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Abstract
Children with autism spectrum disorder (ASD) are deficit in communication, social skills, empathy, emotional responsiveness 
and have significant behavioral pattern. They have difficulty in understanding other feelings and their own emotions. This 
leads to the sudden emotional outburst and aggressive behavior in these children. Parents, caretakers and doctors find it very 
difficult to prevent such extreme behaviors. Learning the positive and negative valence leads in determining the early indica-
tions before the onset of emotional outbursts in children with ASD. The present study measures the psycho physiological 
electrocardiogram (ECG) signal from the typically developed (TD) children and children with ASD in the age group of 5–11 
years. Personalized protocol was developed for every child with ASD to induce positive and negative valence and ECG data 
was collected using wearable Shimmer ECG device. The heart rate variability (HRV) and the QRS amplitude were derived 
from ECG signal using Pan–Tompkins algorithm and eleven features were extracted using DWT (db2, db4 and db8) mother 
wavelet. The significant features of ECG, HRV and QRS amplitude were classified using the K nearest neighbor (KNN), 
support vector machine (SVM) and ensemble classifier. Ensemble and KNN classifier achieved maximum accuracy of 81% 
and 76.2% for children with ASD and Ensemble and SVM classifiers obtained maximum accuracy of 87.4% and 83.8% for 
TD children using HRV data.

Keywords Autism spectrum disorder (ASD) · Heart rate variability (HRV) · Pan–Tompkins algorithm · K nearest neighbor 
(KNN)

1 Introduction

Autism spectrum disorder (ASD) is a spectrum of neu-
rodevelopment disabilities which can be identified during 
the developmental stages or first 3 years of life (Lord et al. 
2000). Centre for Disease Control and Prediction (CDC) has 
estimated that 1 in 160 children are diagnosed with ASD 
in 2012 (Elsabbagh et al. 2012). There are more than 2 
million children in India with ASD who are between the 
ages 2–15 (Krishnamurthy 2008). In 2018, the Centers for 
Disease Control’s Autism and Developmental Disabilities 

Monitoring (ADDM), United State reported that 1 in 59 
children (1 in 37 boys and 1 in 131 girls) have been identi-
fied with an ASD indicating an exponential increase in the 
prevalence of autism every year. ASD is caused by a combi-
nation of genetic and environmental factors that affects the 
functioning of the brain leading to severe developmental 
problems such as social reciprocity, communication skills, 
restricted and repetitive behavior (APA 2000). Generally, 
the children are found to have problems related to commu-
nication, social interaction, social awareness, behavior and 
exclusions. Their emotions are often misunderstood and are 
not cared by anyone leading to loneliness and depression 
(Raouzaiou et al. 2003). They show less attention to social 
stimuli, smile, eye contacts etc., and do not have the ability 
to express their own needs such as pain, hunger, thirst or 
emotions to their parents or caretakers. They lack in theory 
of mind makes them to neither understand what they them-
selves or say or feel (Baron-cohen and Leslie 1985). They 
show many forms of repetitive stereotyped behaviors and 

 * Jerritta Selvaraj 
 sn.jerritta@gmail.com

1 Vels Institute of Science, Technology and Advanced Studies 
(VISTAS), Chennai, India

2 National Institute for Empowerment of Persons with Multiple 
Disabilities (Divyangjan), Chennai, India

http://crossmark.crossref.org/dialog/?doi=10.1007/s12652-020-01985-1&domain=pdf


 A. Bagirathan et al.

1 3

have difficulties in organization and sequencing of tasks. 
Children get into enormous anxiety and stress when their 
routines are altered or changed resulting in tantrums, out-
bursts and frustration. These extreme behaviors coupled with 
a lack of verbal communication makes it difficult to the fam-
ily members, care takers, teachers and therapists to handle 
the children and calm them down. A device which can iden-
tify changes in the internal emotional states of children and 
alert the parent or caretaker on time before the onset of an 
outburst can help in preventing such extreme behaviors.

Recent advancements in human computer interaction 
(HCI) and similar technologies help in identifying the inter-
nal state of persons such as stress, emotions, drowsiness and 
the like. Researchers are working on various applications to 
assist patients with stress syndromes, Parkinson’s disease 
etc., by identifying their internal emotional states. Behavio-
ral modalities such as gestures, facial expressions or speech 
(Dawson et al. 2004; Kessous et al. 2010; Neuhaus et al. 
2014; Oberman et al. 2009; Ram and Ponnusamy 2017), 
physiological metrics such as electroencephalogram (EEG) 
(Becker et al. 2017; Katsigiannis and Ramzan 2017; Muru-
gappan et al. 2009), electrocardiogram (ECG) (Agrafioti 
et al. 2012; Goshvarpour et al. 2017; Jerritta et al. 2013; Sel-
varaj et al. 2014; Zong and Chetouani 2009), galvanic skin 
response (GSR), respiration (RSP), electromyogram (EMG) 
(Cheng and Liu 2008; Maaoui and Pruski 2010; Oberman 
et al. 2009), skin conductance (SC), skin temperature (SKT) 
and phonocardiogram (PCG) (Selvaraj et al. 2014) are used 
to identify the emotional states. However, unexpressed and 
socially masked emotions can only be identified using the 
physiological signals which are a measure of the involuntary 
activity of the central nervous system (CNS) and autono-
mous nervous system (ANS) (Neuhaus et al. 2014).

In the last few decades many research works have been 
carried out on the emotion recognition using the physiologi-
cal signals either using only one physiological signal or a 
combination of other physiological signals for healthy peo-
ple. Very few research works are reported on persons with 
disabilities such as ASD or Parkinson’s where EEG signal 
used to recognize emotions such as happiness, sadness, fear, 
anger, surprise and disgust (Yuvaraj and Murugappan 2016; 
Yuvaraj et al. 2014a, b). Research on persons with ASD 
was focused on children with high functioning autism (HFA) 
(Deschamps et al. 2015; Krupa et al. 2016; Kushki et al. 

2015; Kuusikko et al. 2009; Lin et al. 2015; Messinger 2013; 
Oberman et al. 2009; Palma et al. 2017; Raike et al. 2008; 
Zantinge et al. 2017b; Sasikumar et al. 2015; Torrado and 
Gomez 2017).

This research focuses on identifying two internal states 
corresponding to the positive and negative valence (‘Like’ 
and ‘Dislike’) of children with ASD and typically developed 
(TD) children. The methodology and results of the algorithm 
developed using three types of wavelets (db2, db4 and db8) 
for ECG, HRV and QRS amplitude are discussed in detail.

2  Materials and methods

The methodology of the internal state recognition system 
is as depicted in Fig. 1. ECG data is acquired from the TD 
children and children with ASD using a wearable Shimmer 
ECG device when subjected to view the audio and audio-
visual cues pertaining to ‘Like’ and ‘Dislike’ states. The 
artifacts and noises in the acquired signals were removed by 
pre-processing the raw ECG signal using various digital fil-
ters. Statistical, linear and nonlinear features were extracted 
from the filtered ECG, HRV and QRS signal using discrete 
wavelet transform. The features were then classified using 
three machine learning algorithms namely SVM, KNN and 
ensemble classifiers.

2.1  ECG data acquisition

2.1.1  Design of emotion elicitation protocol

As the characteristics of children with ASD are highly sub-
jective, a protocol to elicit the positive and negative valence 
states was specifically designed for each child. This was 
done by observing the child in their school environment for 
a week and interviewing with the parents and teachers to 
understand their various ‘Like’ and ‘Dislike’ of the child. 
Audio and video clips, food, toys and similar items pertain-
ing to the ‘Like’ and ‘Dislike’ states were learnt for each 
child with ASD and a protocol was designed as in Fig. 2.

The experimental protocol for each child had three tri-
als with ten minutes of break in-between each trial which 
lasted for 30 to 40 min. 150 (audio and visual stimulus) 
including advertisements, film songs, cartoons, rhymes, 
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news, sports, thunderstorm, sound of crackers, cooker, 
mixer grinder, vehicles and beach scene were selected 
depending on the behavioral pattern of the child. Each clip 
lasted from 16 s to 1 min representing positive and nega-
tive valence (‘Like’ and ‘Dislike’). Each trial also started 
with a baseline period of two minutes and had ten ‘Like’ 
and ‘Dislike’ cues. A time gap of two seconds was allowed 
between two audio-visual cues.

2.1.2  Experimental setup

The experiment was conducted in a closed room with the 
audio-visual system as shown in Fig. 3. The audio and vis-
ual cues were displayed in a 43-inch LCD TV screen with 
inbuilt speaker system. The instrument used for recording 
was a small and portable wearable shimmer 3 ECG system 
with MSP430 microcontroller (24 MHz) with Bluetooth 
radio RN-42 and a rechargeable 450 mAH lithium battery. 
It consists of a 5 wire, 4 lead electrodes to measure the 
lead II type of ECG measurements (right arm, left arm, 
right leg and left leg acting as the reference electrode with 
adhesive child patch electrode along with chest belt as 
shown in Fig. 4 and supporting consensys basic software 
for streaming the electrocardiogram signals (ECG)at the 
sampling rate of 512 Hz.

2.1.3  Subjects

Six TD children with mean age 8 years (range 7–11 years, 
SD = 2.8) and Six children with ASD with mean age of 
8 years (range 7–11 years, SD = 1.8) of mild and moder-
ate autism (Indian Scale of Assessment of Autism (ISAA) 
scores ranging from 70 to 150) were recruited with National 
Institute approval from NIEPMD and obtained consent from 
the parents.

2.1.4  Experimental procedure

The experimental procedure was initially briefed to the par-
ents and children. After obtaining the needed consent, trial 
experiments were conducted for two or three days prior to 

Fig. 2  Protocol to induce ‘Like’ 
and ‘Dislike’ states

LCD TV for Display 

Streaming of ECG using 
Consensys Basic software 

Wearable Shimmer3 ECG Device 

Fig. 3  Experimental setup

Fig. 4  Wearable Shimmer 3ECG device
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the actual data collection to make the child feel comfortable 
and acquaint him to the device and process. During the data 
collection experiment, the participants were seated comfort-
ably in a chair accompanied by their parents or caretakers. 
The electrodes of the wearable shimmer3ECG device were 
connected to them using a chest belt. The children were 
given their own time to settle down and pre-trials were taken 
two to three times to calm the children. ECG signals were 
acquired from the children with ASD and TD children as 
they watched the emotional cues. The parents simultane-
ously responded to a questionnaire by rating the emotion 
felt by their child at that point of time. Three trials were 
conducted for each child. In the case of children with ASD, 
the entire experiment was carried over two or three different 
days depending on the mood of the child.

2.2  Pre‑processing of emotional ECG data

The acquired raw ECG signal was corrupted with lot of arti-
facts due to movements, respiration and behavioral activi-
ties such as hand flapping, spinning and head rolling. The 
baseline wandering occurring in the frequency of 0.5–1 Hz 
was removed using the discrete wavelet transform (DWT) 
using Daubechies (db4) as the mother wavelet at 8th level 
of decomposition (Behzad and Tinati 2005; Palanisamy 
and Yaacob 2012). Other high frequency noise signals were 
removed using6th order low pass (LP) Butterworth filter 
with a cut of frequency of 20 Hz (Parastesh Karegar et al. 
2017). The HRV and QRS amplitude was derived using Pan 
Tompkins’s algorithm (Lee and Jeong 1996)

2.3  ECG feature extraction

As the Daubechies wavelet represents the characteristics of 
the ECG signal, it was used to extract the statistical, linear 
and nonlinear features from ECG signal, HRV and QRS 
amplitude (Imah et al. 2011). Three scaled version of Daube-
chies namely db2, db4 and db8 were used in this analysis. 
The mother wavelet function �a,b(t) is given as

 where a, b ϵ R, a > 0, and R is the wavelet space. Param-
eters ‘a’ and ‘b’ are the scaling factor and the shifting fac-
tor, respectively, since choosing a prototype function as the 
mother wavelet should always satisfy the admissibility con-
dition (Eq. 2),

 where Ψ (ω) is the Fourier transform of Ψ a, b(t).
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The six well known statistical features used widely in 
emotion recognition, higher order statistical features and 
non-linear features as indicated in Eq. 3 through 13 was used 
for analysis (Picard et al. 2001; Jerritta et al. 2013).
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3  Results and discussion

Baseline wander and high frequency noises were removed 
from the raw ECG signals using Daubechies db4 mother 
wavelet-based algorithm and sixth order Butterworth low 
pass filter respectively as shown in Fig. 5a through c. HRV 
data and QRS Amplitude was derived from the filtered ECG 
is shown in Fig. 5d, e respectively. The features (Eqs. 3–13) 
corresponding to the internal states were extracted from 
the pre-processed ECG, HRV and QRS data after applying 
DWT (db2, db4 and db8) for further analysis.

3.1  Statistical validation of features

The statistical significance of all the features derived from 
ECG signal, HRV and QRS amplitude using the DWT 
(db2, db4 and db8) was studied using analysis of variance 
(ANOVA) and the p  values are tabulated in Table 1. From 
Table 1, it is evident that the features whose (p value < 0.05)  

(13)ApEn = �m(r) − �m+1(r) such as mean and median indicate significance for TD chil-
dren using HRV data for all the three wavelets. Similarly, 
the feature Mean IV, indicate significance in QRS amplitude 
across all wavelets for TD children. In the case of children 
with ASD, entropy and kurtosis showed significance for 
QRS amplitude for all the wavelets. Skewness showed sig-
nificance for db2 and db8 in HRV data.

Other features such as mean I, mean II and mean III 
showed significance in some of the cases corresponding 
to ECG, HRV or QRS amplitude. Table 2 list the vari-
ous features used in the analysis of this work based on the 
significance. 

3.2  Classification of positive and negative valance

The results of significant features of ECG data, HRV and 
QRS for db2, db4 and db8 wavelets are tabulated from 
Tables 3, 4 and 5 respectively. From Table 3, it is well evi-
dent that Mean IV of signal drawn from ECG using DWT 
(db2) captures better valence information resulting in maxi-
mum average accuracy of 76.6% and74.3% for TD children 
and children with ASD respectively. Mean I of signal derived 
from the HRV data proves to hold more useful information 

Fig. 5  a Raw ECG signal, b baseline wander removed signal, c lowpass filtered signal, d HRV data and e QRS amplitude
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when compared with the other significant features by achiev-
ing a maximum average accuracy of 87.4% and 74.3% for 
both TD children and children with ASD in both KNN and 
Ensemble classifier. In the case of QRS amplitude, mean II 
and kurtosis obtained from the results in maximum average 
accuracy of 79.3% and 72.4% for TD children and children 
with ASD respectively.

In the case of db4 wavelets, mean IV resulted in maxi-
mum average accuracy of 71.2% and 64.8% for both TD 
children and children with ASD. Mean I of signal drawn 
from HRV achieves better accuracy of 83.8% for TD chil-
dren and 74.3% for children with ASD using both the KNN 
and Ensemble classifiers. In further analysis, the features 
from the QRS amplitude shows that Kurtosis captures the 
useful valence information resulting in a maximum average 
accuracy of 78.4% for TD children and Mean II provides 
better information of valence in children with ASD.

It is evident from Table 5 that the nonlinear feature Hurst 
derived from ECG signal using DWT (db8) resulted in maxi-
mum average accuracy of 80.2% for TD children and 72.4% 
for children with ASD. Median and Mean I drawn from HRV 
data achieves a maximum average accuracy of 79.3% for TD 
children whereas Mean I holds good for both TD children 
and children with ASD. In case of the QRS amplitude, mean 
II of signal drawn using DWT (db8) resulted in maximum 
average accuracy of 79.3% and 77.1% for TD children and 
children with ASD respectively.

The overall performances of the classifiers for ECG, HRV 
and QRS amplitude data using the combination of all sig-
nificant features is shown from Figs. 6, 7, and 8. Figure 8 
indicates that the db8 features from ECG data achieves max-
imum average accuracy of 82% for TD children and 78.1% 
for children with ASD using the Ensemble and SVM clas-
sifiers respectively.

HRV signals achieved an overall accuracy of 84.7% and 
81% for TD children and children with ASD respectively 
using db8 wavelet function as in Fig. 6 and QRS amplitude 
data achieved a maximum accuracy of 81.1% in both db4 
and db8 wavelet function for the TD children. A maximum 
accuracy of 76.2% was achieved for children with ASD 
using DWT (db8) as in Fig. 7.

The analysis in Fig. 9 indicates that HRV data, indicat-
ing the variability in heart rate is an effective indicator for Ta
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categorizing the like and dislike states of both TD chil-
dren and children with ASD (Krupa et al. 2016; Quintana 
et al. 2012). However, the maximum accuracy is only 85%. 
More features can be explored in HRV to achieve higher 
classification accuracy for categorizing the valence states.

4  Conclusion

In this study the protocol for inducing the ‘like’ and ‘dislike’ 
states were designed for each child using the audio- and 
audio-visual stimulus. The raw ECG data was pre-processed 

Table 3  Classification of ‘Like’ 
and ‘Dislike’ states using db2 
analysis

Data Emotional features Classifiers Accuracy (Db2)

Typically developed children Children with ASD

Like
%

Dislike
%

Average
%

Like
%

Dislike
%

Average
%

ECG Mean IV SVM 75 49 62.2 46 57 51.4
KNN (1) 70 84 76.6 65 83 74.3
Ensemble 70 84 76.6 65 83 74.3

Hurst SVM 95 16 55.9 29 77 53.3
KNN (1) 73 69 71.2 63 74 68.6
Ensemble 68 73 70.3 63 74 68.6

HRV Mean SVM 30 91 60.4 63 66 64.8
KNN (1) 68 91 79.3 58 81 69.5
Ensemble 68 91 79.3 60 81 70.5

Median SVM 79 53 65.8 54 53 53.3
KNN (1) 82 89 85.6 60 77 68.6
Ensemble 79 85 82 58 75 66.7

Mean I SVM 45 78 61.3 54 66 60
KNN (1) 80 93 86.5 63 85 74.3
Ensemble 82 93 87.4 63 85 74.3

Mean III SVM 32 93 62.2 67 42 54.3
KNN (1) 71 93 82 67 77 72.4
Ensemble 70 93 81.1 67 77 72.4

Entropy SVM 39 71 55 75 36 55.5
KNN (1) 85 20 52.5 45 76 60.2
Ensemble 23 78 50.5 45 76 60.2

Skewness SVM 75 40 57.7 63 40 51.4
KNN (1) 82 75 78.4 62 72 66.7
Ensemble 82 75 78.4 63 72 67.6

QRS Mean II SVM 63 51 56.8 49 66 57.5
KNN (1) 59 84 71.2 60 84 72.4
Ensemble 59 84 71.2 60 84 72.4

Entropy SVM 59 56 57.7 53 59 56.3
KNN (1) 57 60 58.6 63 64 63.2
Ensemble 57 60 58.6 63 64 63.2

Kurtosis SVM 39 65 52.3 12 95 54
KNN (1) 80 73 76.6 67 75 71.3
Ensemble 70 89 79.3 67 75 71.3

Hurst SVM 64 60 62.2 67 39 52.9
KNN (1) 75 33 54.1 47 77 62.1
Ensemble 39 89 64 47 77 62.1
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to remove BW using daubechies db4 mother wavelet, and 
high frequency noise was removed using 6th order But-
terworth low pass filter. The Statistical, HOS, linear and 
nonlinear features were extracted using DWT (db2, db4 and 
db8) of ECG signal, HRV and QRS amplitude. Classifica-
tion results indicate that the significant features drawn from 
HRV using db8 wavelet achieves overall maximum average 

accuracy of 84.7% and 81.1% respectively for TD children 
and children with ASD compared to db2 and db4. HRV data 
is found to be more effective than ECG and QRS amplitude 
in capturing the valence states in TD children and children 
with ASD. However, more analysis should be done on HRV 
data to extract features that can improve the accuracy of 
classification.

Table 4  Classification of ‘Like’ 
and ‘Dislike’ states using db4 
analysis

Data Emotional features Classifiers Accuracy (Db4)

Typically developed children Children with ASD

Like
%

Dislike
%

Average
%

Like
%

Dislike
%

Average
%

ECG Mean IV SVM 79 36 57.7 52 53 52.5
KNN (1) 64 76 70.3 63 66 64.8
Ensemble 64 71 67.6 63 66 64.8

Hurst SVM 77 25 51.4 25 91 58.1
KNN (1) 63 80 71.2 56 74 64.8
Ensemble 63 80 71.2 56 74 64.8

HRV Mean SVM 39 71 55 85 23 53.3
KNN (1) 80 73 76.6 69 74 71.4
Ensemble 79 73 75.7 69 74 71.4

Median SVM 63 49 55.9 35 70 52.4
KNN (1) 71 84 77.5 56 81 68.6
Ensemble 73 80 76.6 56 81 68.6

Mean I SVM 32 93 62.2 60 60 60
KNN (1) 86 85 85.6 62 87 74.3
Ensemble 82 85 83.8 56 85 70.5

Mean III SVM 36 89 62.2 75 19 46.5
KNN (1) 68 95 81.1 62 75 68.6
Ensemble 70 89 79.3 62 75 68.6

Entropy SVM 23 78 50.5 60 46 53
KNN (1) 80 27 54.1 35 74 54.5
Ensemble 20 91 55 86 35 60.5

Skewness SVM 63 55 58.6 17 81 49.5
KNN (1) 64 89 76.7 60 68 63.8
Ensemble 64 87 75.7 60 68 63.8

QRS Mean II SVM 61 47 51.4 56 68 61.9
KNN (1) 64 71 67.6 62 75 68.6
Ensemble 64 71 67.6 62 75 68.6

Entropy SVM 63 53 57.7 60 53 56.2
KNN (1) 79 53 65.8 69 60 64.8
Ensemble 61 76 68.5 75 58 66.7

Kurtosis SVM 73 36 55 17 91 54.3
KNN (1) 66 84 74.8 50 70 60
Ensemble 66 82 73.9 54 60 57.1

Hurst SVM 61 55 57.7 21 89 55.2
KNN (1) 89 29 59.5 56 66 61.0
Ensemble 48 82 64.9 56 66 61.0
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Table 5  Classification of ‘Like’ 
and ‘Dislike’ states using db8 
analysis

Data Emotional features Classifiers Accuracy (Db8)

Typically developed children Children with ASD

Like
%

Dislike
%

Average
%

Like
%

Dislike
%

Average
%

ECG Mean IV SVM 95 24 59.5 38 74 56.2
KNN (1) 63 91 76.6 48 89 68.6
Ensemble 63 91 76.6 48 87 67.6

Hurst SVM 43 75 58.6 60 45 52.4
KNN (1) 75 85 80.2 63 79 71.4
Ensemble 75 85 80.2 65 79 72.4

HRV Mean SVM 29 84 55.9 56 58 57.1
KNN (1) 73 78 75.7 56 74 64.8
Ensemble 73 78 75.7 56 74 64.8

Median SVM 20 85 52.9 44 64 54.3
KNN (1) 71 87 79.3 60 81 70.5
Ensemble 71 87 79.3 63 81 72.4

Mean I SVM 41 67 54.1 71 21 45.7
KNN (1) 73 85 79.3 69 81 75.2
Ensemble 73 85 79.3 69 81 75.2

Mean III SVM 32 91 61.3 23 60 41.9
KNN (1) 71 80 75.7 56 83 69.5
Ensemble 71 80 75.7 60 75 67.6

Entropy SVM 36 71 53.2 45 74 59.2
KNN (1) 88 25 56.8 67 40 53.5
Ensemble 29 87 57.7 19 84 51.5

Skewness SVM 63 47 55 48 64 56.2
KNN (1) 59 80 69.4 48 83 65.7
Ensemble 59 80 69.4 48 83 65.7

QRS Mean II SVM 48 60 54.1 37 79 58.1
KNN (1) 73 85 79.3 63 91 77.1
Ensemble 73 85 79.3 63 91 77.1

Entropy SVM 59 55 56.8 52 57 54.3
KNN (1) 84 51 67.6 69 66 67.6
Ensemble 84 51 67.6 69 66 67.6

Kurtosis SVM 36 84 59.5 65 57 61
KNN (1) 68 89 78.4 58 77 67.6
Ensemble 75 78 76.6 58 77 67.6

Hurst SVM 80 35 57.7 60 47 53.3
KNN (1) 80 73 76.6 62 77 69.5
Ensemble 63 93 77.5 62 77 69.5
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Fig. 6  Overall accuracy of HRV signals

Fig. 7  Overall accuracy of QRS amplitude

Fig. 8  Overall accuracy of ECG signals
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