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ABSTRACT
In orthogonal frequency division multiplexing (OFDM)-based cognitive radio network–cooperative
spectrum sensing (CRN-CSS), resource allocation is critical due to the introduction of interference
during spectrum sensing and transmission. This paper resolves this problem of interference through
proficient spectrum sensing and resource allocation to improve data transmission. CRN-CSS net-
work is integrated with 5G supported by multiple-input–multiple-output equipped fusion center
(FC) to handlemassive number of users without loss in connectivity. OFDM-based data transmission
is adapted in CRN-CSS to achieve a better transmission rate. In the integrated network, grouping
process is initiated by a balanced K-means clustering algorithm to preserve cooperation among
secondary users (SUs). Dynamic slot allocation scheme, two-stage multi-slot channel assignment
method, is proposed to avoid interference during spectrum sensing. Sensing errors are minimized
with the assistanceof theenergy spectral density-basedenergydetection spectrumsensingmethod.
For global decision-making, the channel state weighted graph scheme is introduced in which spec-
trum agent plays a vital role. Finally, resource allocation is carried out by the FC by utilizing efficient
Karush–Kuhn–Tucker (EKKT) conditions. Through EKKT method spectrum, transmission powers are
allocated to SUs together in such a way that interference with primary user is avoided. Mean-
while, OFDM-based transmission with quadrature phase shift keying modulation scheme reduces
peak-to-average-power ratio that leads to high transmission rate. The proposed network is exten-
sively simulated in the NS-3.26 simulation tool and the performance is evaluated from the following
performance metrics: throughput, capacity, network utility, transmission power, and transmission
rate.

KEYWORDS
CRN-CSS; 5G; MIMO; OFDM;
PAPR reduction; Resource
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1. INTRODUCTION

With the extensive advancements in wireless communi-
cation, a number of devices are connected seamlessly in
today’s world [1,2]. Provisioning of wireless spectrum for
seamless connectivity is a major issue which raises the
problem of spectrum scarcity. On the other hand, fed-
eral communications commission (FCC) confirms that
a large amount of spectrum is underutilized by licensed
users, which increases the spectrum holes. This con-
flict in spectrum availability results in the rise of cogni-
tive radio network (CRN). Cognitive radio is a software
defined radio (SDR) with the additional abilities of sens-
ing its environment, tracking changes, and adapting upon
findings [3]. These advantages of CRN are utilized in
the fifth generation (5G) network with massive multiple-
input–multiple-output (MIMO) technology by adapting
orthogonal frequency division multiplexing (OFDM)-
based transmission [4,5]. Involvement of OFDM-based
transmission results in spectral efficiency and high trans-
mission rate. However, OFDM-based CRN met with the
following issues: peak-to-average-power ratio (PAPR),

synchronization, spectrum sensing, interference avoid-
ance, and power requirements.

The primary functions of CRN are spectrum sens-
ing, spectrum analysis, spectrum decision, and resource
allocation [6]. Many research works held on spectrum
sensing and one of the major solutions to minimize
sensing errors is cooperative spectrum sensing (CSS).
Further spectrum sensing can be performed by the
energy detection (ED) method which is simple and effi-
cient. Some research works focused on improving the
ED method [7–9]. Kernelized ED (KED) is designed
to improve detection accuracy in Gaussian and non-
Gaussian noise environments. Noise uncertainty prob-
lem is addressed by the blind ED method and the
maximum–minimum ratio-based ED method. In CSS,
interference during spectrum sensing is resolved by
spectrum sensing scheduling [10,11]. Minimization of
interference through CSS scheduling increases through-
put, fairness, energy efficiency, and sensing accuracy.
The channel assignment and scheduling algorithms are
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classified based on the 0following characteristics: coor-
dination mechanisms, objectives, solving approaches,
network types, and number of radios. Based on these
characteristics, a majority of research works assign chan-
nels for spectrum sensing. The spectrum availability
decision is made based on the spectrum-sensing results.
For decision-making, hard fusion (such as AND rule,
OR rule, K out N rule) and soft fusion methods are
adapted in CRN [12]. Fusion center (FC) is also con-
tributed in decision-making by making use of the fusion
rule [13]. Here the involvement of the FC in decision-
making improves energy efficiency. Majority voting rule
and maximal ratio combining rule are also adapted for
decision-making in FC [14].

Spectrum sensing and decision-making function detect
the available spectrum, which can be used by secondary
users (SUs). Then resource allocation is followed by
decision-making tomake better use of the available spec-
trum [15]. Resource allocation includes both spectrum
allocation and transmission parameters such as trans-
mission power. Some research works concentrated on
spectrum allocation [16,17]. Bee colony algorithm is
utilized for spectrum allocation which aims to maxi-
mize the overall quality of experience (QoE). The dou-
ble auction-based method uses Markovian prediction
algorithm for spectrum allocation. To improve energy
efficiency and the quality of service, both frequency and
power allocation are performed by relaxation and quan-
tization algorithm [18] in OFDMA-based CRN-CSS net-
work. Channel state information (CSI) is considered as
major metric in resource allocation (both spectrum and
transmission power) for OFDMA-based CRN network
[19]. Here iterative successive convex algorithm (SCA) is
adapted for resource allocation.

1.1 Major Contributions

The major contributions of this paper in CRN-CSS are
listed as follows:

• To support huge users without loss in spectrum effi-
ciency CRN-CSS is integrated with 5G. High trans-
mission rate was achieved by adapting OFDM. Our
proposed network supports both short-range and
long-rage application with the involvement of 5G cov-
erage.

• CSS in CRN involves with grouping of SUs by the
balanced K-means (BK-means) algorithm which per-
forms based on distance and node degree of SUs.

• Tominimize interference among SUs,multi-slot chan-
nel assignment is performed by the proposed novel
two-stage multi-slot channel assignment (TMSCA)

algorithm. Further sensing errors are minimized by
the energy spectral density-based energy detection
(ESD-ED) method.

• Accurate spectrum sensing decision on primary user
(PU) activity is made by FC supported by spectrum
agent (SA). We propose channel state weighted graph
(CSWG) for global decision-making whichminimizes
decision-making errors and improves spectrum uti-
lization

• Finally, the available spectrum is allocated to SUs
along with transmission power based on efficient
Karush–Kuhn–Tucker (EKKT) conditions. The
resource allocation considers power and interference
constraints to avoid interference with PU signal.

• PAPR reduction followed by adapting the quadrature
phase shift keying (QPSK) scheme and also by select-
ing signal with high signal to noise ratio (SNR) for
transmission. Reduction of PAPR leads to increased
transmission rate.

1.2 Organization of the Paper

The rest of this paper is organized as follows: in Section
2, we surveyed previous works held on CRN-CSS with
OFDM. Section 3 highlights themajor problems involved
in the current research work. In Section 4, we elabo-
rate the proposed OFDM-based CRN-CSS with novel
algorithms. Finally in Section 5, the experimental model
of our proposed OFDM-based CRN-CSS is considered
and our proposed work is evaluated in terms of signifi-
cant performance metrics. In Section 6, we conclude our
contributions.

2. RELATEDWORKS

In this section, significant research works held on CRN-
CSS are surveyed. This section addresses challenges and
issues faced by previous research works in OFDM-based
CRN-CSS.

2.1 RelatedWorks on CRN-CSS

In CRN-CSS, sensing channel assignment and sensing
scheduling was vital since it mitigates the interference
among SUs. An adaptive assignment strategy was intro-
duced to assign sensing channel for group-based CSS
[20]. Here two-channel selection then best user assign-
ment (CSBUA) and best user assignment and channel
selection (BUACS) algorithms were involved in sens-
ing the channel assignment. Upon the assigned chan-
nel, SU performs ED method-based spectrum sensing
to make decision on spectrum availability. However, in
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both algorithms SU is allowed to sense only one chan-
nel in each round which increases waiting time. In [21],
CSS scheduling was formulated as integer linear pro-
gramming (ILP) problem and the distributed solution
was presented based on the coalitional game theory. In
this approach, SUs were allowed to form coalition for
each channel and each coalition was includedwith a clus-
ter head (CH). The best sensing channel was identified
by CH with the knowledge of number of SUs that were
presented in coalition for that channel. Channel with
more number of SUs was selected as the optimal chan-
nel by CH. Here we can see that optimal sensing channel
involves with more number of SUs for sensing. Assign-
ing additional SUs for this optimal channel increases the
possibility of interference.

Spectrum sensing accuracy was further improved by the
multi-agent architecture framework that was most suit-
able for 5G network [22]. In a multi-agent architecture,
multiple SAs were deployed in the network for the pur-
pose of spectrum sensing. In this work, SA had switched
between two modes such as SA mode and SU mode. In
SAmode, it performs spectrum sensing for other SUs, i.e.
whenever a SU requires spectrum it requested to SA for
sensing the report. Then the SA performs spectrum sens-
ing for that particular user with the sensing report. The
major aimof this workwas tominimize energy consump-
tion in SUs. It is difficult to manage multiple agents and
also it increases the number of SAs with an increase in
the number of SUs. Cluster formationwas also performed
to improve sensing efficiency in the presence of mali-
cious users in CRN [23]. Here the network was grouped
into small clusters and each cluster was elected with CH.
CH was responsible to aggregate sensing reports from
its cluster members (CMs) and to transmit the sensing
reports to FC.To avoid interference during sensing report
transmission, all CHs were allowed to access FC in a
sequential order all the time. Furthermore, maximum
likelihood (ML) estimator was involved in FC to detect
malicious nodes. Perhaps, this method minimizes inter-
ference at FC; it increases waiting time for each CH due
to sequential order access.

In cluster-based CRN-CSS, time division multiple access
(TDMA)-based reporting framework was designed [24].
Clusterswere formedby theK-means clustering algorithm
based on SU location. Each cluster was provided with
TDMA reporting slot to report sensing information
to FC. The authors suggested that the involvement
of TDMA framework minimizes reporting time and
increases transmission time. In addition, K-out-of-N rule
was adapted in decision-making at CH and OR rule was
adapted in decision-making at FC. However, the cluster

formation by k-means algorithm produces unbalanced
clusters which lead to inefficient spectrum sensing. Fur-
thermore, the involvement of OR rule in FC results in
inaccurate decision. Spectrum allocation was followed by
decision-making and performed using a game theoretic
approach [25]. A two-tier multi-user CRN was intro-
duced in which SUswere divided into real-time users and
non-real-time users. The idea was to utilize the intervals
introduced by the real-time user’s transmission for non-
real-time user’s transmission. The key concept behind
this work was that real-time data transmission followed
by the voice over internet protocol (VoIP) packets which
left intervals during transmission. Both real-time and
non-real-time SUs were selected by an auction game. If
non-real-time user requires spectrummore than that left
by real-time user, then data transmission of non-real-
time user is not efficient.

2.2 RelatedWorks on OFDM-based CRN

Virtual clustering distributed coordination (VCDC)
scheme was presented in OFDM-based CRN-CSS net-
work [26]. Here neighbor discovery time was decreased
and inter-cluster communication was supported by
discrete-OFDM (D-OFDM). Clusters were formed based
on the similarity between spectrum availability observed
by SUs. Additionally, the following control packets were
exchanged for cluster formation: coordination request,
coordination response, coordination decision, and acti-
vated shared channel. Although this method preserves
coordination among SUs, it increases control packet
overhead in the network. In wireless networks, MIMO-
OFDM was presented with an index modulation for
minimum mean square error detectors to improve spec-
tral efficiency [27]. Here multiple detectors, such as ML,
MMSE, and ordered successive interference cancellation-
based MMSE detectors, were involved. In MIMO-
OFDM-based CRN, cyclostationary detection method
was adapted for spectrum sensing [28]. The main aim
of this work was to evaluate the network based on mean
square error and successful reconstruction rate.However,
in both works high PAPER is presented which degrades
the overall network performance.

Artificial bee colony (ABC) with crossover operator
was involved in the cognitive MIMO-OFDM system to
achieve optimal power allocation [29]. In this approach,
eight crossover operators were applied to resolve power
allocation problem. The optimal crossover rate was
determined with eight operators over multiple trials and
an optimal rate was adapted for power allocation. How-
ever, computational complexity and time consumption
are high in order to apply eight crossover operators.



4 M. MEENA AND V. RAJENDRAN: SPECTRUM SENSING AND RESOURCE ALLOCATION FOR PROFICIENT TRANSMISSION

To allocate transmission power and spectrum together,
the robust power allocation (RPA) method was intro-
duced in OFDM-based CRN [30]. Both channel uncer-
tainty and imperfect sensing error were considered for
resource allocation. Furthermore, relay selectionwas per-
formed upon average interference power in each hop.
ABCmethod and RPAmethod support only a single user
for resource allocation.

For multi-user resource allocation, location-aware spec-
trum access was presented in underlay and overlay CRN
[31]. Here the network was divided into underlay CRN
and overlay CRN based on the coverage area. SUs pre-
sented in overlay region were suggested to use over-
lay spectrum access techniques and SUs presented in
the hybrid region were suggested to use sensing-free
spectrum access techniques. In this method, interfer-
ence between SU and PU is a major problem which
degrades the network performance. A robust power allo-
cation scheme, based on switched affine-based control
approach, was introduced for OFDM-based CRN [32].
The objective of this method was to maximize the data
rate in channel uncertainties. This method also fails to
avoid interference between SUs and PUs. Furthermore,
water-filling algorithm was adapted for resource alloca-
tion in PU localization-based resource allocation [33]
and in the underlay model [34]. In both resource allo-
cation schemes, the location of PU was estimated with
the interference of PU. Then resource allocation was per-
formed by thewater-filling algorithm. But themajor issue
associated with water-filling algorithm is high computa-
tional complexity.

3. PROBLEM FORMULATION

In CRN-CSS, utility-based CSS scheduling was per-
formed with energy efficiency [35]. Here each SU was
allowed to make decision about sensing, i.e. whether
participated in sensing or not. SUs involved in sensing
were denoted as contributors and other SUs were con-
sidered as free-riders. The sensing channel was selected
by the contributor based on channel uncertainty. Here
a major problem in spectrum utilization occurs, when
the network has free-riders more than contributors. In
this situation, the spectrumwas underutilized by the cog-
nitive network. Furthermore, decentralized selection of
sensing channel leads to large sensing interference. In the
cluster-based CRN, global decision on spectrum avail-
ability was made in a centralized manner by FC [36].
Optimal location for FC was determined by the general
center scheme. OR rule was adapted for global decision-
making problem. However, in OR rule if anyone of the

SUs report was erroneous, then the decision was incor-
rect which leads to spectrum underutilization.

To minimize interference and to improve spectral effi-
ciency in resource allocation, an interference alignment
(IA) with frequency clustering was introduced [37].
Here initially frequency clustering was performed to
enable CSS and then power allocation was performed
for each SU. Perhaps this method minimizes interfer-
ence; this method relatively depends upon SNR and
CSI which limit the performance in low SNR scenar-
ios. In addition, it is not ensured that the knowledge
of CSI is available every time. Dynamic spectrum allo-
cation was presented in OFDM-based cognitive fem-
tocell network [38]. The resource allocation problem
was resolved by the dual decomposition method. The
spectrum efficiency was improved by saving a part of
spectrum. However, saving a part of available spec-
trum leads to spectrum underutilization since the PU
appearance is dynamic. In addition, the optimal solu-
tion determination is not able to minimize interference
between PU and SU since interference constraint is not
considered. Computational complexity was minimized
by decoupling resource allocation process in two steps
[39]. In the first step, adaptive algorithm was intro-
duced to assign subcarriers to SUs based on power allo-
cated initially. Then in the next step, optimal power
allocation process was realized. Perhaps this method
minimizes computational complexity; it consumes large
time for resource allocation in two steps in an iterative
manner.

Thus the major problems addressed in the previous
research works are ineffectual CSS with inaccurate
decision-making. Further interference between SUs and
PUs, computational complexity, and time consumption
are still challenging issues in OFDM-based CRN-CSS.

In addition, we formulate our objective in resource allo-
cation to improve network capacity such that through-
put can be improved. Optimal resource allocation prob-
lem was formulated as non-convex problem. Our major
objective function can be summarized as the following
optimization problem.

maximiseC =
K∑

k=1

N∑
i=1

nmin∑
j=1

αkiCkij(Pkj(i)) (1)

Subject to
K∑

k=1

N∑
i=1

nmin∑
j=1

αki · Pk(i) · Igi ≤ IgTH ,

× g = 1, 2, . . . ,G
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K∑
k=1

αki ≤ 1 ∀i,αki ∈ {0, 1} ∀i, k

αki · Pk(i) ≥ 0 ∀i, and k
The above optimization problemhas an objective tomax-
imize the capacity of the network subject to transmit
power constraint, interference constraint, and assign-
ment constraint. Here the capacity of cognitive network
with K number of SUs and N number of channels is
considered. The assignment constraint to assign ith chan-
nel to kth user is denoted as αki. Similarly, the power
constraint is represented as Pk(i) and Igi represents inter-
ference constraint.

4. PROPOSEDOFDM-BASED CRN-CSSWITH 5G

In this section we briefly discuss about our proposed
novel OFDM-based CRN-CSS with 5G network. Our
proposed network comprises the following entities: K
number of SUs as SU = {SU1, SU2, . . . , SUK}, M num-
ber of primary users as PU = {PU1,PU2, . . . ,PUM}, and
N number of channels, FC, and SA as shown in Figure 1.
The overall process is comprised of eight sequential steps.

Here we design FC with MIMO technology to support
huge number of SUs without a reduction in the transmis-
sion rate. Integration of CRN-CSS with 5G is achieved
to support high data rate and to preserve connectivity
among a vast number of SUs. Initially the network is
decomposed into small groups by BK-means algorithm.
Then each group is assigned with optimal sensing slots
using the novel TMSCA method which avoids sensing
interference. Upon the assigned channel SUs perform
an ESD-ED based spectrum sensing which identifies the
available spectrum in a wide band.

Global decision is made by FC with the assistance of the
CSWG method supported by SA. Finally resource allo-
cation, i.e. jointly power, and channel allocation are car-
ried out by considering EKKT conditions under power,
interference, and assignment constraints. Without inter-
ference and with optimal resources, the transmission
performance is improved in the network which leads
to high-throughput efficiencies. Furthermore, OFDM is
adapted to preserve high transmission rate and the prob-
lem of PAPR is resolved by utilizing QPSK modulation.
Each significant process is explained in the following
sections.

Figure 1: Overall architecture of the proposed OFDM-based CRN-CSS with 5G scenario
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4.1 Group Formation: BK-means Algorithm

Group formation is the initial process in our work which
supports CSS in CRN. For efficient group formation,
BK-means algorithm is presented. BK-means algorithm
decomposes the network into small groups in a balanced
manner, i.e. each group with equal number of SUs. The
key idea behind BK-means algorithm is to divide the
network into equal size clusters (or) groups. The cluster
formation process is carried out by FC in the following
steps.

Step 1: Initialize number of clusters K, and cluster size
Size(Cl). Here our major aim is to balance the clusters in
the network, so that we select a number of clusters using
some existing methods. For instance, the value of K is
determined by the elbow method and the cluster size is
optimized by our proposed BK-means algorithm. Cluster
size can be expressed as follows:

Size(Cl) = K
K

(2)

Cluster size is determined based on a number of SUs in
the network (K) and a number of clusters K.

Step 2: Randomly initialize K number of centroids as
follows:

Centroids = {C1,C2, . . . ,CK} (3)

Step 3: Assign SUs to closest centroid based on dis-
tance.HereManhattan distance, which gives absolute dis-
tance, is determined between SUs and centroids. We use
Manhattan distance instead of Euclidean distance since
Euclidean distance is influenced by unusual values and
not able to provide accurate distance. In order to obtain
accurate distance between centroids and SUs, Manhat-
tan distance is computed. Accurate distance computation
leads to robust result in group formation. Manhattan dis-
tance between SU and centroid is computed as follows:

D(SU1,C2) = |x2 − x1| + |y2 − y1| (4)

Here (x1, y1) represents points of SU and (x2, y2) repre-
sents points of centroid. Involvement of Manhattan dis-
tance also minimizes the measurement errors which lead
to accurate distance calculation. Then the SU assignment
process follows:

If (D(SU1,C2) = Small, then assign SU1 → C2 (5)

This process is iterated until all SUs are assigned to at least
one centroid.

Step 4: In this step all centroids are updated, i.e. recom-
puted. Then step 2 and step 3 are performedwith new (or)

updated centroid until optimal groups are formed. In this
step K numbers of clusters (Cl) are formed as follows:

Cls = {Cl1,Cl2, ..,ClK} (6)

Step 5: In the final step, for each cluster CH is selected
based on node degree and distance with FC and average
distance with other SUs in cluster. The CH is respon-
sible to aggregate sensing reports from all of its cluster
members (CM).

Thus BK-means algorithm forms clusters with equal size,
which balances overall network in spectrum sensing. It
also preserves cooperation among SUs to realize CSS in
CRN. Since all clusters have the same number of SUs, it is
possible to obtain the same opportunities for spectrum
sensing. Cluster formation also minimizes interference
during spectrum sensing which degrades the data trans-
mission. All SUs perform sensing and report the sens-
ing information to their CH and then CH transmits the
aggregated reports to FC. HereCH is required not to wait
since FC is equipped with MIMO.

4.2 Multi-slot Channel Assignment: TMSCA
Method

In CSS-based CRN, introduction of interference is a
major issue still that is not resolved. To resolve this issue,
we propose a dynamic multi-slot channel assignment
process based on the TMSCA method. In this method,
channel assignment is performed in two stages. In the
first stage, each cluster is provided with a set of channel
for sensing in the given round. In the next stage, each
round is segmented into multiple slots and each SU is
assigned with a sensing channel at each slot. It is worth
to note that in our network cluster size is equal so that
the slot duration is also equal. Thus each SU is given
with same sensing duration in the network. Consider K

number of channel sets {CS1,CS2, ..,CSK} and K num-
ber of clusters{Cl1,Cl2, . . . ,ClK}. Each channel set has
five sensing channels and each cluster has five SUs. Then
in the first stage each cluster is provided with a channel
set. This scheduling is performed by FC with the knowl-
edge of SA since for each channel set SA provides sensing
reports. In round 1 R1, channel set assignment process is
performed as follows:

R1 : {CS1 → Cl1}, {CS2 → Cl2}, .., {CSK → ClK} (7)

Further in each round the channel sets are rotated among
clusters. This scheduling is performedwith the assistance
of FC and SA.
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Figure 2: TMSCA-based sensing channel assignment

In Figure 2, the process of TMSCA method with two
stages is illustrated. When the first stage is completed,
the second stage is followed by CH. Consider channel
assignment in Equation (7), in which CS1 is assigned
to Cl1. In the second stage, round R1 is divided into
multiple time slots based on the number of sensing
channels. Here we have CS1 with five sensing channels
CS1 = {Ch11,Ch12,Ch13,Ch14,Ch15}, and Cl1 with five
SUs Cl1 = {SU1, SU2, SU3, SU4, SU5}. Then R1 has five
time slots as R1 = {T1,T2,T3,T4,T5}. In each time slot,
SU is assigned by CH to sense each channel in left circu-
lar manner. Thus in each time slot sensing channels are
assigned in following manner.

Ch11 : {SU1 → T1, SU2 → T2, SU3 → T3, SU4

→ T4, SU5 → T5}
Ch12 : {SU1 → T5, SU2 → T1, SU3 → T2, SU4

→ T3, SU5 → T4}
Ch13 : {SU1 → T4, SU2 → T5, SU3 → T1, SU4

→ T2, SU5 → T2}
Ch14 : {SU1 → T3, SU2 → T4, SU3 → T5, SU4

→ T1, SU5 → T2}
Ch15 : {SU1 → T2, SU2 → T3, SU3 → T4, SU4

→ T5, SU5 → T1}

In the above left circular shift method, each SU is
assigned with each sensing channel in each time slot.
Furthermore, TMSCA method ensures each channel is
sensed by all SUs in the network without interference.
Here we can see that no interference is introduced among
SUs during spectrum sensing. Minimizing interference
leads to improve spectrum sensing which results in high
spectrum efficiency. When the available spectrum is

accurately identified, then the network is able to transmit
more data results in high throughput.

Upon assigned sensing channel each SU perform spec-
trum sensing through the proposed ESD-ED method.
ESD measures energy of a signal over a frequency, while
the conventional ED method measures the energy of
signal in a piece of frequency. Thus, ESD can able to iden-
tify more amount of spectrum than the conventional ED
method. Furthermore, the threshold computation is per-
formed with the knowledge of noise uncertainty which
improves the accuracy of spectrum sensing. In the con-
ventional ED method, PU status is detected based on the
following two hypotheses.

X(n) =
{
w(n), H0

s(n)+ w(n), H1
(8)

The hypothesis test is made on the received signal X(n).
Energy is computed for the received signal and compared
with threshold value. If the energy of the signal is higher
than the threshold value, then it can be concluded that
the signal contains both PU signal s(n) and noise signal
w(n), i.e. PU is active on that channel. Otherwise, PU is
absent, i.e. the received signal contains only noise signal.
The energy of the received signal is computed by SU as
follows:

E =
∫ ∞

−∞
|x(t)|2 (9)

Energy of the signal is the sumof energy in all signal sam-
ples in the received signal in a time domain. However,
this part is modified in our work to achieve better sensing
accuracy.We compute ESD instead of energy level for the
received signal in the proposed ESD-ED method. ESD
defines the measure of signal energy over a frequency.
ESD of signal is computed as follows:

ψx(f ) = |X(f )|2 (10)

ESD is the energy per unit bandwidth of spectral com-
ponents of x(t) at center frequency f as in Equation (10).
Then the threshold computation is followed by ESD com-
putation to perform a hypothesis test. Threshold compu-
tation is performed as follows:

λnew = λ∑
℘i

(11)

Here a new threshold λnew is computed in terms of con-
ventional threshold (as in conventional ED method) (λ)
and noise uncertainty factor ℘k which can be computed
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as follows:

ρk =
max
1≤q≤Q

σ 2
k (q)

1
Q
∑Q

q=1 σ
2
k (q)

(12)

Noise uncertainty factor is computed in terms of noise
frequencyσ of each signal samplewhereQ signal samples
are considered. Based on the computed threshold value
PU activity on the channel is determined. Local decision
on the channel status is taken by SU as follows:

Decision =
{
PU is present ES ≥ λnew

PU is absent ESD < λnew
(13)

CH aggregates sensing report from each SU at each time
slot and transmit the sensing report to FC at the end of
each round, i.e. SU reports to CH at each time slot and
CH reports to FC at each round.

Algorithm 1 details the overall process involved in CRN-
CSS spectrum sensing. The CSS process is initiated with

Algorithm 1. Proposed CRN-CSS with TMSCA

1. Input: SU = {SU1, SU2, .., SUK }, {CS1, CS2, .., CSK}
Output: Optimal sensing scheduling

2. Begin
3. Initialize network with SUs and PUs
4. Initialize number of clustersK

5. Find Size(cl)
6. Select random centroids Centroids = {C1,C2, ..,CK}
7. For all SUx ∈ SU
8. Find D(SUx ,Cy)

9. If D(SUx ,Cy) = Small
10. Assign SUx → Cly
11. Else
12. Goto→ 7
13. UpdateCy ∈ Centroids
14. End if
15. Do
16. Until convergence
17. Return
18. Cls = {Cl1, Cl2, .., ClK)
19. End for
20. For each Cly ∈ Cls
21. Assign CSz ∈ CS at R1
22. For each SUx ∈ Cly
23. Divide R1 → T1, T2, T3, ..Tt
24. Assign SUx → Chh ∈ CSz at T1
25. Do until no SU without Ch at T1
26. End for
27. For ClywithCSz
28. Do left circular shift in Chh ∈ CSz at T2
29. Rotate CS at R2
30. Do until
31. All channels are sensed
32. End for
33. For each channel
34. SU performs ESD − ED
35. SU(sensing report) → CH at Tt
36. CH(Aggregated report) → FC at Rr
37. End for
38. End

the clustering of SUs and then each SU is assigned with
sensing channel in cooperative manner.

4.3 Global Fusion: CSWGMethod

Global decision-making process is followed by spectrum
sensing. For global decision-making, FC considers sens-
ing reports aggregated from SUs as well as the sensing
report obtained from SA. We introduce a SA which is a
new entity in the network to improve sensing accuracy.
SA is only working for FC in spectrum sensing. SA per-
forms spectrum sensing on each channel set and reports
to FC about each channel state in the channel set. Here
it is assumed to be that SA always provides an accurate
status of the channel at any given time. Global decision
is made by comparing the sensing report of SU with
that of SA. This comparison is made in order to identify
the SUs which performs accurate sensing on PU status.
SUs, which provide accurate sensing report, are only con-
sidered for spectrum allocation to improve the network
performance. The sensing reports from SUs have two
hypotheses on channel status in binary representation, as
shown in Table 1.

Aggregated sensing reports are analyzed by FC with the
help of SA. To speed up the process CSWG is adapted for
decision-making in FC. In the CSWG method a undi-
rected graph is constructed between each channel and
SUs and SA based on sensing reports. For each group an
undirected graph is constructed with the channel set at
each round. Then the link between channel and SU is
given with a weight value based on the sensing report.
At the end of R1, FC constructs CSWG between channels
in CS1 and SUs in Cl1. Consider sensing reports for CS1,
as shown in Table 2.

Based on the aggregated sensing reports, FC builds a
CSWG graph. For sensing reports illustrated in Table 1,
the constructed CSWG is shown in Figure 3. In CSWG,

Table 1: Sensing reports
Hypothesis Report PU status

H0 1 PU is absent, i.e. Channel is idle
H1 0 PU is presented, i.e. channel is busy

Table 2: Aggregated sensing results for CS1
SU/Ch Ch1 Ch2 Ch3 Ch4 Ch5

SU1 1 0 0 1 0
SU2 0 1 1 1 0
SU3 1 0 0 1 0
SU4 1 0 1 1 0
SU5 1 1 0 0 0
SA 1 1 0 1 0
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Figure 3: CSWG construction

an undirected graph G(V ,E) is constructed with V ver-
tices and E edges. Here V represents channels presented
in the channel set and SUs presented in cluster. Similarly,
E represents edges between SUs and channels. Channels
are given with weight value WCh based on the sensing
report from SA that represents the state of the channel.
This weight value can be ‘zero’ or ‘one’.

After assigning the weight values, each edge between SU
and channel is given with a weight value based on the
sensing report of SU on a particular channel. SUs, which
provide accurate sensing reports, are identified by the
following criteria.

Report(SU) =
{
True, if (Wch = WE)

False, Otherwise
(14)

From the CSWG, FC made global decision accurately
and also identified the SUs which provide false-sensing
reports. Then the SUs are informed by FC about the
improper sensing report so that SUs can improve their
spectrum-sensing process. When an accurate sensing
decision is made, then the spectrum availability is accu-
rately identified by the cognitive network. Thus by utiliz-
ing the available spectrum the network throughput can
be enhanced.

4.4 Resource Allocation: EKKT Conditions

In our OFDM-based CRN-CSS, resource allocation pro-
cess considers joint spectrum and power allocation for
multi-user multi-channel scenario. Joint spectrum allo-
cation and power allocation problem are formulated as

in Equation (1). Our proposed system model comprises
K number of users and N number of subcarriers in the
available spectrum. Upon the formulated problem, the
available subcarrier and power to particular SU with the
aim of maximizing network capacity. Here the capacity
of SU link gives the ability of SU to transmit more data
successfully, i.e. high throughput. This can be computed
as follows:

Ck(i) =
nmin∑
j=1

log2

(
1 +

Pkj(i)λ2kj(i)

N0

)
(15)

where Pkj(i) represents the kth user at the jth antenna of
ith subcarrier. Furthermore, λkj(i) is the jth diagonal ele-
ment of a diagonal matrix. The problem formulated in
Equation (1) is a non-convex problem and can be con-
verted into a convex one by introducing a new variable as
follows:

Skj(i) = αki.Pkj(i) (16)

Thus the problem can be rewritten as follows:

maximiseC =
K∑

k=1

N∑
i=1

nmin∑
j=1

αkiCki

(Skj(i)
αki

)
(17)

Subject to
K∑

k=1

N∑
i=1

nmin∑
j=1

Skj(i) · Igi ≤ IgTH , g = 1, 2, . . . ,G

K∑
k=1

αki ≤ 1 ∀i,αki ∈ {0, 1} ∀i, k

Skj(i) ≥ 0 ∀i, j and k

when αki �= 0, then this problem can be solved by KKT
conditions. To improve resource allocation we introduce
the EKKT method in which optimal SU is assigned with
the optimal channel. For this purpose, we sorted all SUs
based on their spectrum efficiency and all channels based
on their capacity. The resource allocation process is ini-
tiated with optimal SU and optimal channel. Then over
iteration, spectrum allocation is performed for each SU
with reasonable transmission power. The Lagrangian of
Equation (1) is given as

L(αki, Skj,μkj(i), ρki, ξki,ψg)

= −
K∑

k=1

N∑
i=1

nmin∑
j=1

αki · Ckij

(Skj(i)
αki

)

+
K∑

k=1

N∑
i=1

nmin∑
j=1

μkj(i)(0 − Skj(i))
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+
N∑
i=1

vi

( K∑
k=1

αki − 1

)
+

K∑
k=1

N∑
i=1

ρki(αki − 1)

+
K∑

k=1

N∑
i=1

ξki(0 − αki)

+
M∑
g=1

ψg

⎛
⎝ K∑

k=1

N∑
i=1

nmin∑
j=1

Skj(i) · Igij − IgTH

⎞
⎠ (18)

Hereμkj(i), ρki, ξki,ψg are non-negative Lagrangianmul-
tipliers. The KKT conditions are

∂Skj(i)L = C′
kij

(Skj(i)
αki

)
− μkj(i)+

M∑
g=1

ψg · Igij = 0 (19)

∂αkiL = −
nmin∑
j=1

[
Ckij

(Skj(i)
αki

)
− Skj(i)

αki
· C′

kij

(Skj(i)
αki

)]

+ vi + ρki − ξki = 0 (20)

μkj(i) · (0 − Skj(i)) = 0 (21)

vi ·
( K∑
k=1

αki − 1

)
= 0 (22)

ρki · (αki − 1) = 0 (23)

ξki · (0 − αki) = 0 (24)

ψg ·
⎛
⎝ K∑

k=1

N∑
i=1

nmin∑
j=1

Skj(i) · Igij − IgTH

⎞
⎠ = 0 (25)

By utilizing (1) and (19) S∗
kj(i) is expressed as follows:

S∗
kj(i)=αki ·

⎛
⎝ 1

Ln2 ·
(∑G

g=1 ψg · Igij − μkj(i)
) − N0

λ2kj(i)

⎞
⎠

(26)

Here μkj(i) = 0 in the following cases

N0

λ2kj(i)
≤ 1

Ln2 ·
(∑G

g=1 ψg · Igij
) (27)

Thus Equation (26) can be written as

S∗
kj(i) = αki ·

⎛
⎝ 1

Ln2 ·
(∑G

g=1 ψg · Igij
) − N0

λ2kj(i)

⎞
⎠ (28)

If
N0

λ2kj(i)
>

1

Ln2 ·
(∑G

g=1 ψg · Igij
) (29)

S∗
kj(i) = 0 (30)

Then in this considered case we can conclude as follows:

S∗
kj(i) = αki ·

⎛
⎝ 1

Ln2 ·
(∑G

g=1 ψg · Igij
) − N0

λ2kj(i)

⎞
⎠ (31)

From Equation (31), transmission power can be com-
puted as follows:

P∗
kj(i) =

⎛
⎝ 1

Ln2 ·
(∑G

g=1 ψg · Igij
) − N0

λ2kj(i)

⎞
⎠ (32)

Joint spectrum and power assignment constraint can be
defined from Equation (20) as follows:

Gijk = −
nmin∑
j=1

[
Ckij

(Skj(i)
αki

)
− Skj(i)

αki
· C′

kij

(Skj(i)
αki

)]

= vi + ρki − ξki (33)

Furthermore when αki = 1, then ξki = 0, and ρki ≥ 0.
Similarly if 0 < αki < 1, then ξki = 0 and ρki = 0. Thus
Equation (33) can be written as follows:

Gijk =
{
vi, if 0 < αki < 1
≥ vi, if αki = 1

(34)

Finally, the subcarrier allocation is performed effectually
by

αki =
{
1 if k∗ = argmax(Gijk)

0 Else
(35)

Based on Equation (35), spectrum for data transmission
is allocated to SUwhich has the maximum spectrum effi-
ciency and the transmission power is optimized based on
Equation (31). Optimal channel allocation and transmis-
sion power allocation improve the data transmission rate
in the network. The proposed EKKT method resolves
the problem of interference. In addition, the problem
of PAPR is reduced by adapting the QPSK modulation
scheme. The PAPR is further minimized by selecting
an optimal signal for transmission based on signal-to-
noise ratio value. Thus the involvement of effective signal
selection minimizes PAPR significantly.

Our proposed OFDM-based CRN-CSS with 5G network
improves network throughput with transmission rate.
This objective is achieved by eliminating interference in
the network and by allocating optimal resource for data
transmission.



M. MEENA AND V. RAJENDRAN: SPECTRUM SENSING AND RESOURCE ALLOCATION FOR PROFICIENT TRANSMISSION 11

5. PERFORMANCE EVALUATION

In this section, we evaluate our proposed OFDM-based
CRN-CSS with 5G in terms of performance metrics. Our
proposed OFDM-based CRN-CSS is modeled using the
network simulator (NS-3.26) which is an event-based
network simulator. This section comprises two subsec-
tions: simulation environment and comparative analysis.
Each subsection can explained further.

5.1 Simulation Environment

As mentioned earlier, NS-3.26 simulation tool is uti-
lized to analyze our proposed work. NS-3.26 supports
the simulation of various types of networks and dif-
ferent communication protocols. Due to the high sup-
port in dynamic network simulation, we adapt NS-3.26
for our work. Implementation in NS-3 is realized with
the assistance of C++ and python languages. The NS-
3 library is wrapped by Python that delegates the parsing
of C++ headers. Here users are allowed to interact with
NS models through C++ while they interact with the
core through python scripts. Our network environment
comprises PUs, SUs, PBS, MIMO-FC, and SA.

The majority of significant simulation parameters are
illustrated in Table 3. On the whole, our proposed work
is performed over a frequency band which is assumed to
be 5GHz. In OFDM, 256 fast Fourier Transform (FFT)
is considered. We have 192 subcarriers over 25 channels.
Each channel bandwidth is varied from 10 to 20MHz.
5 dB of noise figure is considered with a downlink dis-
tance of 300m. Frame duration is 10ms and OFDM
symbol duration is 0.8s. Furthermore, QPSKmodulation

Table 3: Simulation environment of OFDM-based CRN-CSS
Parameter Value

Simulation area 1500× 1500m
Network entities Number of PUs 10

Number of SUs 25
Number of PBS, SA 1
MIMO-FC Number of FC 1

Number of antennas 4× 4
Mobility model of SU Randomwaypoint
Mobility speed 100Mbps
Total time slot 1000
Sensing duration Minimum 1μs

Maximum 10μs
Noise figure 5 dB
Channel bandwidth 20MHz
Number of channels 25
Transmission scheme OFDM
Number of subcarriers 192
Modulation scheme QPSK
Average transmission power Up to 30 dBm
Packet size 50 KB
Total number of packets 500
Packet interval 100ms
Simulation time 5 sec

Figure 4: OFDM-based CRN-CSS with 5G scenario

scheme with 2bits/symbol is adapted for OFDM trans-
mission. The block size computed for QPSK scheme is
48. Channels are independent and identically distributed
by Gaussian distribution with zero mean and unit vari-
ance. Noise variance assumed in our work is10−6. Our
proposed OFDM-based CRN-CSS with 5G network is
designed by considering all the above parameters.Overall
simulation environment of OFDM-based CRN-CSS with
5G network is illustrated in Figure 4.

Our considered simulation scenario has 25 SUs and 10
PUs with a single PBS and a single FC. Here five clusters
are formed by the BK-means algorithm and each cluster
consists of five SUs, i.e. equal cluster size. The cluster size
is a variable and the number of clusters is also variable in
accordance with the cluster size.

5.2 Comparative Analysis

In this subsection, we compare our OFDM-based CRN-
CSS with significant previous research works such as
RPA [30], location aware allocation [31], switched affine
method [32], IA method [37], localization method [33],
water-filling method [34], utility-based method [35],
dynamic access method [38], and adaptive algorithm
[39]. Comparisons are made in terms of detection prob-
ability, network utility, transmission rate, transmission
power, capacity, and throughput.
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Figure 5: Analysis on Detection probability

5.2.1 Effectiveness in Detection Probability
Detection probabilitymeasures the accuracy of spectrum-
sensing method involved in CRN-CSS. Detection prob-
ability increases when idle channels are identified accu-
rately by SUs. This metric measures the efficiency
of spectrum-sensing method and the sensing channel
assignment algorithm. When there is no interference is
introduced during spectrum sensing, then the probability
of its detection is high.

In Figure 5, detection accuracy is compared between
the proposed OFDM-based CRN-CSS and the existing
utility-based CSS. We can see that OFDM-based CRN-
CSS achieves consistent detection probability about 0.9,
i.e. 90% of detection accuracy. But in utility-based CSS,
detection probability is oscillated between values of 0.8
and 0.9. In the second iteration, the result of utility-based
CSS is 1% better than that of the proposed work. This
shows that in the second iteration, the number of con-
tributors is large in the network. However, when number
of iteration increases the detection probability is mini-
mized since the work strongly depends upon the number
of contributors. In addition, the involvement of interfer-
ence during spectrum sensing is also a major problem
in this work. Besides, the dynamic access method and
adaptive algorithm adopts the conventional spectrum
sensing method which is not suitable for noisy environ-
ment. Thus both works achieve lower probability detec-
tion which is lower than 0.8. All of these limitations are
resolved in ourOFDM-basedCRN-CSSwith 5Gnetwork
which improves detection accuracy. On the whole, the
proposedOFDM-basedCSS achieves 5%better detection
probability than the previous work.

Figure 6: Analysis on Network utility

5.2.2 Effectiveness on Network Utility
Network utility is defined as the measure of SU satisfac-
tory level.When all available resources, i.e. of PUnetwork
are utilized effectively by the SU network, then this met-
ric is high. This metric evaluates the proposed CSS and
resource allocation scheme jointly since the spectrum
sensing and spectrum allocation play a vital role in net-
work utility.

Figure 6 analyses the network utility in accordance with
sensed channels. Here the proposed OFDM-based CRN-
CSS achieves better network utility than the existing
dynamic access method. This method shows the inabil-
ity of dynamic access method in spectrum sensing and
resource allocation. In OFDM-based CRN-CSS, the net-
work utility is greater than 0.9 regardless of the number of
sensed channels. In order to improve network utility it is
necessary to identify idle channels accurately and also it is
necessary to allocate required resource for transmission.

Likewise, adaptive algorithm-based resource allocation
process consumes more time for power allocation. Thus
this method is unable to achieve better network utility.
In the proposed work, ESD-ED with TMSCA method
improves sensing accuracy and EKKT method improves
resource allocation efficiency. Thus OFDM-based CRN-
CSS utilizes network resources in an effective manner.

5.2.3 Effectiveness on Transmission Rate
Transmission rate is the measure of number of bits trans-
mitted per second over the network. Transmission rate
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Figure 7: Achieved transmission rate

strongly depends upon available bandwidth and allocated
spectrum resources.

In Figure 7, the achieved transmission rate in OFDM-
based CRN-CSS is compared with that of the previous
research works. Our proposed OFDM-based CRN-CSS
outperforms all other previous works in transmission
rate. Even with the increase in the probability of inter-
ference, transmission rate is increased in our work. This
analysis shows the ability of our network to handle inter-
ference. This is because we allocate resource for data
transmission in accordance with interference constraint
which eliminates the problem of interference in the net-
work. Furthermore, all idle channels are identified by our
work accurately which increases the transmission rate.
On average 1.1Mbps transmission rate is achieved by
the proposed work, whereas water filling algorithm pro-
vides 0.06Mbps, RPA scheme provides 0.055Mbps, and
IAmethod provides 0.00015Mbps transmission rate. The
dynamic access method and adaptive algorithm achieve
better transmission rate than that of other existing works,
but fail to achieve better result than the proposed work.
Involvement of effectual resource allocation process aids
in better transmission rate. But the absence of effectual
spectrum sensing and decision-making leads to ineffi-
ciency.

In Table 4, transmission rate is analyzed in terms of the
number of bits transmitted per second in the network.
Our proposed work achieves relatively higher transmis-
sion rate comparedwith other works. This analysis shows

Table 4: Transmission rate analysis
Method Number of bits transmitted per second

RPA scheme 55,000
IA method 550
Water-filling algorithm 60,000
Dynamic access method 152,000
Adaptive algorithm 188,000
OFDM-based CRN-CSS 1,100,000

Figure 8: Allocated transmission power for SUs

that proposed work has the ability to identify idle spec-
trum accurately, and allocation of reasonable resources
without interference leads to high transmission rate.

5.2.4 Effectiveness on Transmission Power
This metric measures the power allocated for each SU for
data transmission in the network. SU requires high trans-
mission power when the available bandwidth is low and
the involvement of interference and noise are high.When
these problems, such as idle channel detection, interfer-
ence, and noise are resolved, then SU transmission can be
performed even with a minimum transmission power.

In Figure 8, the transmission power allocated for SUs is
analyzed and compared with the previous works. In the
proposed OFDM-based CRN-CSS, SUs require a small
amount of power to achieve better transmission rate.
Requirement of a small amount of power shows that
the proposed work completely mitigates the interference
problem and allocates optimum resource for data trans-
mission. In addition, transmission is also improved by
reducing PAPR through QPSK modulation scheme and
effective signal selection. Average transmission power
required by SU in OFDM-based CRN-CSS is 5.6mW. In
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Table 5: Transmission power allocated for five SUs
SUs Transmission power (mW)

SU1 4.4
SU2 5.6
SU3 6
SU4 4
SU5 8

the previous works, location-aware allocation, switched
affine method, adaptive algorithm, and dynamic access
method, SU requires transmission power 27.2, 18, 8, and
20mW, respectively.

In Table 5, the transmission power allocated for five SUs
in a cluster is illustrated. Transmission power required by
SU in our work is low since there is no interference dur-
ing transmission and an optimal spectrum is allocated for
transmission. Even with a small amount of transmission
power, our proposed work achieves a better transmission
rate.

5.2.5 Effectiveness on Capacity
Network capacity is defined as the amount of traffic that
can be handled by the network at given time. When net-
work is able to support a large amount of data, then the
network capacity will be increased. Network capacity is
increased with the decrease in congestion and interfer-
ence.

The analysis on network capacity is illustrated in Figure 9.
The capacity of the proposed OFDM-based CRN-
CSSS network increases with an increase in distance
between PU and SU which minimizes interference dur-
ing data transmission. Existing localization method fails
to achieve better capacity since it involves with local-
ization errors which leads to ineffectual spectrum uti-
lization. Optimal resource allocation improves network
capacity even in large distance. However, even with opti-
mal resource allocation process, dynamic access method
and adaptive algorithm are not able to achieve better
capacity. This is because, network capacity depends upon
network management, spectrum sensing, and resource
allocation. Thus the absence of any effectual process will
affect the network capacity. When the distance between
PU and SU is 1 km, then the capacity achieved by local-
ization method is 1.8Mbps, while the proposed work
achieves capacity up to 9Mbps. Thus the proposed work
achieves better results in the network capacity.

5.2.6 Effectiveness in Throughput
Throughput is an important measure of network per-
formance which defines the amount of data transmitted
from source to destination in a given period of time.

Figure 9: Network capacity analysis

Table 6: Throughput result obtained

Work
Number of packets

transmitted
Number of packets
received successfully

RPA 500 130
Dynamic access 500 220
Adaptive algorithm 500 150
Proposed 500 400

When the throughput is high, then it can be found that
transmission is efficient in the network.

Throughput efficiency of the proposed work is analyzed
in Figure 10. From the graphical analysis, we can see
that proposed work achieves better throughput efficiency
than that of previous works. It shows gradual increase
in throughput with an increase in sensing time. The
increase in sensing time results in high sensing accu-
racy which leads to high throughput. In detail, to achieve
better throughput it is necessary to identify available
spectrum and requires optimal resource for data trans-
mission. However, previous works are not able to achieve
better throughput due to the lack of sensing efficiency and
resource allocation efficiency.

A brief analysis on throughput efficiency is depicted in
Table 6. Here throughput efficiency is measured for 500
data packets. In our work, 80% of packets reached their
destination without any packet loss. Thus our network
minimizes interference between SU and PU. However,
the previous works are not able to transmit half the
amount of packet successfully. Our proposed OFDM-
based CRN-CSS is twice time better than the previous
research works.
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Figure 10: Throughput efficiency based on sensing time

Figure 11: Analysis on throughput efficiency

Table 7: Overall analysis

Parameter
Dynamic

access method
Adaptive
algorithm

OFDM-based
CRN-CSS

Detection probability 0.8 0.73 0.9
Network utility 0.75 0.68 0.91
Transmission rate (Mbps) 0.152 0.18 1.06
Transmission power (mW) 25.2 20.36 15.65
Capacity (Mbps) 2.4 2.7 6.9
Throughput (%) 44 30 80

Throughput efficiency of the proposed work is shown in
Figure 11. Here the proposed OFDM-based CRN-CSS
achieves high throughput compared with the previous
works. Thus our proposed CRN-CSS network supports
high throughput with a high transmission rate.

In Table 7, overall analysis on the proposed and exist-
ing work is illustrated, here we can see that the pro-
posed OFDM-based CRN-CSS achieves better results
in all aspects than dynamic access, method, and adap-
tive algorithm. Involvement of efficient cluster forma-
tion, spectrum sensing, decision-making, and resource
allocation improve the network performance.

6. CONCLUSION

In this paper, we proposed a novel OFDM-based CRN-
CSSwith 5Gnetwork to improve the transmission perfor-
mance of cognitive network. The proposed network com-
prises MIMO-FC that supports a huge number of users
with high data rate. To preserve cooperativeness among
SUs, BK-means algorithm is proposed inwhich equal size
clusters are formed. For each cluster, a set of channels
are assigned and each SU is provided with sensing chan-
nel at each slot by the TMSCA method. Involvement of
the TMSCA method ensures interference-free spectrum
sensing for SUs. ESD-EDmethod improves sensing accu-
racy even in noise uncertainties. With accurate sensing
reports of SUs, FC made global decision by CSWG with
the support of sensing report of SA. Finally, resource allo-
cation is carried out by EKKT method with joint multi-
user spectrum and power allocation. Resource allocation
is performed with the knowledge of channel state, inter-
ference constraint, and power constraint. Furthermore,
OFDM transmission with QPSK modulation scheme
is adapted to reduce PAPR and to improve transmis-
sion rate. Extensive simulation in ns-3 shows promising
results in detection probability, network utility, transmis-
sion rate, transmission power, capacity, and throughput.
In future, we have interested to extend this work in large
scale environment. We are also intended to reduce PAPR
further reduced by signaling methods to achieve high
throughput.
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