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Abstract— The rise of cyber-physical systems and IoT
centers have heightened the need to have intrusion detection
systems (IDS) based on scalability, privacy-preservation, and
explainability. Although models like CNNs and BiLSTMs work
effectively as deep learning models, they can be difficult to
interpret and can experience limitations associated with
centralized data. In order to overcome these challenges, this
work proposes FL-TSA-TabNet, a new federated intrusion
detection model that incorporates Temporal Self-Attention into
the interpretable TabNet architecture. The model uses a Dual-
Stage Hybrid Selector (DSHS) with a correlation-aware reliefF
and SHAP-based ranking as the core feature of optimal feature
relevance and non-redundancy. With federated learning, the
model also allows decentralized training among the distributed
nodes and data privacy. On the CSE-CIC-IDS2018 dataset,
FL-TSA-TabNet performed with an accuracy of 97.83%,
better than the traditional (Random Forest, XGBoost) and the
hybrid deep models (CNN-GRU, ResNet-BiLSTM). It also
exhibited excellent adversarial robustness, quick inference
speed, and low model complexity, which makes it incredibly
appropriate in edge deployment. This work sets a new
benchmark in intrusion detection by fusing explainable
learning, temporal modeling, and privacy-aware federated
training, paving the way for next-generation IDS in smart
networks and critical infrastructure environments.
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I. INTRODUCTION

The rapid digitalization of the industries, cities, and
critical infrastructure resulted in generating a large number
of cyber-physical systems (CPS) and Internet of Things
(IoT) devices. Along with the improvement in automation
and intelligence, they increase the attack surface therefore
making such interconnected networks very vulnerable to a
variety of complex cyber threats [1]. Intrusion Detection
Systems (IDS) are vital security tools that help prevent or
identify unauthorized access to a system network, data
breaches, and unusual activities before they can affect the
integrity of the network. Conventional IDS schemes are
inherently severely limiting in scalability, interpretability,
and capability to work within data privacy requirements
notably in distributed, heterogenous environments such as
smart grids, healthcare, and industrial IoT systems [2].

IDS tools can identify threats like malware, brute force
attacks, or unauthorized access attempts by continuously
analyzing incoming data and comparing it against known
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attack signatures or behavioral patterns [3] [4] [5]. An IDS
system operates as either Network-based IDS (NIDS) or
Host-based IDS (HIDS). With full network segment
observation NIDS detects warning signals which may
indicate threats coming through the network. Deploying an
IDS represents a necessary practice in maintaining digital
system integrity since the number of complex cyber threats
continues to grow [6] [7].

Intrusion Detection System (IDS)

Security Enhancement
Real-Time Monitoring

Incident Response
Compliance and Reporting

Network Visibility

Fig 1. Benefits of Intrusion Detection System (IDS)

Being the first layer of defense in the contemporary
cybersecurity systems, the Intrusion Detection Systems
(IDS) allows all-important insight into the current
functioning of the network allowing to accurately predict
unauthorized access, infiltration of malware, and protocol
abuse. Figure 1 demonstrates the various advantages of IDS,
covering early warning on threats, compliance adaptation,
incidents that take less time to respond to, and automatic
enhancement of systems. Those capabilities become
particularly crucial to cyber-physical and IoT-enabled
environments where the ability to detect in real-time and
ideally with low false alarms is critical. Nevertheless, in
order to achieve greater potential benefits, the IDS needs to
shift towards models that are accurate not just but also
interpretable, scalable, and privacy-preserving, which is the
challenge that traditional IDS frameworks cannot achieve.
This architecture of FL-TSA-TabNet shall further facilitate
all these fundamental advantages by combining temporal
reasoning, distributed privacy-aware training, and
explainable efficiency to the next generation of IDS models.
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IDSs function as passive monitoring tools since they do
not execute protective measures to stop attack incidents.
These devices have limited capability to stop intruders
independently therefore their effectiveness in threat
mitigation is restricted to situations where they operate with
firewall or Intrusion Prevention Systems but they can notify
administrators [8] [9]. The use of signature-based IDS
systems depends on recognized attack patterns that results in
their inability to find newly developed or unidentified
security threats (zero-day attacks). Although anomaly-based
IDSs help address this issue they need time to learn and can
produce inaccurate results during operation [10] [11].

The traditional deep learning models, Convolutional
Neural Networks (CNNs), Recurrent Neural Networks
(RNNs), and Long Short-Term Memory (LSTM)
computational models have demonstrated effectiveness in
detecting complicated intrusion patterns [12] [13]. However,
they are fundamentally black boxed, interpretable, and
generally depend on data aggregation in centralized data
centers and would put a requirement on the systems privacy
and compliance. In addition, they have difficulties in
capturing both temporal dynamics in network traffic and
context-aware feature selection at the same time, thus have
limited flexibility in real-time settings and malicious
environments. Deep learning models integrated with IDS
has boosted IDS systems' effectiveness at uncovering
sophisticated and constantly changing computer threats. The
deep learning technology enables IDS to process extensive
network traffic and system behavior dataset through which it
discovers complex anomalies which rule-based systems
would identify poorly [14]. Convolutional Neural Networks
(CNN) combined with Recurrent Neural Networks (RNN)
and Long Short-Term Memory (LSTM) networks excel at
identifying complex attack patterns while recognizing zero-
day attacks [15].

To overcome such important gaps, the study offers FL-
TSA-TabNet or a Federated Temporal Self-Attentive
Tabular Network that represents an authentic and
transparent IDS framework. This research has four main
contributions, including:

e Model Innovation: FL-TSA-TabNet incorporates
Temporal Self-Attention (TSA) into the architecture of
TabNet, and allows to thoroughly model both tabular
and temporal dependencies in network traffic data,
which are critical to detection stealthy, time-varying
cyber-attacks.

e Explainable Feature Selection: A new Dual-Stage
Hybrid Selector (DSHS) is proposed that integrates
Correlation- Aware  ReliefF and  SHAP-based
interpretability in order to select the most discriminative
and not-redundant features, leading to improved model
explainability and model overfitting.

e Federated Learning Integration: As the framework
derives the benefit of Federated Learning (FL), this
strategy is used to provide decentralized training over
distributed clients without connecting raw data to ensure

user privacy and regulatory compliance with sensitive
areas.

e Performance and Robustness: The model is
comprehensibly tested against the CSE-CIC-IDS2018
dataset, yielding a classification accuracy of 97.83%-
beating the conventional ML and hybrid DL baselines-as
well as showing added advantages in terms of
adversarial resistance, reduced inference latency, and
scalability to real-world use.

In summary, the study introduces a first-of-a-kind IDS
framework, FL-TSA-TabNet, which interconnects the
communication gap among explainability, time series
modeling, privacy protection, and real-time intrusion
detection. The suggested solution can be considered
especially applicable to the context of ensuring the security
of critical infrastructure, as the degrees of interpretability,
distributed learning, and security assurance are its primary
concerns.

II. RELATED WORKS

Internet intrusions have grown more frequent thereby
making privacy breaches worse with increased financial
losses and unauthorized information transfers. Attackers use
computer systems to infiltrate resources and sensitive
information with the intention of acquiring business secrets
as well as personal data to generate illegal profits. Current
detection systems produce false alarms at the same time they
operate slowly enough to allow system breaches to occur.
This research develops a machine learning intrusion
detection framework based on pre-processed CSE-CIC-IDS
2018 and UNSW-NBI15 datasets with ASmoT class
balancing, M-Svd feature extraction and ONgO-optimized
M-MultiSVM classifiers which reach 99.89% accuracy.

Internet of Things (IoT) applications experience
accelerated growth of security vulnerabilities that create
severe risks for enterprise and industrial systems. The
Industrial Internet of Things (IloT) has many high-risk
operational situations so secure sustainable system
development becomes essential for preventing major
disasters. The IIoT faces a significant threat to its security
system because of complicated botnet attacks that can remain
active for extended periods. The research develops
AttackNet as a deep learning framework which employs an
adaptive CNN-GRU architecture for detecting and
classifying botnet attacks. AttackNet successfully detects
botnet attacks with 99.75% accuracy while showing minimal
loss of 0.0063 and proving its superior performance over
existing methods by 3.2% on N_BaloT dataset.

Digital platforms experience system breakdowns and user
data breaches because of the rising threats of network
intrusion attacks which violate data confidentiality. Detection
of accurate threats has become increasingly difficult because
of the rising number of cases involving tampering and
credential theft and unauthorized access. The detection
system described in this research uses deep learning
principles combined with chaotic optimization for its
implementation. The system implements M-squared
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normalization and Extended Synthetic Sampling technique
for handling class imbalance followed by KPCA for feature
extraction as well as Chaotic Honey Badger Optimization for
feature selection. The system utilizes Dugat-LSTM to reach
98.76% accuracy on TON-IoT and 99.65% accuracy on
NSL-KDD.

IoT devices experience rising security vulnerabilities
which makes them vulnerable targets for cyber-attack
attempts. Real-time detection through machine learning-
based intrusion detection systems utilizes feature reduction
through selection and extraction to achieve improved
performance. The research implements a TON-IoT dataset to
assess both methods when classifying binary and multiclass
attacks. Feature extraction increases monitoring systems'
accuracy rates while making them more stable yet selection
methods lead to increased efficiency in training operations
and inference processes. An IDS system optimized by these
methods achieves excellent results through high accuracy
rates combined with F1-score metrics.

The wireless technology powered by Wi-Fi connects
diverse devices through Wireless Sensor Networks (WSNs)
to enable scalable affordable monitoring capabilities within
modern digital networks. The dependence on wireless
systems continues to rise at the same rate as their
susceptibility to cyber threats including unauthorized access,
flooding, injection and impersonation attacks. This research
develops a contemporary Network Intrusion Detection
System (NIDS) specifically designed to work with wireless
sensor networks for addressing these security threats. The
system performs feature selection to reduce 154 original
features into 13 while using a multiclass CNN classifier
which results in 97% accuracy and nearly zero false alarm
detections.

Despite the substantial progress in IDS research, current
solutions continue to suffer from critical limitations.
Majority of deep learning models are accurate but
uninterpretable and not transparent and these two attributes
are key in regulated and mission-critical settings. Time-based
dynamics, which are a hallmark of real world network traffic,
are little exploited in models where data are viewed as fixed
table-like inputs. In addition, issues on privacy limit the use
of centralized IDS systems in distributed environments like
the edge and IoT networks. Privacy-preserving federated IDS
solutions as currently used do not pay much attention to
strong feature selection and explainability issues, which
leads to weak performance and low reliability. Such
consistent gaps confirm the need to have a unified approach
that provides time sensitivity, explainability, data privacy,
and computational efficiency. Our proposed FL-TSA-
TabNet framework fulfills this, with Temporal Self-
Attention incorporated in an interpretable TabNet backbone,
optimized with the Dual-Stage Hybrid Selector (DSHS) to
provide the most relevant feature and developed under a
federated learning paradigm. This holistic strategy presents a
new and expandable route to intrusion detection in current
cyber-physical frameworks, thus making the study more
defensible of the current trend in the implementation of
cyber-physical systems to enhance smart and secure network
defense systems.

III. PROPOSED METHODOLOGY

Dataset Acquisition

The CSE-CIC-IDS2018 dataset serves as a detailed real-
world intrusion detection dataset that both CIC and CSE
created [21]. Realistic enterprise infrastructure gets
represented by a network environment which generates
scenarios of benign and malicious traffic under controlled
conditions. The research period spans multiple days to
collect different attack vectors from various system
configurations with numerous user behavior patterns. The
labeled traffic flows contain more than 80 features
encompassing basic TCP/IP properties as well as content-
based features, time-based features and statistical flow
characteristics which make them appropriate for developing
advanced network intrusion detection system (NIDS)
research. The CSE-CIC-IDS2018 dataset provides the basis
for extraction of Brute Force attacks and Web attacks for
use in the current study. Security hackers use exhausting
password guessing methods as part of Brute Force attacks to
penetrate SSH and FTP protocols. The attacks show their
distinct features through multiple login efforts together with
elevated number of connections while carrying very little
data. Web attacks refer to malicious activities that target
web applications whereby attackers use SQL injection and
Cross-site Scripting (XSS) and URL directory traversal
techniques to exploit web server vulnerabilities while
attacking data integrity. Two threat perspectives cover
application-layer attacks which serve as vital elements for
developing evaluation methods for machine learning
intrusion detection systems that focus on authentication
processes together with web-based exploit routes.

Data Preprocessing

A systematic pipeline operates on acquired data to
enhance its quality while ensuring compatibility for the
learning model. The main difficulty in working with the
CSE-CIC-IDS2018 dataset stems from the missing or
damaged data points that affect features based on session-
level aggregation computations. Through the Iterative
Imputer module available in the scikit-learn library we
handle missing data resolution. The imputation model
constructs relationships between each feature which
contains missing values and multiple other components
before using multivariate regression to automatically fill in
statistically appropriate values.

The continuous features of the dataset which consist of
flow duration and packet sizes and inter-arrival times
receive Z-score normalization after completing the
imputation step. The standardization method ensures every
numerical input features maintain mean value at zero and
variance at one which prevents model training from being
controlled by features with wide numerical ranges. All
categorical features (including the protocol type such as
TCP or UDP or ICMP) receive numerical encoding based
on label encoding standards. Label encoding uses integer
values for categories and maintains ordinal value
connections that will be applied in later TabNet embedding.
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In order to remedy the class imbalance problem of
benign traffic abundance over attack types this work uses
Adaptive Synthetic (ADASYN) sampling. ADASYN
generates new minority class samples through interpolation
between actual examples and their close neighbors by
creating more synthetic instances for complex to learn
minority  groups. ADASYN  surpasses  standard
oversampling techniques by targeting specific areas of
feature space where data insufficiency occurs which results
in better attack-type classifications.

Dataset Acquisition and
Preparation

Data Preprocessing

Feature Selection - DSHS

!

Model Architecture - TSA TabNet
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Fig 2. System Structure

The architecture of the proposed model FL-TSA-TabNet
is based on a well-defined system pipeline and integrates
pre-processing, smart feature extraction, time-series
analysis, and federated learning. Figure 2 shows the high
level system structure where raw data are acquired in the
distributed environments, and through a series of iterative
imputation, normalization, encoding, and class balancing
with ADASYN. The Dual-Stage Hybrid Selector (DSHS)
component will then further filter the input space by using
CARF and SHAP ranking systems to select relevant and
non-redundant features. Such filtered features are fed into a
Temporal Self-Attention (TSA) block that captures time
dependency and then into the TabNet backbone that uses

sparse and interpretable decision-making. Federated
Learning coordinates decentralized training amongst the
edge nodes which gives it the property of privacy, as raw
data is never communicated, and where secure model
aggregation strategies are employed. It is a modular design
that guarantees that it is robust, explainable and scalable,
which are important features that are required in modern
IDS applications that are deployed in real-time.

Feature Selection — Dual-Stage Hybrid Selector (DSHS)

High-dimensional data demands efficient feature
selection because it enables better model interpretation
while decreasing overfitting and minimizing training time
requirements. The Dual-Stage Hybrid Selector (DSHS)
starts its operation with the filter-wrapper hybrid method
Correlation-Aware ReliefF (CARF). The ReliefF algorithm
initiates the stage by assessing how well each feature
separates instances belonging to different classes while
evaluating feature relevance. ReliefF applies K=10 for its K-
nearest neighbors to find features which perform well at
distinguishing  between classes within each local
neighborhood space.

ReliefF effectively discards redundant features but its
discrimination power does not guarantee it removes features
that are not truly important. Spearman rank correlation
functions as an added filtering tool in CARF to resolve this
problem. The Spearman correlation coefficient exceeding
0.85 determines that features are highly redundant so those
features get removed to control multicollinearity and
promote learning stability. The combination of these two
filtering steps achieves maximum relevance and non-
redundancy from the features.

63 d?

B nn? —1) M

p=1

Where d; is the difference in ranks of feature pair i, and
n is the number of observations. The second stage of DSHS
uses SHAP-based rating to optimize the chosen feature
subset. A LightGBM model trains on the CARF-reduced
features followed by SHAP (SHapley Additive
exPlanations) value estimation for every feature. Through
SHAP values we obtain one standardized metric which
evaluates marginal feature impact on model predictions
within every data instance. The feature rankings occur
through calculating average absolute SHAP values after
which the model maintains the prominent features which
represent 90% of total importance mass. The selection
process incorporates statistical and model-derived insights
to pick the most influential features which optimize the
feature set for upcoming learning architecture development.

Model Architecture — TSA-TabNet

The proposed intrusion detection system employs TSA-
TabNet architecture which builds upon TabNet model by
including TSA technology into the framework. TabNet
functions excellently for intrusion detection systems that
work with tabular data because it can execute sequential
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attention-based feature selection processing. The system
structure operates through a series of decision steps which
utilize sparse feature masks produced by its attentive
transformer component. During each step of decision-
making processes the developed masks select significant
features which leads to both easier interpretation and
decreased complexity levels.

MY = Sparsemax(PY - all) )

Where MU is the feature mask at decision step I, P! is
the prior importance of features, al’! is the attention vector,
and Sparsemax projects values into a sparse probability
simplex. A Temporal Self-Attention block has been
included before the TabNet input to detect temporal
dependencies and sequential patterns in network sessions or
flows. Standard Transformer encoder execution performs
feature embedding processing with self-attention operations
through which the model determines the significance of
network sequence context values. Temporal encoding starts
with sinusoidal positional embedding that derive from flow
start times before feeding the information to the attention
module. Track-oriented temporal self-attention blocks boost
model performance by allowing it to identify attack
development patterns across time and successive network
relationships making it effective in detecting insidious
threats moving slowly in contemporary networks.

T
o )V 3
Jax

k

Attention(Q,K,V) = softmax<

Where Q, K,V are query, key and value matrices, and dj
is the dimension of the key. The TSA module delivers its
output to the main TabNet architecture so feature selection
together with decision processing becomes possible. The
final outcome consists of aggregation between the series of
classification predictions originating from each decision
step. Stable gradient flow and regularization happen through
dropout alongside batch normalization between layers.
Multi-class probabilities which reflect different attack types
are produced through the activation mechanism named
softmax on the final layer.

Model Optimization

A reliable training strategy was developed to enhance
TSA-TabNet model execution and its convergence
capabilities. The AdamW optimizer serves as the training
mechanism because it merges adaptive learning rate
functionality from Adam with weight decay regularization
that operates independently. The chosen method stops
overfitting and boosts test data generalization capabilities in
environments with high-dimensional features.

The Cyclical Learning Rate scheduler aids both
convergence speed and stops training from getting stuck by
dynamically varying learning rate between boundaries
across iterations. Through CLR both learning rate
boundaries cycle across different training intervals the
model can detect optimal learning areas while escaping local
minima contingencies. The decision process of TabNet

incorporates DropBlock regularization as one of its
components. The mechanism of DropBlock differs from
regular dropout by erasing adjacent parts of network maps
which leads to both spatially sparse patterns and greater
resistance to errors in feature input. The combined
optimization techniques lead to efficient and stable robust
training of TSA-TabNet architecture.

Federated Learning Integration

The proposed TSA-TabNet system extends its operation
with Federated Learning (FL) since centralized intrusion
detection challenges are most apparent when handling
sensitive data from healthcare fields and IoT environments
and critical infrastructure. FL provides decentralized
training capabilities because it enables different edge
devices or clients to conduct TSA-TabNet model training
locally on their separate data partitions without requiring
raw data transfers. The study utilizes CSE-CIC-IDS2018
distributional simulation which partitions device types and

attack scenarios to mimic actual distributed client
performance.
K
ng
we =) ZEwk @
n
k=1

Where w, is the global model weight at round t, w is
the model weight from client k,n, is the sample size of
client (1)k, and n = YX_, n, is the total sample size. The
edge clients manage local training before forwarding
encrypted versions of weight updates to their central
aggregator system. FedAvg operates at the server to
combine weighted local models from clients then transmit
updated global information back to clients. The training
procedure continues across multiple communication
sessions until the models reach convergence. The model
updates get differential privacy treatments by data
protection regulations to ensure security standards. Each
client adds random noise to their gradient data before
sending information to conceal their specific patterns
although the algorithm maintains accurate model training
capacity.

g =gi+N(©0,0%) (5)

Where § is the noised gradient from client i, g; is the
true gradient, and N(0, 02) is Gaussian noise with variance
02. Federated learning integration enables TSA-TabNet to
scale and protect privacy which makes it suitable for
deployment in edge-based cyber-physical systems. FL when
combined with TabNet’s sparse and interpretable learning
architecture maintains distributed system efficiency and
explainability alongside its operational capabilities.

Algorithm: Federated TSA-TabNet Intrusion Detection
Framework

Input: CSE-CIC-IDS2018 dataset D = {x;, y;}i=, clients K,
communication rounds R

Output: Global trained model w*

Step 1: Dataset Preparation
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Merge CSV logs D; —» D
D = Uf_, Dy // Clean and anonymize sessions
Step 2: Preprocessing
For each clientk = 1to K
Apply Iterative Imputation to Dy,
28 = Elxlx_]

Zi — Xi;ﬂ
Label encoding for protocol fields

Apply ADASYN to balance classes in D;,
Xsyn = Xi + A(xNN - xi)
End For
Step 3: Feature Selection (DSHS)
Stage 1: CAREF Filtering
For cach feature A € D
W[A] « W[A] + AW (A) // Compute ReliefF weight
End For

// Z-score normalization

63 d?
nn2-1)
Stage 2: SHAP Ranking
ISItFI=IS|=1)! ,
®j = Xscrij) T[f(SU{]}) - f($)]
Step 4: TSA-TabNet Model Setup
. QKT)
A K, V)= —
ttention(Q,K,V) = softmax (Jd_k %4

// temporal self-attention
// Sparsemax in TabNet

p=1-— // Spearman correlation

MW = Sparsemax(P - al)
9 = Softmax(f(x))
Step 5: Federated Learning
For eachroundr =1to R
For each client k = 1 to K (in parallel)
Receive w,. from server
Train TSA-TabNet on D;, for local epochs E:
Ly =—Y5, yilog®) // Cross-entropy loss
Apply DropBlock for regularization
Gx = 9x = N(0,02) // Gaussian noise
Send W, to server
End For
Wri1 = Zf:% - Wy
End For
Step 6: Evaluation & Interpretation
Computes metrics
Generate SHAP plots and TabNet masks
Evaluate under adversarial perturbation:
Xgap =X + € sign(VxL(x, y))
Return: Final federated TSA-TabNet model w*
End Algorithm

// Final output

IV. RESULTS AND DISCUSSION

A high-performance computing system with Ubuntu
22.04 OS executed the FL-TSA-TabNet model which was
built using Python 3.10. The developers wrote the model
architecture in PyTorch and PyTorch TabNet yet used
Flower framework to simulate federated learning operations.
The preprocessing activities along with feature selection
routines used pandas, NumPy and the scikit-learn,
LightGBM and SHAP libraries. The evaluation and
visualization outputs were created through the combination
of Matplotlib and Seaborn libraries. An NVIDIA RTX 3090
GPU running at 24 GB memory enabled the acceleration of

training operations. Various stages of training and validation
along with federated aggregation received modular
treatment to support scalability when running parallel
operations across multiple nodes. The CSE-CIC-IDS2018
dataset displays its traffic distribution through Figure 3
which includes Bruteforce attack and Web attack.

Attack Distribution in CSE-CIC-ID52018 Dataset

Web Attack

54.0%

46.0%

Bruteforce Attack

Fig 3. Traffic Distribution in CSE-CIC-IDS2018 Dataset

The FL-TSA-TabNet approach implements a
combination of temporal attention mechanisms with
federated learning to achieve efficient intrusion detection at
both an interpretable level and with privacy protection.
Before the  CSE-CIC-IDS2018  dataset  receives
preprocessing through the Dual-Stage Hybrid Selector
(DSHS) optimization process the network traffic data retains
the essential non-redundant features. The processed data
passes into a Temporal Self-Attention (TSA) module that
analyzes sequence patterns before it gets evaluated through
the TabNet architecture that chooses important features for
each decision step. The model benefits from this
arrangement by monitoring time-conscious network-based
attack indicators. The model relies on Federated Learning
training because it protects data privacy between
autonomous devices by letting clients work independently
on local models then sharing encrypted parameters for
unified aggregation. The unified strategy enables both
excellent detection precision alongside secure protection of
data information and system expansion capabilities.

TABLE L. COMPARATIVE PERFORMANCE EVALUATION

. F1- AUC-

Model Name Ac?;: )a &y Prif/f)] on R(?,Z&;" Score | ROC

(%) (%)

RI;;’rge‘:ggn 86.78 8472 | 83.81 | 842 | 88.09
Decision Tree 89.53 86.11 85.47 85.78 89.41
Random Forest 91.67 88.94 89.21 89.06 | 92.17
XGBoost 92.34 89.75 89.62 | 89.68 | 93.24
TabTransformer 94.86 91.23 90.88 91 94.62
BiLSTM 93.21 90.62 91.13 | 90.87 | 94.11
CNN-LSTM 95.02 91.87 9245 | 92.15 | 95.38
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Hybrid CNN-

GRU 96.38 93.46 93.87 | 93.62 | 96.12

ResNet-

BiLSTM 96.71 94.38 9491 | 94.64 | 96.69

FL-TSA-
TabNet 97.83 95.62 96.17 95.9 98.01

(Proposed)

The performance comparison of the FL-TSA-TabNet
method for intrusion detection exists in Table 1 and Figure 4
against nine prevalent machine learning and deep learning
frameworks. The proposed FL-TSA-TabNet model
surpasses every existing intrusion detection method by
reaching 97.83% accuracy together with 95.62% precision
and 96.17% recall and 95.90% F1-score along with a
distinguished AUC-ROC value of 98.01%.

Comparative Performance of Intrusion Detection Models
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Fig 4. Comparative Performance of Intrusion Detection Models

The accuracy rate of Traditional models including
Decision Tree and Logistic Regression reaches 86.78% and
89.53% respectively but the deep models ResNet-BiLSTM
and Hybrid CNN-GRU achieve higher rates of 96.71% and
96.38%. These results in Table 1 highlight FL-TSA-
TabNet's superior detection capability and robustness in
real-time threat identification.

TABLE II. INFERENCE TIME COMPARISON
Model Name Inference Time (ms)
Logistic Regression 0.82
Decision Tree 0.96
Random Forest 1.38
XGBoost 1.72
TabTransformer 3.24
BiLSTM 2.85
CNN-LSTM 3.46
ResNet-BiLSTM 3.87
Hybrid CNN-GRU 3.56
FL-TSA-TabNet (Proposed) 2.18

The evaluation of inference time per sample through
Table 2 and Figure 5 shows the computational speed
necessary for real-time intrusion detection models. FL-TSA-
TabNet achieves 2.18 milliseconds in inference time
maintaining excellent performance quality through its
superior speed compared to CNN-LSTM (3.46 ms), ResNet-
BiLSTM (3.87 ms), and Hybrid CNN-GRU (3.56 ms).
Logistic Regression achieves 0.82 ms inference time yet its
performance falls below the accuracy range of Decision
Trees at 0.96 ms. FL-TSA-TabNet creates an effective

performance-to-latency balance which accommodates real-
time deployment needs in cybersecurity systems according
to the findings in Table 2.

Inference Time Comparison of Models
o ©
@

Inference Time (ms)

Model Name

Fig 5. Inference Time Comparison of Models

FL-TSA-TabNet delivers superior performance in every
evaluation criterion due to its dual operational advantage
which combines both explainable feature detection with
time-sensitive modeling techniques. TSA-TabNet introduces
temporal self-attention processing before the TabNet
structure to track time-based patterns while standard deep
learning methods such as CNNs and BiLSTMs work with
spatial or sequential features separately.

TABLE IIL TRAINING TIME PER EPOCH (SECONDS)
Model Name Training Time (s/epoch)
Logistic Regression 1.5
Decision Tree 2.1
Random Forest 4.3
XGBoost 5.8
TabTransformer 18.2
BiLSTM 224
CNN-LSTM 24.1
Hybrid CNN-GRU 23.7
ResNet-BiLSTM 26.9
FL-TSA-TabNet (Proposed) 19.3

Model training time per epoch for each model appears in
Table 3 and Figure 6 for evaluating computational
requirements throughout the learning phase. Logistic
Regression and Decision Tree models complete training in
under 1.5 seconds and 2.1 seconds due to their fast
execution times but Random Forest along with XGBoost
needs more time to complete training processes. Deep
learning-based approaches like BiLSTM (22.4 s), CNN-
LSTM (24.1 s), and ResNet-BiLSTM (26.9 s) demand
significantly higher computation.
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Training Time Per Epoch Comparison
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Fig 6. Training Time Per Epoch Comparison

FL-TSA-TabNet runs each epoch in just 19.3 seconds
despite performing as well as its counterpart hybrid deep
models while being notably more efficient. FL-TSA-TabNet
demonstrates practical deployment potential in real-world
network environments because its training efficiency
maintains a suitable match with its detection accuracy levels

Feature Correlation Matrix

as presented in Table 3.
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Fig 7. Feature Correlation Matrix

Figure 7 demonstrates simultaneous correlations that
exist between important features of the CSE-CIC-IDS2018
dataset. The strength of linear relationships between
variables increases as correlation values approach 1 and this
information helps in eliminating redundant features before
preprocessing. Time-sensitive information about attack
behavior evolution becomes accessible through this
approach because attackers may employ stealthy multi-stage
approaches. The TabNet framework uses sequential decision
steps along with sparse feature masking so it selects
appropriate features at each decision node which helps both
accuracy and decision-making interpretability. DropBlock
regularization, cyclical learning rates and Lookahead
optimizer work together to improve training stability which
produces reliable generalizations across different attack
types while counteracting overfitting effects.

TABLE IV. MODEL COMPLEXITY COMPARISON
Parameters FLOPs
Model Name (Millions) (Giga)
Logistic Regression 0.01 0.002

Decision Tree 0.03 0.004
Random Forest 0.8 0.05
XGBoost 1.2 0.09
TabTransformer 8.6 2.5
BiLSTM 6.7 3.1
CNN-LSTM 8.3 4.2
Hybrid CNN-GRU 7.9 3.8
ResNet-BiLSTM 10.5 5.4
FL-TSA-TabNet (Proposed) 6.1 2.7

Table 4 and Figure 8 presents comprehensive model
complexity details through the evaluation of parameters (in
millions) and floating point operations per second (FLOPs,
in giga) metrics that determine computational requirements.
The accuracy level of traditional models including Logistic
Regression and Decision Tree stays low while their
complexity remains minimal. CNN-LSTM and ResNet-
BiLSTM achieve the highest complexity numbers because
of their multiple layers and sequence modelling restrictions.

Model Complexity Comparison

-e- Parameters (Millions) A
10| —s— FLOPs (Giga) N

Value

Model Name

Fig 8. Model Complexity Comparison

FL-TSA-TabNet represents a scalable solution because
its framework has 6.1 million parameters and 2.7 GFLOPs
despite high detection efficiency. Table 4 illustrates how
FL-TSA-TabNet maintains high effectiveness while being
more efficient than other deep models which enhances its
capability to run on edge devices and resource-limited
platforms.

TABLE V. DVERSARIAL ROBUSTNESS AGAINST FGSM & PGD
ATTACKS
Accuracy Accuracy
Model Name Drop (%) Drop (%)
FGSM PGD
Logistic Regression 13.8 18.5
Decision Tree 11.4 17.2
Random Forest 10.2 15.7
XGBoost 9.6 143
TabTransformer 7.2 10.6
BiLSTM 6.9 10.2
CNN-LSTM 6.1 9.7
Hybrid CNN-GRU 5.8 9.1
ResNet-BiLSTM 54 8.6
FL-TSA-TabNet (Proposed) 3.9 6.2

Various intrusion detection models perform under Fast
Gradient Sign Method (FGSM) and Projected Gradient
Descent (PGD) attacks as examined in Table 5 and Figure 9.
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Logistic Regression and Decision Tree exhibit maximum
sensitivity to adversarial perturbations since they face
accuracy decreases of 13.8% under FGSM and 18.5% under
PGD while Decision Tree experiences 11.4% under FGSM
and 17.2% under PGD. The Random Forest along with
XGBoost and BiLSTM belong to the group of ensemble and
deep learning models which demonstrate moderate attack
resistance. Among all evaluated deep hybrid models
ResNet-BiLSTM demonstrated better attack resilience by
remaining more resistant to FGSM (5.4%) and PGD (8.6%)
attacks while Hybrid CNN-GRU demonstrated similar
results (5.8% FGSM and 9.1% PGD). The proposed FL-
TSA-TabNet achieves the greatest level of robustness
against adversarial attacks through a 3.9% FGSM
vulnerability and 6.2% PGD vulnerability. Table 5
demonstrates how the resistance improvements of this
model demonstrate its ability to generalize under attack
conditions which results in dependable performance for
adversarial cybersecurity environments.

Adversarial Robustness Against FGSM and PGD Attacks

FGSM Attack
&8 PGD Attack

Accuracy Drop (%)
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Fig 9. Adversarial Robustness Against FGSM and PGD Attacks

Federated learning creates decentralized model training
operations that protect privacy while improving detection
capabilities across varied IoT and distributed cyber-physical
system networks. A Dual-Stage Hybrid Selector (DSHS)
finds the optimal input variables by blending statistical and
model-devised importance metrics so it retains significant
and unique features alone. Thankfully the model maintains
strong detection performance while wusing fewer
computational resources through this approach that shortens
runtime execution times. These architectural decisions
enable the model to achieve remarkable performance
measurements which include 97.83% classification
precision and 95.90% F1-score with 98.01% AUC-ROC
value. This model demonstrates robustness against
intentional attacks alongside minimal wrong detections
which establishes real-time operational trustworthiness for
contemporary  security  systems. The classification
performance evaluation matrix presents outcomes for
various attack categories simultaneously shown in Figure
10. The developed model achieves great precision and recall
levels across all categories while misidentifying a small
number of difficult to detect classes primarily Infiltration
and Botnet.

Confusion Matrix for FL-TSA-TabNet
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Fig 10. Confusion Matrix for FL-TSA-TabNet
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TABLE VL COMPARATIVE ANALYSIS OF FL-TSA-TABNET WITH
EXISTING IDS METHODOLOGIES
Model / Temporal Featu‘re Privacy Accuracy
Approach | Modeling Selection Preservation (%)
PP Strategy
CNN- Manual or
Lstmi2] | S™ None No 93.02
Dugat KPCA +
’ LSTM CHA- No 96.76
LSTM [18] HBO
M-
MultiSVM No ASmoT + No 97.89
M-Svd
[16]
FL-based
DS [8] No None Yes 95.64
CNN-GRU Basic
2] GRU Filtering No 96.38
ResNet-
BiLSTM BiLSTM None No 96.71
[3]
Dual-Stage
FL-TSA- TSA Hybrid Federated
TabNet ! 1 . 97.83
(Proposed) Module Selector Learning
(DSHS)

Table 6 and Figure 11 shows a comparative report of
FL-TSA-TabNet with the existing intrusion detection
methodologies with respect to their temporal modeling,
feature selection, privacy preservation, and classification
accuracy. Such traditional models as CNN-LSTM and
ResNet-BiLSTM utilize temporal features but have neither
strong feature selection nor privacy-sensitive training. The
cross-breed models, like Dugat-LSTM and M-MultiSVM,
uses feature selection methods like KPCA and ASmoT with
the advantage of being centralized.
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Comparative Accuracy of IDS Models
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Fig 11. Comparative Accuracy of IDS Models

Although FL-based IDS is privacy preserving, it does
not provide any temporal modeling or interpretability. FL-
TSA-TabNet integrates Temporal Self-Attention (TSA), a
Dual-Stage Hybrid Selector (DSHS), and federated learning
to an otherwise unseen extent, thus reaching an impressive
97.83% accuracy mark and surpassing or at least equalling
all the baselines in point of crucial criteria.

V. CONCLUSION AND FUTURE SCOPE

The presented framework FL-TSA-TabNet solves
traditional detection system problems through its novel
approach which incorporates TabNet architecture together
with Temporal Self-Attention. The upgrade of TabNet with
Temporal Self-Attention in its core identifies crucial
features and discovers temporal connections inside network
traffic data. The Dual-Stage Hybrid Selector (DSHS)
implements ReliefF and SHAP analysis to create a new
feature selection method which reduces redundancy and
selects  high-importance  attributes  for  improved
functionality. A decentralized  model  training
implementation within federated learning protocols protects
user data privacy and delivers strong global detection
solutions. The proposed model performed excellently
against state-of-the-art models in CSE-CIC-IDS2018 dataset
evaluations demonstrating a classification accuracy at
97.83% surpassing CNN-GRU (96.38%) and ResNet-
BiLSTM (96.71%). The operational readiness of real-time
network systems benefits significantly from FL-TSA-
TabNet because it achieves quick inference processing
together with better adversarial protection mechanisms and
additional interpretability features. The model design fits
perfectly into edge computing frameworks and cyber-
physical systems where data consolidation at a central
location becomes impossible. Future modifications to the
proposed framework should enable it to handle cross-dataset
intrusion data while learning from different intrusion
datasets including UNSW-NB15 or TON IoT through
transfer learning techniques or domain adaptation methods.
There are promising advancements including blockchain-
based secure aggregation techniques and reinforcement
learning agents which operate through adaptive threat
mitigations. FL-TSA-TabNet represents a vital foundational
element which combines explainable capabilities with data
protection along with advanced prediction abilities for the

development of advanced future-generation cybersecurity
technologies.
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