, l ∈V is the left node, r ∈V is the right node, and s
i ≥ 2 is an integer. The sth slim tree ST(s) is recursively defined as follows:

(1) ST(2) is the complete graph K3 with its nodes labelled with u, l and r.
(2) The sth slim tree ST(s), with s i ≥ 3, is composed of a root node u and two disjoint copies of (s −

1)th slim trees as the left subtree and right subtree, denoted by STl (s − 1) = (V1,E1, u1, l1, r1)
and STr (s − 1) = (V2,E2, u2, l2, r2), respectively, where in particular u /∈ V1 ∪V2. To be specific,
ST(s) = (V ,E, u, l, r) is given byV = V1 ∪V2∪{u}, E = E1 ∪E2∪{(u, u1), (u, u2), (r1, l2}), l = l1,
r = r2.

By definition of ST(s), the left subtree STl (s-1) and the right subtree STr (s-1) are isomorphic.
This property is referred to as the symmetry property of ST(s) [7].

Lemma 2.4: The induced P3-packing k-partition number of ST(3) is 3, that is, ipp(ST(3),P3) = 3.

Proof: As |V(ST(3))| = 15, it is possible to pack ST(3)with five vertex disjoint paths of length 2. One
such packing is shown in Figure 2. Suppose ipp(ST(3),P3) = 2. Let [V1] and [V2] be the induced P3-
packing 2-partition sets. Let path P: uvw be in [V1]. Both u andw cannot be of degree 2.Without loss
of generality, let |N(u) \ {v}| i ≥ 1 and |N(w) \ {v}| i ≥ 2. We have (N(u) \ {v}) ∩ (N(w) \ {v}) = φ.
For otherwise the vertices u, v and w will induce a 3-cycle, a contradiction. Therefore, |S| = | N(u)
∪ N(v) ∪ N(w) | i ≥ 3. Suppose |S| = 3. These vertices are independent or induce an edge and an
isolated vertex. Any path containing the vertices of the edge is in one partition set and isolated vertex
in another partition set, a contradiction. This implies that ipp(ST(3),P3) i ≥ 3. Now let P = { (v01,
v12, v

2
4), (v

1
3, v

3
2, v

3
3 )}, Q = { (v21, v11, v22 ), (v36, v37, v38 )} and R = { (v34, v35, v23 )}. P ∪Q ∪R is an optimal

induced P3-packing 3-partition in ST(3). See Figure 2. Hence ipp(ST(3),P3) = 3. �

Theorem 2.5: The induced P3-packing k-partition number of ST(s), s> 2 is 3, that is, ipp(ST(s),
P3) = 3.

Proof: We prove the result by induction on the dimension s of slim tree ST(s). We begin with
s = 4. Let u be the root vertex of ST(4). Now ST(4) \ u comprises of two vertex disjoint copies
of ST(3). By Lemma 2.4, ipp(ST(3),P3) = 3. Choosing u as the only unsaturated vertex in a pack-
ing, we get ipp(ST(4)) = 3. Removal of root vertex u of ST(5) leaves two vertex disjoint copies
of ST(4). Partitioning the two vertex disjoint copies of ST(4) as discussed above, leaves the root
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vertices of both the copies unsaturated. Further these root vertices can belong to at most two of
the partition sets of ST(5) \ u. The root vertex u of ST(5) together with the two root vertices of
copies of ST(4) in ST(5), induce a P3 which can be included in the third partition set of ST(5) \ u.
Hence ipp(ST(5)) = 3. Assume the result to be true for ST(s). Consider ST(s + 1). Suppose s+ 1
is even. ST(s + 1) contains two copies of ST(s), say ST(s)1 and ST(s)2. By induction hypothesis
ipp(ST(s)1,P3) = ipp(ST(s)2,P3) = 3, Select the partition sets of ST(s)2 as that of ST(s)1. This implies
ipp(ST(s + 1),P3) = 3, leaving out one vertex unsaturated. Suppose s+ 1 is odd. Since s is even, by
induction hypothesis ST(s) has the root vertex as the only unsaturated vertex. The root vertex of
ST(s + 1) together with the two root vertices of two copies of ST(s) induce a P3 which can be placed
in at least one partition set. This implies ipp(ST(s + 1),P3) = 3. Therefore ipp(ST(s),P3) = 3. �

2.3. Split graphs

A graph G = (V(G),E(G)) is a split graph, if V(G) can be partitioned into sets K and I, where K is a
clique and I is an independent set [5].

Theorem 2.6: Let G be the split graph with partition V(G) = K + S, where K is a complete graph and
S is a stable set. Then the induced P3-packing k-partition number lies between |S|

2 ≤ ipp(G,P3) ≤ |S|.

Proof: There exists a perfect induced P3-packing where |K ∪ S| ≡ 0 mod 3. In Km, there is no P3
path which has both end vertices. This implies an induced P3-paths has either one end in K and the
other end in S or it has both ends in S. If all the induced P3-paths saturate one vertex of S then the
induced P3-packing k-partition number of G is |S|. See Figure 3(b). On other hand, if all induced
P3-paths has both end in S, the induced P3-packing k-partition number of G is |S|

2 . See Figure 3(a).
This implies |S|

2 ≤ ipp(G,P3) ≤ |S|. �

2.4. Grid networks

Grid network topology is one of the key network architectures in which devices are connected with
many redundant interconnections between network nodes such as routers and switches. A two-
dimensional rectangular grid graph is the cartesian product of path graphs Pm ×Pn where Pk is a

Figure 3. (a) Bold edges shows that the induced P3-packing k-partition number of G is |S|
2 (b) Bold edges shows that the induced

P3-packing k-partition number of G is |S|.
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Figure 4. An induced P3-packing 3-partition of Gm×n .

path on k vertices and is denoted by Gm×n. A vertex in the ith row and jth column of Gm×n is labelled
as (i, j), 1 ≤ i ≤ m, 1 ≤ j ≤ n. It is observed that the square grid has diameter 2n−2 [16].

Lemma 2.7: Let Gm×n be a grid, where m and n are multiples of 3, m, n ≥ 3. Then Gm×n has a perfect
P3-packing.

Proof: Let n = 3k, k ≥ 1. Then for 1 ≤ i ≤ m { (i, 3j − 2), (i, 3j − 1), (i, 3j) }, 1 ≤ j ≤ n defines a
P3-packing of Gm×n. �

The following algorithm proves that ipp(Gm×n) = 2
Procedure A: INDUCED P3-PACKING 2-PARTITION (Gm×n,m, n ≥ 3)

Input: A grid of orderm × n, wherem and n are multiple of 3.
Algorithm:
Label the vertex (i, j) as

(i) 1 if (j mod 6 ∈{1,2,3} and i ≡ 1mod 2) or (j mod6 /∈ {1, 2, 3} and i ≡ 0mod 2).

(ii) 2 if (j mod6 /∈ {1, 2, 3} and i ≡ 1mod 2) or (j mod 6 ∈{1,2,3} and i ≡ 0mod 2). See Figure 4.

End INDUCED P3-PACKING 2-PARTITION
Output: ipp(G,P3) = 2
Proof of correctness: Let V be the vertex set of G. Let [V1] contain the vertices (i, 3j − 2), (i, 3j − 1),
(i, 3j) whenever i ≡ 1mod 2

j =

⎧⎪⎨
⎪⎩
1, 3, . . . ,

n
3

if n is a odd multiples of 3.

1, 3, . . . ,
n
3

− 1 if n is a even multiples of 3.

and let [V2] = V \ [V1]. In other words the labelling induces in each row a sequence of three consec-
utive vertices labelled as 1 and the next three consecutive vertices as two alternatively beginning with
111 in odd rows and beginning with 222 in even rows. Let [V1] be the set of all vertices labelled as 1
and let [V2] be the set of all vertices labelled as 2. Clearly [V1] and [V2] are an induced P3-packing
2-partition of Gm×n and hence ipp( Gm×n,P3) = 2 wheneverm and n are multiples of 3.

Procedure B: INDUCED P3-PACKING k-PARTITION ( Gm×n−1 and Gm−1×n m, n ≥ 3, m and
n are multiples of 3).
Input: A grid of order Gm×n−1,m, n ≥ 3.
Algorithm:
Label the vertices of Gm×n−3 be labelled as

(i) 1 if (j mod 6 ∈{1,2,3}) and i ≡ 1 mod 2) or (j mod6 /∈ {1, 2, 3} and i ≡ 0 mod 2) and (i mod6 /∈
{1, 2, 3} and j ≡ 1mod 2)
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(ii) 2 if (j mod 6 ∈{1,2,3} and i ≡ 0mod 2).

(iii) 3 if (j mod6 /∈ {1, 2, 3} and i ≡ 1mod 2) and (i mod6 /∈ {1, 2, 3} and i ≡ 0mod 2).

Label the (n − 2) column using the sequence 333,111,333··· ,111 ifm is even multiples of 3 and using
the sequence 333,111,333··· ,111 if m is odd multiples of 3. Label the (n − 1) columns as in (n − 2)
by replacing 1 by 3 and 3 by 1.
End INDUCED P3-PACKING k-PARTITION
Output: ipp(G) ≤ 3
Proof of correctness is similar to that of procedure A. Therefore ipp(Gm×n,P3) ≤ 3.

2.5. Circulant graphs

A circulant undirected graph, denoted byG(n; Â ± S)where S ⊆ {1, 2, . . . , n/2},n ≥ 3 is defined as a
graph consisting of the vertex setV = {0, 1, . . . , n − 1} and the edge set E = (i, j) : |j − i| = s(modn),
s ∈ S. It is clear that G(n; Â ± 1) is the undirected cycle Cn and G(n; Â ± 1, 2, . . . , 
n/2�) is the
complete graph Kn. Further G(n; Â ± 1, 2, . . . , j), 1 ≤ j < n/2, n ≥ 3 is a 2j -regular graph [16].

Theorem 2.8: Let G be the circulant graph G(n, S) where S = {1, 2}. Then

ipp(G,P3) =
{
3 If n ≡ 3(mod6)
2 otherwise

Proof: Let n = 6k or 6k+ 3. G(n ± {1, 2}) is comprised of the outer cycle of length n and two dis-
joint inner cycle of length n/2. We define subsets of vertices [V1], [V2] and [V3] as follows: Without
loss of generality, let 0, 1, 2 ∈ [V1]. Then either 3, 4, 5 ∈ [V2] or 3, 4, 6 ∈ [V2] or 3, 5, 7 ∈ [V2]. If
3, 4, 6 ∈ [V2] then 5 must be in [V3] or if 3, 6, 9 ∈ [V2] then 4 must be in [V3]. On the other hand if
3, 4, 5 ∈ [V2], labelling in the clockwise direction.We get [V1] = {0, 1, 2, 6, 7, 8, . . . , n − 5, n − 4, n −
3}, [V2] = {3, 4, 5, 9, 10, 11, . . . , n − 2, n − 1, n}, if n = 6k. Similarly [V1] = {0, 1, 2, 6, 7, 8, . . . , n −
8, n − 7, n − 6}, [V2] = {3, 4, 5, 9, 10, 11, . . . , n − 5, n − 4, n − 3} and [V3] = {n − 2, n − 1, n}, if
n = 6k+ 3. �

G(n ± {1, 2}) when n = 6k+ 1, 6k+ 2, 6k+ 3 is a near perfect graph. Since G is vertex transitive,
it is enough to consider G \ {u, v} for any u, v ∈ V .

Theorem 2.9: For any positive integer m, there exists a connected graph G such that ipp(G,P3) = m.

Proof: Let Km be the complete graph on m vertices. With every vertex of Km, identify a pendant
vertex of a path of length 2 to obtain a new graph G on 3m vertices, where V(G) = V(G) ∪(∪m

i=1
{ a′

i,a
′′
i ,}) and E(G) = E(G) ∪(∪m

i=1{ai,a′
i),(a

′
i a

′′
i )}. See Figure 5. We claim that ipp(G,P3) = m. The

collection of all induced P3-paths gives a perfect P3-packing of G. Since non pendant vertex of every
induced P3-path is adjacent to the non pendant vertex of any other P3-path, the induced P3-packing
partition number of G ism. �

Theorem 2.10: Let Km,n be the complete bipartite graph with a perfect or almost perfect induced P3-
packing. Then the induced P3-packing k-partition number is 
m+n

3 �.

Proof: Let X and Y be the bipartite sets of Km,n with |X| = m and |X| = n. No two vertex disjoint
P3-paths in Km,n can be in the same partition set, as there are at least three edges between them.
Therefore the induced P3-packing partition number of Km,n is 
m+n

3 �. See Figure 6. �
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Figure 5. (a) Complete graph Km (b) G defined in Theorem 2.9.

v1 v2

v3

Figure 6. Complete bipartite graph K6,6.

3. Induced K1,3-packing k-partition problem

One of the most widely studied packing is claw-packing. A claw is another name for the complete
bipartite graph K1,3. A claw-free graph is a graph in which no induced subgraph is a claw [4].

3.1. NP-completeness

We shall show that inducedK1,3-packing k-partition problem (ipp) is in the classNP. To prove that the
problem isNP-complete, we exhibit a polynomial reduction from the chromatic index problemwhich
is known to be an NP-complete problem. The chromatic index χ ′(G) is the least number of colours
required to colour the vertices ofG properly in such a way that no two adjacent vertices have the same
colour. It is enough to set up a one to one correspondence between an already known NP- complete
problem and induced K1,3-packing k-partition problem. We have chosen to build a reduction from
chromatic index problem. Suppose G = (V ,E) is an arbitrary instance of chromatic index problem.
We must construct a graph G∗ = (V∗,E∗) with an induced K1,3-packing k-partition if and only if
G = (V ,E) has a chromatic index k.

Theorem 3.1: The INDUCED K1,3-PACKING k-PARTITION problem is NP-Complete.

Proof: Let G = (V ,E) be the graph with n vertices. G∗ is obtained from G by identifying every
vertex of G with the 3-degree vertex of a K1,3. The resulting graph G∗ = (V∗,E∗) has 4n vertices.
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Figure 7. Gadget for chromatic index into induced K1,3-packing k-partition.

See Figure 7. Thus G∗ = (V∗,E∗) has V(G∗) = V(G) ∪(∪n
i=1 { a′

i,a
′′
i ,a

′′′
i }) and E(G∗) = E(G)

∪{(ai,a′
i),(ai a

′′
i ),(ai,a

′′′
i )/1 ≤ i ≤ n }.

Clearly every vertex in G is identified with an induced claw on four vertices in G∗. We claim that
G has chromatic index λ if and only if ipp(G∗,K1,3) = λ. Let the chromatic index of G be λ. Let
V1,V2,. . . ,Vλ be the colour sets of G. Let V∗

i denote all copies of K1,3-packing’s where vertices of
degree 3 are coloured i, 1 ≤ i ≤ λ. ThenV∗

1 ,V
∗
2 ,. . . ,V

∗
λ is aK1,3-packing λ-partition ofG∗. Conversely

delete the pendant edges of every K1,3 in V∗
i and colour the root of the corresponding K1,3 as i, 1 ≤

i ≤ λ. The resulting graph in G has chromatic index λ. This implies that the induced K1,3-packing
k-partition problem is NP-Complete. �

Theorem 3.2: For every positive integer m ≥ 4, there exists a graph G with ipp(G,K1,3) = m.

Proof: Let Km be the complete graph on m vertices. With every vertices of Km, identifying a K1,3 to
obtain a new graph G on 4m vertices, where V(G) = V(G) ∪(∪n

i=1 { a′
i,a

′′
i ,a

′′′
i }) and E(G) = E(G)

∪({ (ai,a′
i),(ai a

′′
i ),(ai,a

′′′
i ) }, 1 ≤ i ≤ m. See Figure 8. We claim that ipp(G,K1,3) = m. The collection

of all induced K1,3 gives a perfect K1,3-packing of G. Vertices of degree 3 in each copy of K1,3 in the
packing induce a complete graph in G. This implies that the induced K1,3-packing partition number
of G ism. �

Theorem 3.3: Let Km,n be the complete bipartite graph with a perfect or almost perfect induced K1,3-
packing. Then the induced K1,3-packing k-partition number is 
m+n

4 �.

Figure 8. (a) Complete graph Km (b) G defined in Theorem 3.2.
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v1 v2 v3

v0

Figure 9. Complete bipartite graph K8,8.

Figure 10. (a) An induced K1,3-packing 2-partition number of Q3 (b) An induced K1,3-packing 3-partition number of Q4.

Proof: Let X and Y be the bipartite sets of Km,n with |X| = m and |X| = n. No two vertex disjoint
K1,3-claw packing in Km,n can be in the same partition set, as there are at least 4 edges between them.
Therefore the induced K1,3-packing partition number of Km,n is 
m+n

4 �. See Figure 9. �

3.2. Hypercube networks

For n ≥ 1, let Qn denote an n-dimensional binary cube where the nodes of Qn are all the binary n-
tuples and two nodes are adjacent if and only if their corresponding n-tuples differ in exactly one
position. Two vertices x, y ∈V(Qn) are adjacent if and only if the corresponding vectors differ exactly
in one entry. For convenience, the labels {0, 1, 2, . . . , 2n − 1} of Qn are represented by {1, 2, . . . , 2n},
respectively [1, 6, 9, 10]. See Figure 10.

3.3. K1,3-packing of hypercube networks

Theorem 3.4: For r i ≥ 3, let Qr be the hypercube network. Then Qr has a perfect K1,3-packing.

Proof: The proof of the result uses the same technique as in [10]. We prove the result by
induction on the dimension r of the hypercube network Qr . We begin with r = 3. P3 = {
(000, 010, 100, 001), (111, 110, 011, 101) } is a perfect K1,3-packing. In Q4, P4 = 0P3 ∪ 1P3 is a
perfectK1,3-packing where iP3 denotes the set of K1,3 inP3 prefixed by i, i = 0,1. See Figure 10(b).
Assume the result to be true forQr . ConsiderQr+1. By induction hypothesis each copy ofQr inQr+1

contains a perfect K1,3-packing. The union is a perfect K1,3-packing in Qr+1, that is Pr+1 = 0Pr ∪
1Pr . �



INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS: COMPUTER SYSTEMS THEORY 11

3.4. Induced K1,3-packing k-partition number of hypercube networks

Lemma 3.5: The induced K1,3-packing k-partition number of Q3 is 2, that is, ipp(Q3,K1,3) = 2.

Proof: The proof of the result uses the same technique as in [10]. Without loss of generality letH1 �
K1,3,H1:v1 v2 v3 v4 is a claw on four vertices inQ3, where dH(v1) = 3, dH(v2) = dH(v3) = dH(v4) =
1. Then | ⋃4

i=1 N(vi)| = 4. Hence another claw H2 on four vertices such that V(H1) ∩ V(H2) =
∅ contains at least one vertex from | ⋃4

i=1 N(vi)|. This implies that ipp(Q3) i ≥ 2. Now let H1 = {
(000, 010, 100, 001) } and H2 = { (111, 110, 011, 101) }. H1 ∪H2 is an optimal induced K1,3-packing
2-partition in Q3. �

Lemma 3.6: The induced K1,3-packing k-partition number of Qr is 2, that is, ipp(Qr ,K1,3) = 2.

Proof: We prove this results by induction on the dimension r of the hypercube networkQr . We begin
with r = 5. Q5 contains four copies of Q3, say Q3

1, Q
3
2, Q

3
3, Q

3
4. Let [V

i
1], [V

i
2] be the induced K1,3-

packing 2-partition sets of Q3
i , 1 ≤ i ≤ 4. We now claim that the binding edges in (Q3

1 ∪ Q3
2) \ Q3

1
incident at vertices of [V1

i ], 1 ≤ i ≤ 2, have their other ends in exactly one [V2
j ], 1 ≤ j ≤ 2. Suppose

not, without loss of generality let all the end vertices of binding edges incident at vertices of [V1
1 ] be

adjacent to vertices in [V2
1 ] and [V

2
2 ]. Then no vertex in [V1

2 ] is adjacent to any vertex in [V2
1 ], a con-

tradiction. This argument is also true for [V1
i ], i = 2. This implies that the binding edges incident at

vertices of [V1
i ], 1 ≤ i ≤ 2, have their other ends in exactly one [V2

j ], 1 ≤ j ≤ 2 inQ5. By Lemma 3.5,
ipp(Q3,K1,3) is 2. Let [V1], [V2] be the induced K1,3-packing 2-partition sets of Q3

1. Without loss of
generality, let each of [V1

1 ], [V
1
2 ] contain at most four vertices of V(Q3

1). Let [V1] = { H1 }, where
H1 is the graph induced by u1,u2,u3 and u4 with dH1(u1) = 3, dH1(u2) = dH1(u3) = dH1(u4) = 1 in
Q3
1. Then | ⋃4

i=1 N(ui) ∩Q3
2| = 4. Hence

⋃4
i=1 N(ui) ∩Q3

2 is not in [V1]. This implies
⋃4

i=1 N(ui)
∩Q3

2 is in [V2]. Let [V2] = {H2 }, whereH2 is the graph induced by v1,v2,v3 and v4 with dH2(v1) = 3,
dH2(v2) = dH2(v3) = dH2(v4) = 1 inQ3

1. Then | ⋃4
i=1 N(vi) ∩Q3

2| = 4. Hence
⋃4

i=1 N(vi) ∩Q3
2 is not

in [V2]. This implies
⋃4

i=1 N(vi) ∩Q3
2 is in [V1]. Similarly Q3

3 is partitioned as in Q3
2 and Q3

4 is parti-
tioned as in Q3

1. Now [Vi
1] ∪[Vi

2], i = 1, 2, 3, 4 is an optimal induced K1,3-packing 2-partition in Q5.
Assume that the result is true for Qr−1. Qr contains two copies of Qr−1, say Qr−1

1 and Qr−1
2 . By the

induction hypothesis ipp(Qr−1
1 ) is 2. Since Qr−1

1 �Qr−1
2 , [Vi

1] ∪[Vi
2], i = 1, 2 is an optimal induced

K1,3-packing 2-partition in Qr . Then ipp(Qr ,K1,3) = 2. See Figure 11. �

3.5. Locally twisted cubes

A suitable interconnection network is an important part for the design of a multicomputer or multi-
processor system. This network is usually modelled by a symmetric graph, where the nodes represent
the processing elements and the edges represent the communication channels. Desirable properties of
an interconnection network include symmetry, embedding capabilities, relatively small degree, small
diameter, scalability, robustness, and efficient routing. The locally twisted cubes is a better hypercube
variant which is conceptually closer to hypercube than existing variants. One advantage is that the
diameter of locally twisted cube is only about half the diameter of hypercubes [17]. Then-dimensional
locally twisted cube LTQn (n ≥ 2) is defined recursively as follows.

(a) LTQ2 is a graph isomorphic to Q2.
(b) For n ≥ 3, LTQn is built from two disjoint copies of LTQn−1 according to the following steps.

Let 0LTQn−1 denote the graph obtained by prefixing the label of each vertex of one copy of
LTQn−1 with 0, let 1LTQn−1 denote the graph obtained by prefixing the label of each vertex
of the other copy LTQn−1 with 1, and connect each vertex x = 0x2x3 · · · xn of 0LTQn−1 with the
vertex 1(x2 + xn)x3 · · · xn of 1LTQn−1 by an edge, where + represents the modulo 2 addition.
The graphs shown in Figure 12(a) and (b) are LTQ3 and LTQ4, respectively [11, 17].
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Figure 11. Possibilities of binding edges in Qr .

Figure 12. (a) Locally twisted cubes LTQ3 (b) An induced K1,3-packing 4-partition number of LTQ4.

3.6. Induced K1,3-packing k-partition of locally twisted cubes

Theorem 3.7: The locally twisted cube LTQn of dimension n has a perfect K1,3-packing for n i ≥ 4.

Proof: The proof of the result uses the same technique as in [10]. We prove the result
by induction on the dimension n of the hypercube network LTQn. We begin with n = 4.
P4={(1000, 0000, 1010, 1100), (0110, 0010, 0100, 1110), (1001, 0101, 1011, 1111), (0001, 0111, 0011,
1101)}is a perfect K1,3-packing. In LTQ5, P5 = 0P4 ∪ 1P4 is a perfect K1,3-packing where i P4
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denotes the set of K1,3 inP4 prefixed by i, i = 0, 1. See Figure 12(b). Assume the result to be true for
LTQn. Consider LTQn+1. By induction hypothesis each copy of LTQn in LTQn+1 contains a perfect
K1,3-packing. The union is a perfect K1,3-packing in LTQn+1, that is Pn+1 = 0Pn ∪ 1Pn. �

Lemma 3.8: The induced K1,3-packing k-partition number of LTQ4 is 4, that is, ipp(LTQ4,K1,3) = 4.

Proof: LTQ4 is packed with 4 vertex disjoint claws on four vertices. Let H be a K1,3 on vertices v0,
v1, v2, v3 with dH (v0) = 3. See Figure 12(b). Let S = { v0, v1, v2, v3 }. It is easy to verify that that
|N(S)| = 7. In other words |N[S]| = 11. Hence any other copy of K1,3 in LTQ4 shares a vertex with
|N[S]|. Hence no two copies of K1,3 lie in the same partition set. Therefore ipp(LTQ4,K1,3) = 4. �

Theorem 3.9: The induced K1,3-packing k-partition number of LTQr satisfies ipp(LTQr ,K1,3) = 4.

Proof: We prove the result by induction on the dimension r of the locally twisted cube LTQr . Let r be
odd.We begin with r = 5. LTQ5 contains two copies of LTQ4, say LTQ4

1, LTQ
4
2. LTQ

4
1 ∪LTQ4

2 contains
four copies of Q3, say Q3

1, Q
3
2, Q

3
3, Q

3
4, that is LTQ

4
1 = Q3

1 ∪ Q3
2 and LTQ4

2 = Q3
3 ∪ Q3

4. By Lemma 3.8,
ipp(LTQ4,K1,3) is 4. Let [V1], [V2], [V3], [V4] be the induced K1,3-packing 4-partition sets of LTQ4

1.
By Lemma 3.6, let [V1], [V2] be the induced K1,3-packing 2-partition sets of Q3

1 and let [V3], [V4] be
the inducedK1,3-packing 2-partition sets ofQ3

2 in LTQ
4
1. SimilarlyQ3

3 is partitioned by [V3], [V4] and
Q3
4 is partitioned by [V1], [V2] in LTQ4

2. Since Q
4
1 �Q4

4 and Q4
2 �Q4

3, ipp(LTQ
5,K1,3) i ≥ 4. let r be

even. LTQ6 contains four copies of LTQ4, say LTQ4
1, LTQ

4
2, LTQ

4
3, LTQ

4
4. By Lemma 3.8, V(LTQ4

1) is
partitioned into [V1], [V2], [V3], [V4] such that each of [Vi], 1 ≤ i ≤ 4 contains 4 vertices of LTQ4

1.
We have |[Vi]| = 1, 1 ≤ i ≤ 4.

Consider the subgraph induced by V(LTQ4
1)

⋃
V(LTQ4

2). Let [V1] = { H1 }, where H1 is the
graph induced by u1,u2,u3 and u4 with dH1(u1) = 3, dH1(u2) = dH1(u3) = dH1(u4) = 1 in LTQ4

1.
Then | ⋃4

i=1 N(ui) ∩LTQ4
2| = 4. Hence

⋃4
i=1 N(ui) ∩LTQ4

2 is not in [V1]. This implies
⋃4

i=1
N(ui) ∩LTQ4

2 in [V2]. Let [V2] = { H2 }, where H2 is the graph induced by v1,v2,v3 and v4 with
dH2(v1) = 3, dH2(v2) = dH2(v3) = dH2(v4) = 1 in LTQ4

1. Then | ⋃4
i=1 N(vi) ∩LTQ4

2| = 4. Hence⋃4
i=1 N(vi) ∩LTQ4

2 is not in [V2]. This implies
⋃4

i=1 N(vi) ∩LTQ4
2 in [V1]. Let [V3] = {w1,w2,w3,w4}

[V3] = {x1,x2,x3,x4}. Since | ⋃4
i=1 N(wi) ∩LTQ4

2| = 0 and | ⋃4
i=1 N(xi) ∩LTQ4

2| = 0 the role of the
partition sets [V3] and [V4] in LTQ4

1 is the same as that of [V3] and [V4] in LTQ4
2.

Now consider the subgraph induced by V(LTQ4
1)

⋃
V(LTQ4

3). Let [V1] = { H1 }, whereH1 is the
graph induced by u1,u2,u3 and u4 with dH1(u1) = 3, dH1(u2) = dH1(u3) = dH1(u4) = 1 in LTQ4

1.
Then | ⋃4

i=1 N(ui) ∩LTQ4
3| = 4. Hence

⋃4
i=1 N(ui) ∩LTQ4

3 is not in [V1]. Without loss of generality,
let

⋃4
i=1 N(ui) ∩ LTQ4

3 in [V3]. Let [V2] = { H2 }, where H2 is the graph induced by v1,v2,v3 and
v4 with dH2(v1) = 3, dH2(v2) = dH2(v3) = dH2(v4) = 1 in LTQ4

1. Then | ⋃4
i=1 N(vi) ∩LTQ4

3| = 4.
Hence

⋃4
i=1 N(vi) ∩LTQ4

3 is not in [V2]. Without loss of generality, let
⋃4

i=1 N(vi) ∩LTQ4
3 in [V4].

Let [V3] = {H3 }, whereH3 is the graph induced by w1,w2,w3 and w4 with dH3(w1) = 3, dH3(w2) =
dH3(w3) = dH3(w4) = 1 in LTQ4

1. Then | ⋃4
i=1 N(wi) ∩LTQ4

3| = 4. Hence
⋃4

i=1 N(wi) ∩LTQ4
3 is

not in [V3]. This implies
⋃4

i=1 N(wi) ∩ LTQ4
3 in [V1]. Let [V4] = { H4 }, where H4 is the graph

induced by x1,x2,x3 and x4, dH4(x1) = 3, dH4(x2) = dH4(x3) = dH4(x4) = 1 in LTQ4
1. Then | ⋃4

i=1
N(xi) ∩LTQ4

3| = 4. Hence
⋃4

i=1N(xi) ∩LTQ4
3 is not in [V4]. This implies

⋃4
i=1 N(xi) ∩LQ4

2 in [V2].
Consider the subgraph induced by V(LTQ4

3)
⋃

V(LTQ4
4). Let [V1] = { H1 }, where H1: u1,u2,u3

and u4, dH1(u1) = 3, dH1(u2) = dH1(u3) = dH1(u4) = 1 in LTQ4
3. Then | ⋃4

i=1 N(ui) ∩LTQ4
4| = 4.

Hence
⋃4

i=1 N(ui) ∩LTQ4
4 is not in [V1]. This implies

⋃4
i=1 N(ui) ∩LTQ4

4 in [V2]. Let [V2] = { H2
}, where H2: v1,v2,v3 and v4, dH2(v1) = 3, dH2(v2) = dH2(v3) = dH2(v4) = 1 in LQ4

3. Then | ⋃4
i=1

N(vi) ∩LTQ4
4| = 4. Hence

⋃4
i=1 N(vi) ∩LTQ4

4 is not in [V2]. This implies
⋃4

i=1 N(vi) ∩LTQ4
4 in [V1].

Let [V3] = {w1,w2,w3,w4} [V3] = {x1,x2,x3,x4}. Since | ⋃4
i=1 N(wi) ∩LTQ4

4| = 0 and | ⋃4
i=1 N(xi)
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Figure 13. Possibility of edges in LTQ4.

∩LTQ4
4| = 0 the role of the partition sets [V3] and [V4] in LTQ4

3 is the same as that of [V3] and [V4]
in LTQ4

4.
[V1], [V2], [V3] and [V4] yield the optimal induced K1,3-packing number of LTQ6. This implies

ipp(LTQ6) i ≥ 4. Assume that the result is true for LTQr. LTQr contains two copies of LTQr−1, say
LTQr−1

1 and Qr−1
2 . By the induction hypothesis ipp(LTQr−1

1 ) and ipp(LTQr−1
1 ) are 4. The union is an

optimal induced K1,3-packing number of LTQr. See Figure 13. �

Theorem 3.10: For any positive integer m, there exists a connected graph G such that ipp(G,C4) = m.

Proof: Let Km be the complete graph on m vertices. With every vertex of Km, identify with an
induced cycle of length 4 to obtain a new graph G on 4m vertices, where V(G∗) = V(G) ∪(∪m

i=1 {
a′
i,a

′′
i ,a

′′′
i }) and E(G∗) = E(G)

⋃
(∪m

i=1 { (ai,a′
i),(a

′
i a

′′
i ),(a

′′
i a′′′

i ),(a′′′
i ai)}). See Figure 14. We claim

that ipp(G,C4) = m. The collection of all induced C4-cycles gives a perfect C4-packing of G. No two
vertex disjoint C4-cycles can be in the same partition set, as there are two edges between them in G.
Therefore the induced C4-packing partition number of G ism. �

Theorem 3.11: Let Km,n be the complete bipartite graph with a perfect or almost perfect induced C4-
packing. Then the induced C4-packing k-partition number is 
m+n

4 �.

Proof: LetX andY be the bipartite sets ofKm,n with |X| = m and |X| = n. No two vertex disjointC4-
cycles in Km,n can be in the same partition set, as there are at least 4 edges between them. Therefore
the induced C4-packing partition number of Km,n is 
m+n

4 �. See Figure 15. �
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Figure 14. (a) Complete graph Km (b)G G defined in Theorem 3.10.

Figure 15. Complete bipartite graph K8,8.

4. Conclusion

In this paper we have proved that the induced P3-packing k-partition number for trees with perfect
P3-packing is 2. Further we have determined the induced P3-packing k-partition number for slim
trees, split graphs, complete bipartite graphs, grids and circulant graphs. We also deal with networks
having perfectK1,3-packingwhereK1,3 is a clawon four vertices.Wehave proved that an inducedK1,3-
packing k-partition problem isNP-Complete. Further we prove that inducedK1,3-packing k-partition
of Qr is 2 for all hypercube networks with perfect K1,3-packing. We also obtained that ipp(LQr) = 4
for all locally twisted cubes with perfect K1,3-packing. It would be an interesting line of research
to determine the induced H-packing k-partition problem for other interconnection networks and
Chemical graphs.
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