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ABSTRACT

One of the most prevalent attacks that cause significant harm and impair cloud performance is Distributed Denial of Service
(DDoS). DDosS attacks pose a significant threat to cloud environments, degrading performance and disrupting services. To address
this issue, we propose a hybrid bio-inspired deep learning model for DDoS attack detection that leverages big data analytics in the

cloud. The proposed model incorporates a MapReduce framework to efficiently process large-scale network traffic data, extracting

crucial features such as raw features, packet-based features, improved correlations, and statistical features. These extracted fea-

tures are further refined using an improved recursive feature elimination (RFE) method, which selects the most relevant attributes
for attack detection. The attack detection phase employs a hybrid classifier (HC) that integrates Long Short-Term Memory (LSTM)
and Deep MaxOut (DMO) models. To ensure optimal performance, the weights of LSTM and DMO are fine-tuned using the White
Shark Updated Remora Optimization (WSU-ROA), enhancing classification accuracy. The proposed HC + WSU-ROA model out-
performs other methods, achieving the highest accuracy of 93.98%, compared to the other existing methods, demonstrating its

superior effectiveness in DDoS attack detection.

1 | Introduction

Cloud computing (CC) has revolutionized the way comput-
ing resources are accessed and managed, providing users with
a broad range of services such as big data storage, hardware
devices, operating system applications, and comprehensive net-
work infrastructure [1-3]. It is built on utilitarian computing and
offers affordable user services. Although CC offers its users a wide
range of services, it lacks in the security aspect [4-6]. The CC
environment is vulnerable to several cyber-attacks because of its
dispersed and unpredictable nature as well as flaws in virtual-
ization technology. DDoS threats are one of the extremely risky
attacks [7, 8].

DDosS is a devastating weapon that sends waves of packets at a
host or network, overwhelming it. The attacks stop the services

that are operating on the target, which prevents authorized traf-
fic from utilizing its services [9-12]. The following are the main
features of DDoS attacks: (a) they are exceedingly difficult to
detect since they imitate typical user flow. (b) DDoS threats are
cost-effective and may be carried out by a single node with lit-
tle data flow; moreover, they are not target-sensitive since the
attacked node can identify the malicious node [13-15]. This form
of attack is initiated by taking advantage of system vulnerabilities
with a large amount of inefficient network traffic existing in the
specified network resources like memory, bandwidth, and time
that cause a major interruption to an individual [16-18].

There are several machine learning (ML)-oriented schemes to
detect DDosS assaults in CC. The ability to accurately detect these
threats in ML-based systems is a major hurdle [19-21]. ELM
is a member of the class of Artificial Neural Networks known
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as single hidden layer feed forward neural networks (SLFNs),
which only have one hidden layer [22-25]. Examples include
K-Nearest Neighbor, Support Vector Machine (SVM), clustering,
and statistical detection techniques [26, 27]. These current stud-
ies reveal that several efforts have been made to offer approaches
to deal with this challenge by outlining particular remedies
for emerging DDoS assaults [4, 16, 28, 29]. Despite its numer-
ous benefits, CC environments are inherently vulnerable due to
their distributed nature, reliance on virtualization technologies,
and unpredictable usage patterns. One of the most significant
security challenges faced by cloud environments is the threat
of Distributed Denial of Service (DDoS) attacks. These attacks
can overwhelm cloud systems with excessive traffic, rendering
them inaccessible and severely disrupting services. The increas-
ing reliance on cloud-based infrastructure and services has made
DDosS attacks one of the most dangerous and prevalent cyberse-
curity threats, posing a critical risk to both service providers and
users. The work addresses the challenge of handling large and
high-dimensional data by improving feature extraction and selec-
tion, which reduces noise and enhances the model’s ability to
focus on the most relevant traffic patterns. This work aims to fill
that gap by proposing a hybrid bio-inspired deep learning model
that leverages big data analytics, optimized feature selection (FS),
and a combination of Long Short-Term Memory (LSTM) and
Deep MaxOut (DMO) models to enhance DDoS detection accu-
racy and efficiency, thereby improving the security and reliability
of cloud environments.

This work includes the below contributions:

« Improved correlation features are deployed in this work with
the inclusion of the proposed hybrid distance evaluation.

« Selects appropriate features via weightage-based improved
RFE.

« Performs attack detection using a hybrid classifier that com-
bines models like LSTM and DMO, whose weights are cho-
sen via the White Shark Updated Remora Optimization
Algorithm (WSU-ROA) algorithm.

Research Questions:

1. How can a hybrid deep learning model, leveraging big data
analytics, be used to accurately and efficiently detect DDoS
attacks in cloud environments?

2. How does the WSU-ROA algorithm optimize the perfor-
mance of a hybrid deep learning model for DDoS detection,
and what impact does this have on detection accuracy?

Section 2 discusses the existing works on DDOS AD in the cloud.
An overview of developed DDOS AD in the cloud is mentioned
in Sections 3 and 4 which explain data generation and the MR
framework. Section 5 determines the weightage-based improved
RFE and Section 6 describes optimized HC. Sections 7 and 8
explain the outcomes.

2 | Literature Review

21 | Related Works

In 2020, Velliangiri and Hari Mohan Pandey [3] suggested
an efficient classifier called Fuzzy and Taylor Elephant Herd

Optimization (FT-EHO) for identifying DDoS attacks, which was
influenced by DBNs. The performance of FT-EHO was con-
trasted with extant techniques over varied assessment measures.
Results demonstrated that the suggested FT-EHO greatly outper-
formed existing approaches on accuracy (93.8%), rate of detection
(97.2%), preciseness (94.9%), and recall (93.8%).

In 2021, Kushwah and Ranga [22] described a DDoS system based
on an enhanced Self-Adaptive Evolutionary ELM (SaE-ELM).
Two extra elements were added to the SaE-ELM model to
enhance it. It first adopted the most appropriate crossover oper-
ator. Second, it automatically decided how many neurons of the
hidden layer were necessary. These characteristics increased the
model’s capacity for learning and categorization. The results of
the studies demonstrated that the recommended attack detection
system executed more effectively than the competing systems.

In 2020, Bhardwaj et al. [8] suggested a new model that combined
SAE to learn features with a DNN for separating internet traffic
from legitimate traffic and DDosS traffic. This work deployed AE
and DNN to effectively identify DDoS threats. The suggestions
made in this article resulted in a smaller network that avoided
overfitting, negligible error, and security in opposition to explod-
ing and disappearing gradients.

In 2021, Agarwal et al. [16] introduced a unique FS-WOA DNN
technique in 2021. Here, min-max normalization replaced every
input in a fixed range. Then, the proposed FS-WOA was fed
with that standardized data to choose the best features. A DNN
classifier was deployed that distinguished the attacked and nor-
mal data.

A novel technique for identifying DDoS assaults in a CC context
was presented by Kushwah and Ranga in 2020 [30]. An artificial
neural network (ANN) called the V-ELM was used to create the
suggested system. Additionally, experiments were run to evaluate
how the suggested system operated with various parameter val-
ues. The efficacy of the proposed system was compared against
other approaches using two benchmark datasets.

In 2020, Priyanka Verma et al. [6] proposed the Attacked VM
Detection and Recovery (AVDR) paradigm, which enhances the
effectiveness of current migration strategies while minimizing
collateral harm. A linear model to assess attack power was
also presented as the AVDR architecture that focused on attack
strength. The outcomes demonstrated the superiority of the sug-
gested work over the competing models.

In 2020, Hezavehi and Rahmani [31] suggested a TPA-based
DDoS AD system in a cloud context. Second, they offered a variety
of basic assumptions and cloud setups to create simulation tests
to evaluate the recommended framework. Then, they provided
the findings from simulation studies to evaluate the approach’s
viability.

In 2021, Arul and Punidha [32] suggested a Supervised SD-LVQ
model by which was used to identify MemCached threats by
malevolent software on various Cloud PCs. Several application
service calls connected to various damaging attacks on cloud
servers that were memcached for DDoS threats were categorized
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by LVQ. The results of the test showed that 97.2% were truly pos-
itive and only 0.03% were falsely negative.

In 2024, Kalvikkarasi and Saraswathi [33] suggested that DDoS
attack detection was presented: CBCO-ERNN, an optimized
Elman recurrent neural network (ERNN) based on chaotic bacte-
rial colony optimization (CBCO). To determine the ideal ERNN
architecture structure (number of hidden neurons) and param-
eters (weights and biases), the suggested approach makes use
of CBCO. By initializing the bacterial population and choosing
the proper chemotaxis step size value, chaos theory is used to
enhance BCO’s exploration and exploitation capabilities.

In 2023, Balasubramaniam et al. [34] developed a unique
algorithm: the suggested gradient hybrid leader optimization
(GHLBO) algorithm makes it simple and efficient to detect DDoS
attacks. This optimized approach is in charge of training a deep
stacked autoencoder (DSA) that effectively identifies the assault.
In this case, the deep maxout network (DMN) with an overlap
coefficient fuses features, and the oversampling procedure aug-
ments the data.

In 2024, Sumathi and Rajesh [35] proposed an ANN-based hybrid
GBS (Gray Wolf Optimizer [GWO] + Back Propagation Network
[BPN] + Self Organizing Map [SOM]) intrusion detection sys-
tem (IDS) for the detection of intrusion in the CC environ-
ment. The base classifier, BPN, was chosen for this research
after evaluating the performance of a comprehensive set of neu-
ral network algorithms on the standard benchmark UNSW-NS
15 dataset. BPN intrusion detection performance was further
improved by combining it with SOM and GWO. Hybrid FS was
made using a correlation-based approach and stratified 10-fold
cross-validation (STCV) ranking based on weight matrix value
(W). These selected features were further fine-tuned using meta-
heuristic GWO hyperparameter tuning based on a fitness func-
tion. The proposed IDS technique was validated using the stan-
dard benchmark UNSW-NS 15 dataset. However, the integration
of multiple methods increases the computational complexity.

In 2022, Sumathi et al. [36] employed a LSTM recurrent neural
network and autoencoder and decoder based deep learning strat-
egy with a gradient descent learning rule. The network parame-
ters like weight vectors and bias coefficients were tuned optimally
by employing a hybrid Harris Hawks optimization (HHO) and
particle swarm optimization (PSO) algorithm. The introduced
hybrid optimization algorithm selected the essential attributes,
and the results obtained confirmed that the proposed LSTM and
deep learning model show better performance in detection.

2.2 | Research Gaps

Large amounts of network traffic are used in DDoS attacks
to target many computers. Studies have demonstrated that
packet-based attack-detecting processes give promising outcomes
over traditional signature-based attack identification techniques,
which have not been able to identify such attacks well. Many
existing studies have explored DDosS attack detection using a vari-
ety of techniques, including traditional ML models, statistical
methods, and deep learning approaches. However, despite the
breadth of research in this area, several key challenges remain

unaddressed, particularly in the context of cloud environments
and big data.

For DDoS assaults, there is a paucity of training data. Companies
frequently refuse to openly admit they have been hacked and do
not disclose information on network attacks, as it might harm
their company’s reputation. The WSU-ROA algorithm intro-
duced in this work represents a novel optimization technique that
dynamically adjusts the weights of the LSTM and DMO mod-
els based on their performance during detection. This allows the
model to adapt to changing attack patterns and traffic dynam-
ics, ensuring that the detection system remains accurate and effi-
cient over time. Most existing methods either use static weights
or focus on optimizing single-model performance, rather than
combining multiple models in an optimized, adaptive way. The
features and limitations of the existing methods are tabulated in
Table 1.

3 | Overview of Developed DL Model for DDoS
Attack Detection in the Cloud

CC is revolutionizing IT technology by offering end users virtual-
ized, scalable resources on-demand with greater versatility, lesser
maintenance, and lower infrastructure expenses. These resources
are made available through the Internet using well-known net-
working formats, standards and protocols and they are con-
trolled by various management groups. The basic technology and
outdated protocols include vulnerabilities and bugs that allow
attackers to gain access. One of the most prevalent attacks that
cause significant harm and impair cloud performance is DDoS,
which must be resisted. These phases include data generation,
feature extraction, FS, and attack detection using a hybrid classi-
fier. The final outputs of the hybrid classifier for attack detection
determine whether an attack is present or absent. This approach
leverages the strengths of both the DMO and LSTM models,
ensuring robust and accurate detection of DDoS attacks by inte-
grating the outcomes of both models. The steps of the proposed
DDoS AD model in the cloud are as follows.

« Data generation is the initial phase; this work considers the
DDosS dataset from the big data perspective.

« Map reduce framework: As the work considers the big data
perspective, we are using the Map reduce framework.

« Mapper handles the big data and processes the feature
extraction, which includes raw features, packet feature
extractor, improved correlation, and statistical features.
Reducer will provide the combined feature set from the map-
pers.

« From the extracted feature set, appropriate features are
selected via weightage-based improved RFE.

« The selected feature is subjected to the attack detection
phase, where the HCs including LSTM and DMO are pro-
posed.

« For precise and accurate detection, the weights of LSTM and

DMO are optimally chosen using the WSU-ROA algorithm.

The adopted DL model for DDoS AD in the cloud is portrayed in
Figure 1.
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TABLE1 | Review on existing works.

Author Methodology Feature Limitations

Velliangiri and Hari Mohan FT-EHO « Accuracy, precision and recall Computational cost is high

Pandey [3] were maximized

Gopal Singh Kushwabh et al. [22] SaE-ELM « Detection accuracy was high Additional enhancements are
needed to enhance the
performance

Bhardwaj et al. [8] AE and DNN « Precision, Recall and F1-score Need to identify attacks in

were higher real-time

Agarwal et al. [16] FS-WOA-DNN « Maximal accuracy was obtained It is extremely expensive due to
intricate data models

Gopal Singh Kushwah et al. [30] V-ELM « Detection accuracy was greater It is not suitable for large
datasets

Priyanka Verma et al. [6] AVDR  Reliable Need optimal strategy in the
recovery phase for better results

Sasha Mahdavi Hezavehi and TPANGND « Maximum valid « High cost

Rouhollah Rahmani [31] + Response time and precision

Arul and Punidha [32] Supervised SD-LVQ « Higher TP ratio « Still, difficult to detect all

malicious attacks

4 | Data Generation and Map Reduce
Framework-Based Feature Extraction
41 | Data Generation

Data Generation is the initial phase, here, the input data is taken
from the dataset (considered as the big data) and is represented by
ID. The data is gathered from cloud network logs, which include

packet-level information such as source IP, destination IP, packet
size, protocol type, and time stamps.

4.2 | Feature Extraction Using MR Framework

The big data is handled using the MR framework. MR [37] is a
programming approach used in a distributed system for comput-
ing [38] to handle enormous amounts of data. It is employed for
managing data that cannot be accommodated in a physical mem-
ory. These two operations are carried out in two phases, each of
which is followed by a data transfer between cluster nodes. Data
in the type of “key, value” pairs is processed in parallel through-
out these phases. From the dataset, the map function gets the
input and produces intermediary output. The map function’s out-
putis organized to be used as input for the reducer function. This
involves data exchanges among map and reduce operations. The
values are gathered at each node while the reduction function
is executed for a certain key. The reduce function also generates
the final result in the form “key, value” [38]. MR functions are
employed in this study to discover the features of big data [37].
Accordingly, the mapper phase includes the extraction of features
like raw features, Packet feature extractor, Improved Correlation
and statistical features.

Raw features: These features represent the original input data and
are symbolized by F'.

Packet feature extractor: The packet features are derived from the
raw data, which includes flow duration, packet length variation,

backward bytes and average packet size. The packet features are
symbolized by F?.

Statistical features: The derived features contain median, mean
and SD features. These features are symbolized by F¥.

Improved correlation: Correlation [39] is shown in Equation (1)
and it is the specified measure that quantifies the linear relation-
ship between two variables. In Equation (1), ¢; and k; symbolizes
values of ¢ and k variables from input ID.

o Zla-0)(k-F)
\/2 (‘L‘ _5)22 (ki _E)Z

Nevertheless, for enhanced assessment of association among
every variable, a weight-based correlation is established as
exposed in Equation (2), in which, ¢ and k corresponds to
inter-quartile mean and mid-hinge mean values of ¢ and k in that
order. The values for g and k are modeled as in Equation (3) and
(4), which, u; and u, correspond to first and third quartiles. The
weight We is evaluated as shown in Equation (5), which, x(i, j)
corresponds to the distance D(g, k) between g and k, which is esti-
mated using hybrid distances such as Manhattan and Chebyshev
distances.

@

3 (4, -7) (k- k) x we

FICr — (2)
Z (QI _5)2 Z (kl - k)
_ 2 &
= 2 3)
‘=X+1
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FIGURE1 | Diagrammatic demonstration of DL model for DDoS AD in cloud.
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After deriving the features in the mapper, the reducer
phase combines the features from all the mappers and pro-
vides the combined feature set F that is defined as F =
[FY+ FF + F¥ + FIcr |

5 | Weightage-Based Improved Recursive
Feature Elimination (RFE)

The weightage-based improved RFE method is used to select
the most relevant features from the initial feature set, ensur-
ing that the DDoS detection model uses only the most infor-
mative features for classification. This FS process enhances the
model’s performance by reducing the dimensionality of the data,
thereby improving computational efficiency and avoiding overfit-
ting. This technique helps optimize the performance of the DDoS
detection model by ensuring that only the most relevant informa-
tion is used for classification. From the feature set F, appropri-
ate features will be selected via weightage-based improved RFE.
The most relevant attributes or features are those of the input
components that have the highest absolute weights [40]. There-
fore, the inputs with the lowest weights can be deleted with the
least impact on the classification result if the classifier has been
properly trained. In this case, feature ranking is used to imple-
ment FS. The RFE approach utilizing the SVM classifier is often
applied in the subsequent iterative phases [41]. The improve-
ment in this approach comes from incorporating feature weights
based on correlation-based analysis. This improved RFE method
helps ensure that only the most relevant features contribute to
the model, thus enhancing classification accuracy and reducing
overfitting.

1. Training the SVM classifier.
2. Determine the criteria for ranking all features.
3. Eliminate the attributes with the lowest ranking values.

As per the proposed method, the weight is assigned to each fea-
ture using the improved MI method. The proposed improved
MI-based RFE is as follows: The traditional MI is formulated as
in Equation (8), wherein, F corresponds to the input feature and
M corresponds to label and Pcorresponds to probability.

P(F,M)

P(F)P(M) ®

MI = Z P(F,M)log
FM

However, conventional MI does not consider the pixel positions
and thus, an improved MI-based RFE is proposed as shown in
Equation (9).

MI(F,M)

M= ——— ©)
L[H(F)+ HMW)]

Here, H(F) and H(M) are computed based on improved Shan-
non entropy values as shown in Equations (10) and (11).

H(F)= —Zn:PFl. log, [PFi.ez(PF'_l)] (10)
i=1
HM) = _i PM, log, [PMi.ez(PM"_l)] (€8))
i=1

Thus after assigning the weight to each feature using improved
MI, the SVM classifier is trained and ranked and features with the
smallest ranks are removed. The features elected with improved
MI are signified as Y.

6 | Optimized Hybrid Classifiers (DMO
and LSTM) for DDoS AD in the Cloud

The WSU-ROA is a metaheuristic optimization technique
designed to find the optimal weights for combining multiple
models of LSTM and DMO in a hybrid model for DDoS attack
detection. The chosen features Y are provided to attack the detect-
ing phase, where, optimized HCs (LSTM and DMO) will be used.
For precise and accurate classification, the LSTM weights and
DMO weights are chosen via the WSU-ROA algorithm optimally.
The idea is to improve the model’s performance by efficiently
selecting and fine-tuning the weights that control the contribu-
tion of each model (LSTM and DMO) to the final prediction.
Figure 2 shows the hybrid model for the classification of detec-
tion. In this phase, the feature selected using the weightage-based
improved RFE method is subjected as input to both the Deep-
maxout and LSTM classifiers. These classifiers are potentially
involved in the decision-making process. The weight parameters
w present in the convolutional layer of the Deepmaxout classi-
fier and the weight parameter a present in the LSTM layer of the
LSTM classifier are optimally tuned via the proposed WSU-ROA
algorithm. By optimizing these weight parameters, the classifiers
contribute to enhancing accuracy and offer a more reliable detec-
tion outcome. The outputs from optimized LSTM and DMO are
averaged to produce the final binary classification outcomes as
the existence or absence of an attack. This decision-making pro-
cess effectively leverages the DL method with the bioinspired
optimization algorithm, where the optimization process itera-
tively refines the model weights, leading to robust and accurate
classification performance.

6.1 | LSTM Classifier

LSTM networks are well-suited for sequence prediction tasks due
to their ability to capture long-term dependencies in time-series
data. In this context, the LSTM model is used to analyze temporal
patterns in network traffic. The LSTM [42] gets selected to feature
Y as input. The three gating components that made up the LSTM
network were the forget gate, input gate, and output gate. How
well a cell can remember information from the past is controlled
by the forget gate. The LSTM classifier is illustrated in Figure 3.

The output gate corresponds to the output of the neuron. The
LSTM is given by Equations (12-16).

Io=y(a,x[6._. Y| +p) (12)

8e = w(ag X [6:1. Y] +p,) (13)

he =y (ay X [0, 8:_1, Y¢| + pp) (14)

0; = 8: X 0y + 1 xtans(ac X [86,_1. Y,]) (15)
6: = h X tan (o) (16)
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where ¢ = time, Y, = input LSTM, 6,_; = hidden layer output,
l¢, 8, he = input gate, a;,a,,a, = weight is optimally chosen via
WSU-ROA, p;, pg, pp, = offset vector, a- = the cell unit’s weight
about input, 6, = hidden layer output, and y = sigmoid function.

6.2 | DMO

DMO is a method used to optimize decision-making processes
by evaluating multiple factors. In the context of DDoS detection,
DMO combines outputs from multiple models or features and
optimizes the decision regarding whether the traffic is normal or
malicious. The DMO [43] gets the selected feature Y as input. A
recently developed NN called DMO is deployed in a wider vari-
ety of appliances. Every neuron in DMO includes u pieces of
candidates. For activation of neurons, it was selected to utilize a

max value extending upiece [43]. The DMO classifier is depicted
in Figure 4.

Set yth the node of the hidden layer as J/, and its components as
Og. Equations (17) and (18) demonstrate how they are linked.

max OV
el2,....u 7V

JiY) = 17
y J

By forward propagation via the layer below, Oi{ is attained as in
Equation (18).
0,=uw’

y=w T+, (18)
Here O, € L9 =vector of Zth layer, J, ; € L¥ = max-out activa-
tion vector of y — 1 layer, w*,_; € L**© = weight matrix of y — 1

layer optimally chosen via WSU-ROA, f, € L° = bias vector

Transactions on Emerging Telecommunications Technologies, 2025

7 of 21



Feature
vector

Extracted
Features

Input Maxout

FIGURE4 | Architecture of DMO classifier.

TABLE 2 | Hyperparameters of optimization algorithms.
Optimization Hyperparameters of
algorithms optimization algorithms
ROA Population size m=5

Exploration probability p1 =0.2
Exploitation probability p2 =0.8
Remora-following probability p3 = 0.4
Feeding behavior probability p4 =0.5
Maximum number of iterations k =20
Mean of Gaussian distribution y =0
Standard deviation of Gaussian distribution ¢ =1
WSA Acceleration coefficient § =1.5
SMA Random vector Z =0.03
BWO Procreation probability pp=0.6
Crossover rate cr = 0.44
Mutation probability pm =0.4
WSU-ROA Population size m=5

Exploration probability p1 =0.2
Exploitation probability p2=0.8
Remora-following probability p3 =0.4
Feeding behavior probability p4 =0.5
Mean of Gaussian distribution y =0

Standard deviation of Gaussian distribution 6 =1

of yth layer. The optimization hyperparameters are tabulated in
Table 2.

63 |
Model

WSU-ROA Algorithm: The Mathematical

The White Shark Updated Remora Optimization Algorithm is a
key component in optimizing the hybrid classifier (combining
LSTM and DMO) for detecting DDoS attacks in cloud environ-
ments. By optimizing hybrid classifiers, ensuring scalability for
big data applications, and providing real-time, dynamic adapta-
tion, WSU-ROA is well-suited for the complex, evolving nature of
cloud-based DDoS detection.

Solution encoding: The WSU-ROA algorithm is used to opti-
mally adjust the weights of both LSTM and DMO models. The
algorithm enhances the model’s performance by ensuring that

Feature
vector

Feature
vector

|_¥Detected
||, output

r 4
L2

Maxout

Output

the contributions of LSTM and DMO are balanced to achieve the
highest possible classification accuracy. The weights of LSTM (a)
and DMO (w) are chosen via the WSU-ROA algorithm optimally.
The objective set for optimal selection of (a) and (w) is given in
Equation (19), in which, Ac corresponds to accuracy. Specifically,
the minimization of error is the objective function of the proposed

WSU-ROA algorithm.

1
OB=— 19
i (19)

The behavior of remora served as the inspiration for the ROA [44].
Itinteracts with different fish to look for food and uses algorithms
like WOA and SFO to repel opponents’ attacks. The remoras look
for food in different locations if they sense an invasion. Like other
optimization approaches, it has two steps. The traveling of remora
to find food occurs in the exploration stage, while the deliber-
ate eating technique of remora occurs in the exploitation stage.
However, this optimization’s robustness is ineffective. As a result,
WSA [45] and ROA are combined to create WSU-ROA, which
resolves the problems in ROA.

Step 1: Initializing.

Initialize the remora population in a k dimension region. The
problem variable’s position I in the searching area is provided
by Equation (20).

ILi={1. 1 . Iy} (20)
Here, j indicates the remora count and k establishes the search-
ing space. The remora may alter its position vector in 1D, 2D, or
multi-dimensional space depending on the direction of its swim-

ming. Similar to that, Equation (21) is used to represent the best
solution I, of this method.

Ty = {07 013 0 (21)

Each candidate solution in the WSU-ROA has a specified func-
tion and is represented by Equation (22).

S(L) =S (1.1, ...,Ijk) (22)

As per the best remora location, the optimal objective is provided
in Equation (23).

S(Ibesl) = (Iik’l;’ IZ) (23)
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Step 2: Calculating objective.

The objective to compute the best fitness is computed as in
Equation (19).

Step 3: Exploration phase.

This phase includes two strategies: SFO strategy and experience
attack.

i. SFO strategy
When a remora is assigned to sailfish, its location is taken
into account as the most recent one. Equation (24), which
depends on the elite idea, is used to express the location
upgrading.

It+1 — Ir d 0.1 Ilt)est + I;and [,
j o “best ran (’ )* 2 ~ Yrand

(24)
In Equation (24), t and T implies current and maximum

iterations, I,,,, implies irregular remora location.

ii. Experience attack
This phase is
Equation (25).

mathematically formulated as in

— 7!
I,=1+ (I/’ - Ip,e> x randm (25)

Here, I and I, implies tentative step and preceding iteration
location, randm is elected to execute the smaller global move-
ment. If the current value § (I;) > attempted solution S (1),
the remora elects a different feeding manner for optimization,
otherwise, if & <Ij'> < S (I,), then it is returned back to the host

criterion.
Step 4: Exploitation phase.

This phase includes two strategies: the WOA tactic and the host
feeding method.

i. WOA strategy
As per WOA, the remora position is updated as in

Equation (26).
I, =Exe % Cos2np)+ 1, (26)
p=rand(0,1) x (A-1)+1 (27)
t
A= —<1 + ?) (28)
E= |Ibest_Ij| (29)

Here, E signifies that the distance between prey and hunter f§ is
a value between them [—1,1].

As per WSU-ROA, the remora position is modeled as revealed in
Equation (35) by merging the WSA update. The WSA update is
shown in Equation (32).

Iy = Lgpege, +11Qy X sgn(r, —0.5) (30)

@y = |ranx (Igbmk - I,’() (1)

I, = Tgpess, + 71 xsgn(r, —0.5) (32)

ran X (Igbestk - I,i)
On substituting Equation (29) in (26), we get Equation (33).
Ij+1=)1best—lj|*eﬂ*Cos(Znﬁ)+Ij (33)

Adding Equations (32) and (33), we get Equation (34).

1i 1i —
I e T I k+1 Igbestk +r

ran x <Igbes,k - 1,’() x sgn(r, — 0.5)+

|1bes[—1j‘ e’ x Cos2np)+ 1, (34)

Tyes — I/| * ¢/ x Cos 2mp) + IgbeStk + I/

!
ran X (Igbmk - Ik>

2

+r; x sgn(r, —0.5)

(35)

Ij+1 =

In Equation (35), ran the value is replaced by a hybrid map as
shown in Equation (36).

2,41 = sine(Tent(z,)mod1) (36)
(ii) Host feeding

This host feeding behavior is arithmetically expressed as in
Equations (37-40).

o 1
I'=1+0 (37)
0= x (I; —Cx Ibm> (38)
A=2% B =xrand(0,1)— B (39)
t
B_Z*(l—?> (40)

Step 5: Termination.

Repeat the procedure of WSU-ROA until remora discovers the
best solution. The pseudocode of WSU-ROA is in Algorithm 1.

Thus, the absence or existence of attack is detected by averaging
the outcomes of DMO (v) and LSTM frameworks (k,) as given in

Equation (41).
k,+v

Final outcome = (41)

7 | Results and Discussion

7.1 | Simulation Set-Up

The proposed DL model for DDoS AD in the cloud was done
in Python. The efficiency of the proposed HC + WSU-ROA was
proven over HC + ROA, HC + WSA, HC + SMA, HC + DO and
HC +BWO. The dataset for carrying out the analysis was gath-
ered from “DDoS Evaluation Dataset [46] and UNSW-NBI15
Dataset [47].”

Dataset description: “DDoS Evaluation Dataset: CICDD0S2019
includes benign and the most recent common DDoS attacks,
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ALGORITHM1 | Proposed WSU-ROA.

Problem size, population, lower bound and upper bound
Output: Optimal weights (a) and (w)

Begin population

Initializing I,

While (r < T)

Validate any searching agent go over the searching area and rec-
tify it.

Evaluate objective as in Equation (19)

For remora j

If the selection factor aa(j) = 0 then

Upgrade the position of ROA by merging WSA using the proposed
Equation (35)

Else if aa(j) = 1 then

Upgrade position of attached sail fishes using Equation (24).
End if

Predict with Equation (25)

The host feeding phase is done

End for

End while

Return optimal weights (a’) and (w')

which closely resemble actual real-world data (PCAPs).” They
include a variety of current reflected DDoS attacks in this dataset,
including Port Map, NetBIOS, LDAP, MSSQL, UDP, UDP-Lag,
SYN, NTP, DNS, and SNMP attacks. On the training day, they
conducted 12 DDoS attacks using the following attacks: NTP,
DNS, LDAP, MSSQL, NetBIOS, SNMP, SSDP, UDP, UDP-Lag,
Web DDoS, SYN, and TFTP. On the testing day, they conducted
seven assaults using the following attacks: Port Scan, NetBIOS,
LDAP, MSSQL, UDP, UDP-Lag, and SYN. Dataset 1 contains
100000 samples with 86 features before FS, reduced to 70 fea-
tures after applying the improved RFE method. The class distri-
bution includes 40 000 samples of class 0 (normal traffic), 30 000
of class 1, and 30000 of class 2 (representing different types of
DDosS attacks).

UNSW-NB15: The UNSW-NB 15 dataset’s raw network packets
were produced by the IXIA Perfect Storm tool in the Cyber Range
Lab of UNSW Canberra to produce a blend of real, contemporary
normal activities and synthetic, current attack behaviors. There
are nine different types of attacks in this dataset: fuzzers, analy-
sis, backdoors, DoS, exploits, generic, reconnaissance, shell code,
and worms. Twelve algorithms are built and the Argus as well as
Bro-IDS tools are utilized to create a total of 49 features with the
classlabel. Dataset 2 comprises 71 730 samples, also reduced from
86 to 70 features after selection, with a slightly imbalanced class
distribution: 40000 samples of class 0, 1730 of class 1, and 30 000
of class 2. Across both datasets, the extracted features consist of 78
raw features, four packet-based features, one correlation feature,
and three statistical features, capturing diverse and comprehen-
sive traffic characteristics essential for accurate DDoS detection.

7.2 | Performance Analysis

The evaluation of HC + WSU-ROA for DDoS AD in the cloud
was done over HC 4+ ROA, HC + WSA, HC + SMA, HC 4+ DO and
HC +BWO as given in Figures 5-10 for two datasets: “DDoS

Evaluation Dataset [46] and UNSW-NB15 Dataset [47].” We got
the outputs on the absence or existence of an attack in the
cloud. The HC+ WSU-ROA has shown the finest outputs for
every metric. For all LPs, the accuracy of HC + WSU-ROA is
better over HC + ROA, HC + WSA, HC+SMA, HC+ DO and
HC + BWO. The proposed HC + WSU-ROA gains a high accuracy
when LP =90 for both datasets. Similarly, the MCC seems to be
better with a raise in LPs. Therefore, for every LP, the proposed
HC + WSU-ROA showed the finest outputs over HC + ROA,
HC + WSA, HC + SMA, HC + DO, and HC + BWO. A lesser false
positive rate (FPR) of 0.05 is gained for HC + WSU-ROA at
LP =90, whereas HC + ROA, HC + WSA, HC + SMA, HC + DO
and HC + BWO got quite high FPR values at LP = 90. The MCC of
HC + WSU-ROA is high about 0.95% at LP =90 over HC + ROA,
HC +WSA, HC + SMA, HC + DO and HC + BWO. The improved
performance demonstrates the effectiveness of the enhanced fea-
tures, which are refined using the weightage-based improved
RFE method. Moreover, the deployment of WSU-ROA for opti-
mal weight selection of HCs aids in better AD in the cloud.

Tables 3 and 4 illustrate the examination of diverse individ-
ual classifiers (LSTM, DMO, CNN, RNN, SVM, RF, and DNN)
over proposed HC (LSTM + DMO) + WSU-ROA for two datasets
“DDoS Dataset and UNSW-NB15 Dataset”. From the study,
HC + WSU-ROA obtained a higher accuracy of 0.943 over LSTM,
DMO, CNN, RNN, SVM, RF, COBCO-ENN, GHLBO-based DSA
[34], and DNN for the UNSW-NB15 dataset. A small FPR of
0.051 is attained by HC + WSU-ROA, which is fewer than LSTM,
DMO, CNN, RNN, SVM, RF, CBCO-ERNN [33], GHLBO-based
DSA [34] and DNN for the DDoS Evaluation Dataset. As we have
done AD in the cloud by deploying HC (LSTM and DMO) with
enhancements done in optimization, the developed model attains
improved outcomes.

7.3 | Ablation Study

Tables 5 and 6 display the ablation analysis for HC + WSU-ROA
over HC with no features, proposed with existing correlation
and HC with existing RFE for two datasets “DDoS Dataset and
UNSW-NB15 Dataset”. The specificity of DDoS AD in the cloud
using HC + WSU-ROA is 0.941616, whereas, the specificity using
HC with no features, proposed with existing correlation and HC
with existing RFE is 0.754, 0.765 and 0.756 for DDoS Dataset. The
improvisations done in extant correlation with weightage-based
improved RFE assist the HC to get superior AD results. Also,
improvisations in weight selection for HC using WSU-ROA aided
in better AD in the cloud.

7.4 | Cost Analysis

Figure 11 shows the cost analysis using WSU-ROA-based DDoS
AD in the cloud over ROA, WSA, SMA, DO and BWO. The
cost analysis is done for two datasets: “DDoS Dataset and
UNSW-NB15 Dataset.” From iteration 0 to 20, the cost is much
higher for both datasets. For the DDoS dataset, the cost using
WSU-ROA is much less at around 1.053 which is better than
ROA, WSA, SMA, DO and BWO. The greater convergence rate
of the suggested DDoS AD in the cloud was provided by the ideal
WSU-ROA-based weight selection of HC. This indicates that the
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TABLE 3 | Assessment of diverse classifiers using DDoS dataset.
Methods Sensitivity Specificity Accuracy Precision F_measure MCC NPV FPR FNR
Proposed 0.937477 0.941616 0.939813 0.94345 0.944036  0.915004 0.939973 0.050884 0.062523
LSTM 0.83143 0.887529 0.871835  0.782396 0.806168  0.643895 0.849141 0.112471 0.16857
Deepmaxout 0.757371 0.843603 0.812528  0.759672 0.75852 0.812846 0.791671 0.156397 0.242629
CNN 0.838162 0.90119 0.893386  0.780883 0.808509  0.681085 0.828151 0.09881 0.161838
RNN 0.829019 0.834429 0.808485  0.805767 0.817228  0.555119 0.832753 0.165571 0.170981
SVM 0.884832 0.925759 0.921788  0.760402 0.817912  0.860693 0.840546 0.074241 0.115168
RandomForest 0.89795 0.889644 0.898717 0.77746 0.833373  0.796246 0.840058 0.110356 0.10205
DNN 0.865973 0.916835 0.911645  0.776404 0.818746  0.697053 0.879346 0.083165 0.134027
CBCO-ERNN 0.892496 0.900846 0.901937  0.883595 0.888023  0.823113 0.914308 0.099154 0.107504
GHLBO-based DSA  0.903741 0.911038 0.911406  0.898559 0.901142  0.846085 0.920724 0.088962 0.096259

WSU-ROA method is more efficient in utilizing computational
resources, leading to faster and more efficient DDoS attack detec-
tion. The reduced cost reflects not only lower processing time but
also the better convergence rate achieved through the optimized
weight selection process in the hybrid classifier.

7.5 | Statistical Study

Table 7 demonstrates an evaluation of statistical study presented
HC + WSU-ROA-based DDoS AD in the cloud over classi-
fiers. For Dataset 1, the proposed model achieves the highest

mean accuracy (0.9132) with a low standard deviation (0.0239),
indicating both strong and consistent performance. Competing
models such as Hybrid HHO-PSO-LSTM [36] (mean is 0.8938)
and HybGBS [35] (mean is 0.8916) also perform well but slightly
trail the proposed approach. Similar trends are observed in
Dataset 2, where the HC + WSU-ROA model again secures the
highest mean accuracy (0.9193) and lowest standard deviation
(0.01998) among all methods, demonstrating excellent general-
ization and robustness. Traditional models like SVM, Random
Forest, and DNN show competitive but lower performance with
higher variability, while deep learning methods like LSTM, CNN,
and RNN exhibit greater fluctuations and lower mean accuracies.
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TABLE 4 | Assessment on diverse classifiers using UNSW-NB15 dataset.
Methods Sensitivity Specificity Accuracy Precision F_measure MCC NPV FPR FNR
Proposed 0.9368 0.939116 0.943766  0.946422 0.943968 0.915516  0.9437 0.045884  0.0632
LSTM 0.842162 0.864498  0.872455  0.734737 0.78479 0.66413  0.85131 0.135502 0.157838
Deepmaxout 0.745046 0.825314  0.798474  0.772977 0.758754  0.794657 0.815347 0.174686 0.254954
CNN 0.803834 0.925535  0.886946  0.746916 0.77433 0.638233 0.847223 0.074465 0.196166
RNN 0.840949 0.837965  0.848907  0.843024 0.841985  0.546345 0.797705 0.162035 0.159051
SVM 0.90344 0.875661  0.891345  0.817863 0.858524  0.785552 0.893315 0.124339 0.09656
RandomForest 0.871966 0.906469 0.909512  0.761791 0.813164  0.770302 0.859576 0.093531 0.128034
DNN 0.885888 0.850786 0.88436 0.817509 0.850326 0.734718 0.876669 0.149214 0.114112
CBCO-ERNN 0.884535 0.884358 0.900007  0.887012 0.885772 0.824814 0.910003 0.115642 0.115465
GHLBO-based DSA  0.897601 0.898048 0.910947  0.901864 0.899728 0.847489 0.918428 0.101952 0.102399
TABLE 5 | Ablation study on HC + WSU-ROA method for DDoS AD in cloud using DDoS dataset.
Proposed with Proposed with Proposed with
Metrics HC+ WSU-ROA no features existing correlation existing RFE
Precision 0.94345 0.820427 0.792203 0.8023
MCC 0.915004 0.741653 0.575854 0.658489
FNR 0.062523 0.201847 0.190293 0.192845
NPV 0.939973 0.810324 0.784476 0.801439
Specificity 0.941616 0.754407 0.765323 0.756089
F-measure 0.944036 0.785544 0.800859 0.792636
Accuracy 0.939813 0.83626 0.788623 0.812083
FPR 0.050884 0.245593 0.234677 0.243911
Sensitivity 0.937477 0.798153 0.809707 0.807155
TABLE 6 | Ablation study on HC + WSU-ROA method for DDoS AD in cloud using UNSW-NB15 dataset.
Proposed with Proposed with Proposed with
Metrics HC+ WSU-ROA no features existing correlation existing RFE
NPV 0.9437 0.800986 0.781385 0.801284
Precision 0.946422 0.805713 0.788321 0.786978
FNR 0.0632 0.190524 0.193929 0.184162
Specificity 0.939116 0.756342 0.762042 0.749751
MCC 0.915516 0.661256 0.568909 0.614422
F-measure 0.943968 0.795577 0.797097 0.794925
Accuracy 0.943766 0.813762 0.785101 0.798535
FPR 0.045884 0.243658 0.237958 0.250249
Sensitivity 0.9368 0.809476 0.806071 0.815838
7.6 | K-Fold Analysis on Datasets 1 and 2 While models like CBCO-ERNN and GHLBO-based DSA show

Table 8 represents the k-fold cross-validation analysis across
both Dataset 1 and Dataset 2 demonstrates that the proposed
HC + WSU-ROA model consistently outperforms all baseline
models in terms of accuracy across various values of k (from 2
to 6). As k increases, the performance of all models improves, but
the proposed model achieves the highest accuracy at each fold,
reaching 0.942961 (Dataset 1) and 0.939954 (Dataset 2) at k=6.

competitive results, they remain consistently lower than the pro-
posed approach. Traditional models such as LSTM, CNN, RNN,
SVM, and RandomForest exhibit moderate performance gains
with increasing k, but do not match the precision and robustness
of the proposed method. These results confirm the effectiveness
and stability of the HC + WSU-ROA model across different vali-
dation settings, reinforcing its reliability for DDoS attack detec-
tion in cloud environments.
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TABLE 7 | Statistical analysis of DDoS AD in the cloud using varied datasets.

Min Max Mean Median Standard deviation
Dataset 1

HC + WSU-ROA 0.879336 0.939813 0.913218 0.916861 0.023992
LSTM 0.737779 0.871835 0.808371 0.811934 0.054755
Deepmaxout 0.735106 0.812528 0.773096 0.772375 0.032039
CNN 0.749542 0.893386 0.824739 0.828015 0.059419
RNN 0.743732 0.808485 0.779794 0.78348 0.027076
SVM 0.785624 0.921788 0.861523 0.869339 0.056677
RandomForest 0.79504 0.898717 0.847731 0.848584 0.043382
DNN 0.776251 0.911645 0.844746 0.845543 0.056515
CBCO-ERNN 0.855182 0.901937 0.878613 0.878667 0.019492
GHLBO-based DSA 0.86122 0.911406 0.887264 0.888215 0.020543
HybGBS 0.86424 0.91614 0.89159 0.89299 0.02109

Hybrid HHO-PSO-LSTM 0.865749 0.918507 0.893752 0.895377 0.021368

Dataset 2

HC + WSU-ROA 0.89455 0.943766 0.919265 0.919373 0.019984
LSTM 0.727502 0.872455 0.807607 0.815236 0.059242
Deepmaxout 0.723176 0.798474 0.764078 0.767331 0.03031

CNN 0.747691 0.886946 0.820075 0.822832 0.056294
RNN 0.740346 0.848907 0.797943 0.801259 0.047443
SVM 0.780567 0.891345 0.846243 0.85653 0.044921
RandomForest 0.789519 0.909512 0.849613 0.849711 0.047869
DNN 0.771002 0.88436 0.830482 0.833283 0.044068
CBCO-ERNN 0.85818 0.900007 0.87669 0.874286 0.015903
GHLBO-based DSA 0.867272 0.910947 0.887334 0.885558 0.016831
HybGBS [35] 0.871819 0.916417 0.892656 0.891194 0.017321
Hybrid HHO-PSO-LSTM [36] 0.874092 0.919152 0.895317 0.894012 0.017572
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TABLE 8 | Analysis of k-fold in datasets 1 and 2.

K values K=2 K=3 K=4 K=5 K=6
Dataset 1
Proposed 0.903108 0.907383 0.918733 0.93758 0.942961
LSTM 0.747361 0.76369 0.802734 0.807435 0.826806
Deepmaxout 0.73148 0.753042 0.778656 0.791259 0.792281
CNN 0.795909 0.827559 0.848439 0.861203 0.872623
RNN 0.747191 0.772007 0.775706 0.786245 0.793494
SVM 0.807338 0.843239 0.845939 0.887628 0.920493
RandomForest 0.791957 0.824113 0.836651 0.845932 0.882188
DNN 0.799906 0.844834 0.887621 0.891107 0.899476
CBCO-ERNN 0.870471 0.886277 0.894108 0.898853 0.904483
GHLBO-based DSA 0.866159 0.866785 0.870377 0.900992 0.911719
Dataset 2
Proposed 0.907935 0.91212 0.917599 0.933787 0.939954
LSTM 0.736877 0.756662 0.765386 0.8147 0.85744
Deepmaxout 0.744165 0.765483 0.767479 0.783539 0.786353
CNN 0.749014 0.757828 0.778745 0.798385 0.831333
RNN 0.730874 0.744397 0.777809 0.801087 0.841768
SVM 0.771262 0.774867 0.802727 0.817598 0.895533
RandomForest 0.786272 0.795153 0.812374 0.846125 0.849346
DNN 0.774254 0.83029 0.83931 0.85912 0.860444
CBCO-ERNN 0.85264 0.86744 0.878794 0.891931 0.900082
GHLBO-based DSA 0.858393 0.869328 0.879348 0.892418 0.91509
TABLE9 | Cross validation results on both datasets. testing on Dataset 1 with a sensitivity of 88.95% and specificity
Training with Training with 0f 90.18,1% produces a somewhat better accuracy of 90.81%. Met-
Dataset 1 and testing Dataset 2 and testing rics like F1-score (up to 86.43%) and MCC (up to 78.98%) remain
Metrics with Dataset 2 with Dataset 1 strong, despite the fact that both setups exhibit a slight decline in
performance when compared to intra-dataset evaluations. This
Sensitivity 0.884454 0.889481 indicates that the model has good predictive power and stability
Specificity 0.914572 0.901807 across many datasets. In real-world situations when data vari-
Accuracy 0.905824 0.90811 ances are unavoidable, these outcomes confirm the model’s effi-
Precision 0.862923 0.84058 cacy and flexibility.
F-measure 0.873556 0.864339
MCC 0.779449 0.789823 7.8 | ROC Curve Analysis
NPV 0.894557 0.897505 N " ‘i 4 HC del
FPR 0.085428 0.098193 Zofdﬂec}ie(c)lr;n fellzei}v:r c:er:tri?lzocslfarite:i—s\gcs g%ggﬁcﬂ\?e Zr’la‘g/e—
FNR 0.115546 0.110519

7.7 | Cross Validation Analysis

The cross-validation results, where the proposed DDoS detection
model is trained on one dataset and tested on the other, demon-
strate the model’s strong generalization capability across varying
data distributions. Table 9 represents the cross-validation anal-
ysis. When trained on Dataset 1 and tested on Dataset 2, the
model achieves an accuracy of 90.58%, with a sensitivity of 88.45%
and specificity of 91.46%, indicating reliable detection of both
attack and normal traffic. Conversely, training on Dataset 2 and

sis, which plots the true positive rate (TPR) against the false pos-
itive rate (FPR) at various classification thresholds in Figure 12.
The TPR, also known as Recall or Sensitivity, reflects the model’s
ability to correctly identify attack traffic, while the FPR repre-
sents the proportion of normal traffic incorrectly classified as
attacks. An ideal model would achieve a TPR close to 1 with an
FPR close to 0, resulting in a ROC curve that approaches the
top-left corner of the plot. In our analysis, the proposed model
consistently demonstrated a superior ROC profile compared to
baseline models, indicating strong discriminative power. Addi-
tionally, the area under the curve (AUC) value was significantly
higher for HC + WSU-ROA, confirming its effectiveness in main-
taining high detection rates while minimizing false positives—a
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FIGURE 12 | ROC curve analysis on (a) Dataset 1 and (b) Dataset 2.
TABLE 10 | DDosS detection model using different optimizers (RMSprop, SGD, and Adam).
Proposed with Proposed Proposed Proposed without
Metrics Rmsprop optimizer with SGD (Adam) optimization
Dataset 1
Sensitivity 0.921293 0.925795 0.937477 0.89329
Specificity 0.910703 0.920869 0.941616 0.884023
Accuracy 0.930855 0.931598 0.939813 0.901656
Precision 0.910742 0.918147 0.94345 0.884058
F_measure 0.915987 0.921956 0.944036 0.88865
MCC 0.865622 0.878928 0.915004 0.844577
NPV 0.933361 0.935481 0.939973 0.903849
FPR 0.089297 0.079131 0.050884 0.115977
FNR 0.078707 0.074205 0.062523 0.10671
Dataset 2
Sensitivity 0.933453 0.935127 0.9368 0.902459
Specificity 0.929355 0.934235 0.939116 0.886102
Accuracy 0.941151 0.942458 0.943766 0.909304
Precision 0.933757 0.94009 0.946422 0.901746
F_measure 0.933605 0.937602 0.943968 0.902102
MCC 0.901631 0.908573 0.915516 0.841537
NPV 0.94321 0.943455 0.9437 0.907654
FPR 0.070645 0.065765 0.045884 0.113898
FNR 0.066547 0.064873 0.0632 0.097541

critical requirement in real-time cloud-based DDoS detection
systems.

7.9 | Comparison of the Proposed DDoS
Detection Model Using Different Optimizers
(RMSprop, SGD, and Adam)

Table 10 presents a comparative performance analysis of the pro-
posed hybrid DDoS detection model when trained with three
different optimization algorithms: RMSprop, SGD, and Adam.

The proposed DDoS detection model exhibits consistently strong
performance across both datasets, with the Adam optimizer out-
performing all other configurations. For Dataset 1, the model
optimized with Adam achieves the highest Accuracy (93.98%),
F1-Score (94.40%), and MCC (91.50%), with the lowest FPR
(5.08%) and false negative rate (FNR; 6.25%), indicating superior
detection capability. Similarly, in Dataset 2, Adam again leads
with the best Accuracy (94.38%), Precision (94.64%), and MCC
(91.55%), further reducing error rates compared to RMSprop and
SGD. Both RMSprop and SGD offer competitive performance,
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TABLE 11 | Analysis of data variations for various metrics.

Data variation Sensitivity Specificity Accuracy Precision F_measure MCC NPV FPR FNR

Dataset 1
25% 0.899971 0.871733 0.914644 0.85977 0.870666 0.795287 0.925676 0.079212 0.124399
50% 0.910249 0.887847 0.929148 0.896299 0.887174 0.837193 0.927821 0.073098 0.11412
75% 0.928257 0.928511 0.932123 0.92592 0.929879 0.890417 0.936302 0.058736 0.073266
100% 0.937477 0.941616 0.939813 0.94345 0.944036 0.915004 0.939973 0.050884 0.062523

Dataset 2
25% 0.913382 0.890144 0.928141  0.893719 0.895096  0.845607 0.940111 0.058199 0.099389
50% 0.923411 0.900073 0.933308  0.895761 0.909228  0.859977 0.941738 0.055479 0.089554
75% 0.930106 0.919594 0.938537  0.921092 0.926598  0.887746 0.942719 0.050682 0.076377
100% 0.9368 0.939116 0.943766  0.946422 0.943968  0.915516  0.9437  0.045884  0.0632

though slightly behind Adam. The version of the model with-
out optimization performs the worst across all metrics in both
datasets, highlighting the critical role of optimization algorithms
in enhancing detection efficiency and robustness. Overall, the
results reinforce the effectiveness of the Adam optimizer in train-
ing deep learning models for accurate DDoS attack detection in
cloud environments.

7.10 | Scalability Analysis of Both Datasets

Table 11 represents the scalability analysis of both datasets reveal-
ing a consistent improvement in performance metrics as data
variation increases from 25% to 100%, indicating that the pro-
posed model scales effectively with larger data volumes. In both
sets, key evaluation parameters such as sensitivity, specificity,
accuracy, precision, F-measure, and Matthews correlation coef-
ficient (MCC) show a steady rise, reflecting enhanced detection
capability and robustness. Specifically, sensitivity improves from
approximately 0.89-0.91 at 25% data to over 0.93 at full data uti-
lization, while accuracy rises from 91 to “92% to “94%. Notably,
error rates such as FPR and FNR decline steadily, with FPR drop-
ping from around 0.08 to below 0.05 and FNR reducing from over
0.12 to just above 0.06. These trends demonstrate that the model
maintains high classification performance and generalization as
data size increases, confirming its scalability and suitability for
big data environments, especially in real-time DDoS detection
scenarios.

711 |
1and 2

Computational Time Analysis of Datasets

The computational time analysis across two datasets in Table 12.
It demonstrates that the proposed HC + WSU-ROA model con-
sistently achieves the lowest execution time, with 30031.12 and
30010.90 units for Dataset 1 and Dataset 2, respectively. In com-
parison, other hybrid classifier models integrated with differ-
ent optimization algorithms such as ROA, WSA, SMA, DO, and
BWO exhibited higher processing times. The HC + DO model
recorded the highest computational time, followed by SMA
and BWO. Additionally, the WSU-ROA algorithm involves iter-
ative optimization, which increases the computational burden

TABLE 12 | Time analysis of both datasets.
Methods Dataset 1 (s) Dataset 2 (s)
HC + ROA 30,402.10 30,353.19
HC +WSA 31,307.98 31,302.13
HC + SMA 32,011.24 31,989.0
HC+DO 33,075.75 32,892.81
HC +BWO 32,048.84 32,023.10
HC + WSU-ROA 30,031.12 30,010.90

during the training phase. However, this overhead is mitigated
through the use of the MapReduce framework, which enables dis-
tributed processing of large-scale traffic data. These results indi-
cate that WSU-ROA not only enhances detection accuracy but
also improves computational efficiency, making it a more suitable
choice for real-time DDoS attack detection in large-scale cloud
environments.

8 | Practical Implications

The proposed hybrid bio-inspired deep learning model for DDoS
attack detection offers significant practical advantages in cloud
environments, including real-time detection, enhanced accuracy,
and scalability. By leveraging LSTM, DMO, and WSU-ROA, the
model efficiently processes large-scale network traffic, ensur-
ing rapid and accurate identification of DDoS attacks, even in
dynamic cloud systems with fluctuating data loads. This reduces
false positives and minimizes service disruptions, leading to
lower operational costs and improved system stability. Further-
more, the model’s adaptability to evolving attack strategies makes
it a sustainable, long-term solution for cloud providers, ensur-
ing continuous protection against emerging threats while main-
taining energy efficiency and compliance with industry security
standards.

9 | Conclusion

In this work, we used big data analytics to address the growing
threat of DDoS attacks by proposing a hybrid bio-inspired deep
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learning model for AD detection in cloud environments. The
model combines an enhanced RFE technique to find the most
pertinent features for attack detection with a MapReduce frame-
work for scalable feature extraction. The heart of the detection
mechanism lies in the hybrid classifier (LSTM + DMO), which is
optimally weighted using the WSU-ROA algorithm to enhance
classification performance. From analysis, the proposed model
gained a high accuracy when LP = 90 for both datasets. Similarly,
the MCC seems to be better with a rise in LPs. Therefore, for
every LP, the proposed method showed the finest outputs over
the other existing methods. The MCC of HC+ WSU-ROA was
high at about 0.95% at LP=90 over HC +ROA, HC + WSA,
HC +SMA, HC + DO, and HC + BWO. To improve the suggested
model’s flexibility in identifying new and adaptable DDoS attacks
in real-time, we intend to investigate the use of reinforcement
learning techniques in subsequent work. Additionally, the
model could be extended to handle multi-cloud environments,
ensuring robust detection across diverse platforms. To further
improve and extend the presented research, future work could
focus on enhancing the model’s scalability and performance by
incorporating additional advanced optimization techniques and
leveraging deep reinforcement learning to dynamically adjust
detection thresholds based on changing network conditions.
Additionally, integrating the model with real-time threat intel-
ligence feeds could help detect emerging DDosS attack strategies
more effectively. Future research could also explore the use of
transfer learning to improve the model’s generalization across dif-
ferent cloud service providers and industries. Finally, exploring
the integration of multi-modal data, such as combining network
traffic data with system logs and external threat data, could fur-
ther strengthen the model’s robustness and detection accuracy.

Nomenclature

AD attack detection

ANN artificial neural networks

AVDR attacked VM detection and recovery
BWO black widow optimization

CcC cloud computing

CNN convolutional neural networks
DBN deep belief network

DDoS distributed denial of service

DL deep learning

DMO deep max out

DNN deep neural network

DO dingo optimization

DT decision tree

FS-WOA-DNN feature selection-whale optimization—DNN
FT-EHO fuzzy and Taylor elephant herd optimization
HC hybrid classifier

LP learning percentage

LSTM long short term memory

LSTM-NN LSTM-neural networks

MI mutual information

ML machine learning

MR map reduce

PSD power spectral density

RFE recursive feature elimination

RNN recurrent neural networks

ROA Remora optimization algorithm

SAE sparse autoencoder

SaE-ELM Self-adaptive evolutionary ELM

SFO Swordfish optimization algorithm

SLFNs single hidden layer feed forward neural networks
SMA slime mold algorithm

SVM support vector machine

TPA third-party auditor

V-ELM voting extreme learning machine

WOA whale optimization

WSA white shark optimizer

WSU-ROA white shark updated remora optimization
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