

How to Cite:

Muneeswari, M., Reddy, G. N., Arivukodi, D., Usharani, B., & Shobana, C. (2022). Pharmaceutical potential of active compounds from plants: A comprehensive review on Alzhemier disease and future possibilities. *International Journal of Health Sciences*, 6(S2), 8553–8570. <https://doi.org/10.53730/ijhs.v6nS2.7205>

Pharmaceutical potential of active compounds from plants: A comprehensive review on Alzhemier disease and future possibilities

Muniyasamy Muneeswari

Research Scholar, Department of Biochemistry, School of Life Sciences, Vels Institute of Science, Technology and Advanced Studies, Pallavaram, Chennai – 600117

Gangasani Narasimha Reddy

Research Scholar, Department of Biochemistry, School of Life Sciences, Vels Institute of Science, Technology and Advanced Studies, Pallavaram, Chennai – 600117

Deivasigamani Arivukodi

Research Scholar, Department of Biochemistry, School of Life Sciences, Vels Institute of Science, Technology and Advanced Studies, Pallavaram, Chennai – 600117

Boopathy Usharani

Assistant Professor, Department of Biochemistry, School of Life Sciences, Vels Institute of Science, Technology and Advanced Studies, Pallavaram, Chennai – 600117

Chandrasekar Shobana

Assistant Professor, Department of Biochemistry, School of Life Sciences, Vels Institute of Science, Technology and Advanced Studies, Pallavaram, Chennai – 600117

Corresponding author email: shobana.sls@velsuniv.ac.in

Abstract--Alzheimer's illness (AD) is an issue that causes cell degeneration in the cerebrum and is the primary driver of dementia, which is described by a lessening in thought and freedom in private everyday exercises. Promotion is viewed as a multifactorial sickness: two primary speculations were proposed as a reason for theories of commercials, cholinergic and amyloids. Moreover, a few gamble factors, like expanding age, hereditary variables, head wounds, vascular illnesses, contaminations, and natural elements, assume a part in the infection. At present, there are just two sorts of meds endorsed to treat AD, including cholinesterase compound inhibitors

and N-methyl D-aspartate (NMDA) bad guys, who are powerful just in the treatment of AD side effects, yet don't fix or keep you from disease. Today, research is zeroing in on the comprehension of AD pathology focused on a few systems, like strange tau protein digestion, β -amyloid, fiery reaction, and cholinergic and free extreme harm, with the target of creating effective medicines to stop or alter the course of the declaration. This survey presently examines accessible drugs and future hypotheses for the advancement of new treatments for AD and normal mixtures.

Keywords--Alzheimer disease, causes, diagnosis, symptoms, treatment.

Introduction

Alzheimer's illness (AD) (named after German mental Alois Alzheimer) is the most well-known sort of dementia and can be characterized as a moderate neuro degenerative sickness gradually portrayed by psychotic plates and neuro fibrils tangles (Figure 1) because of peptides of amyloid-beta (A β) amassing in the most impacted region of the cerebrum, the average transient projection and neocortical designs (De-Paula et al., 2012) Alzheimer noticed a presence of amyloid plaques and a huge loss of neurons by analyzing the mind of his most memorable patient who endured cognitive decline and character change prior to kicking the bucket and depicting the condition as a genuine infection of the cerebral cortex. Emil Kraepelin delegated this clinical sickness in Alzheimer's illness without precedent for its eighth altering psychiatry manual (Cipriani et al., 2011; Blass et al., 1985) The ever-evolving loss of mental capacities can be brought about by a cerebral issue like Alzheimer's infection (AD) or different variables, for example, harming, contaminations, irregularity in respiratory and circulatory frameworks, which makes a decrease in the stockpile of Oxygen the cerebrum, wholesome inadequacy, nutrient B12 inadequacy, cancers, and others. (Terry et al., 1980 Rathmann et al., 1984)

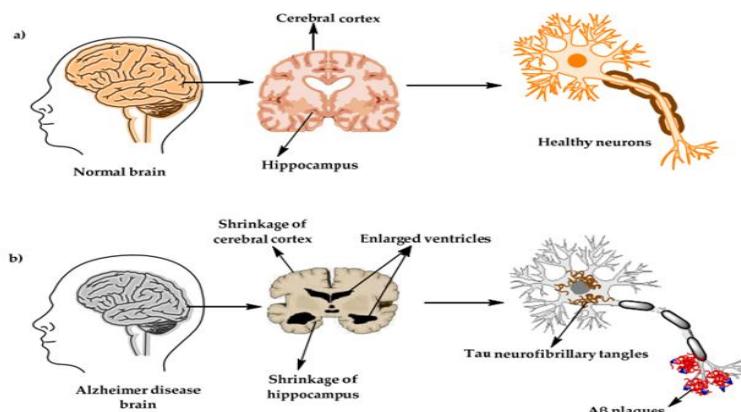


Figure 1. The physiological structure of the brain and neurons in (a) healthy brain and (b) Alzheimer's Disease AD brain

As of now, there are around 50 million publicizing patients all over the planet and that this number ought to be multiplied like clockwork and will increment to 152 million by 2050. The weight of publicizing influences people, their Families, and the economy, with worldwide expenses assessed at US \$ 1 trillion every year. Presently, there is no solution for Alzheimer's infection, despite the fact that there are accessible medicines that further develop side effects (Yiannopoulou et al., 2020; Livingston et al., 2020). This audit is to give a concise depiction of the analysis, pathology, causes and current medicines, and feature the new improvement of mixtures that can forestall or treat publicizing by focusing on a few pathogenic instruments, like $\text{A}\beta$ accumulation and Tau, and Mallassment, Inflammation, Oxidative Damage.

Alzheimer Disease Diagnostic Criteria

A patient associated with having ads should go through a few tests, including neurological assessments, attractive reverberation imaging (MRI) for neurons, lab tests like vitamin B12, and different tests notwithstanding clinical history and patient families (Schachter et al., 2000;) Vitamin (VIT) lack B12 has for quite some time been known for its relationship with neurological issues and expanded hazard of AD, as per a few investigations. VIT explicit marker. The lack of the B12 is an expansion in homocysteine levels, which can cause cerebrum harm with oxidative pressure, increment calcium issues and apoptosis. Analysis of vit. Drawbacks of B12 should be possible by estimating serum vit. B12 level notwithstanding the total measure of blood and serum homocysteine level test (Schachter et al., 2000; Jatoi et al., 2020)

In 1984, the National Institute of Neurological and Communicative Disorders and strokes (Nincds) and Alzheimer's illness and related problem affiliations (ADRDA) shaped a functioning gathering (Nincds-ADRDA) to decide clinical demonstrative models for Alzheimer's sickness. These models include:

- (1) the chance of Alzheimer's infection, which can be analyzed by dementia affirmed by neuropsychological tests, moderate cognitive decline, interruption of regular daily existence exercises, and different side effects like Afasia (Language Disorders), APRAXIA (Motor), APRAKSIM; Skill issues), and Agnosia (loss of discernment). This large number of side effects can be begun from the age of 40-90, with the shortfall of fundamental or cerebrum illnesses,
- (2) the chance of Alzheimer's infection can be applied with the shortfall of neurological, mental issues, and the presence of different illnesses, for example, foundational or mind problems, however they are not the primary drivers Dementia, and (3) Executive Alzheimer's sickness, which is affirmed by histopathological affirmation acquired from biopsy or examination (Cho et al., 2018; McKhann et al., 1984).

In 2011, the National Institute on Aging-Alzheimer's Association rolled out a few improvements and refreshed the 1984 Nincds-ADRDA rules for higher explicitness and awareness in the analysis of Alzheimer's sickness. The recently proposed models incorporate the chance and maybe AD dementia for use in clinical settings and conceivable outcomes or conceivable ademption of AD with

pathophysiological proof for research purposes, notwithstanding clinical biomarkers. There are two classes of Alzheimer Disease Biomarkers: (a) Amyloid cerebrum markers like Positron Emission Tomography (PET) and cerebrospinal liquid (CSF), and (b) Markers of neuron wounds like cerebrospinal liquid, fluorodeoxyglucose (FDG) for movement digestion, and attractive reverberation imaging (MRI) for decay estimation (McKhann et al., 1984; Yaari et al., 2011)

Neuropathology of Alzheimer's illness

There are two sorts of neuropathological changes in publicizing that give proof on the advancement and side effects of the infection and include:

- (1) positive sores (because of amassing), described by the collection of neurofibrillary neurons., amyloid plates, dystrophic neurites, strings of neuropiles, and different stores found in the cerebrum of promoting patients.
- (2) negative injuries (because of misfortunes), which are portrayed by incredible decay due to neurula, neutrophilia and synaptic misfortune. What's more, different variables can cause neurodegeneration like neuroinflammation, oxidative pressure and cholinergic neuron injury (Serrano-Pozo et al., 2011; Singh et al., 2016).

Senile plaques

Feeble plaques are extracellular stores of beta-amyloid protein (A β) with various morphological structures, including hypochondriac, diffuse, thick or exemplary plaques of the reduced sort. Proteolytic cleavage chemicals, for example, secretase and secretase are liable for the biosynthesis of A β stores from the transmembrane amyloid forerunner protein (APP) (Cras et al., 1991; Armstrong et al., 2009 -). These proteins separate APP into a few amino corrosive sections: 43, 45, 46, 48, 49 and 51 amino acids, which arrive at the last structures A β 40 and A β 42. There are a few sorts of A β monomers, including enormous insoluble amyloid fibrils that can move toward structure amyloid plaques and solvent oligomers that can spread all through the cerebrum. A β assumes a significant part in neurotoxicity and neuronal capacity, subsequently, the gathering of denser plaques in the hippocampus, amygdala and cerebral cortex can cause astrocyte and microglia excitement, harm to axons, dendrites and loss of neurotransmitters, as well as mental impedance (Armstrong et al., 1991; Tabaton et al 2005).

Neurofibrillary tangles (NFT)

NFTs are unusual strands of the hyperphosphorylated tau protein which, at specific stages, can be turned around one another to frame matched helical fibers (PHF) and amass in the neuronal pericardial cytoplasm, axons and dendrites, causing loss of cytoskeletal microtubules and tubulin-related proteins. The hyperphosphorylated tau protein is the significant constituent of NFT in the minds of patients with AD, and its course might mirror the morphological phases of NFT, which include:

- (1) the pre-trap stage, a kind of NFT, in which phosphorylated tau proteins gather in dendritic compartment without arrangement of PHF,
- (2) mature NFTs, which are portrayed by filamentous collection of tau protein with uprooting from the core to the fringe of the soma, and
- (3) extracellular trap, or the apparition NFT stage, which results from neuronal misfortune because of a lot of filamentous tau protein with fractional protection from proteolysis (Brion et al., 1998; Metaxas, et al., 2016)

Synaptic loss

Synaptic harm in the neocortex and limbic framework makes harm memory and is normally found in the beginning phases of AD. The components of synaptic misfortune include abandons in axonal vehicle, mitochondrial harm, oxidative pressure, and different cycles that can add to little divisions, like the aggregation of A β and tau in synaptic destinations. These cycles eventually lead to loss of dendritic spines, presynaptic endings, and axonal dystrophy (Baddeley 1978) Synaptic proteins act as biomarkers for the discovery of neurotransmitter misfortune and seriousness, for example, neurogranin, a postsynaptic neuronal protein, visioning like protein1 (VILIP1) and synaptotagmin1 (Lleo et al., 2019; Baddeley 1992).

Dementia

Dementia is a condition that is described by changes in a few cerebrum capacities, for example, memory, thinking, direction, understanding, computation, capacity to learn, language and judgment., because of decay in close to home control, social way of behaving, or inspiration. (Baddeley, A.D, 1978; Baddeley, A.D. 1992) Dementia can influence an individual in various ways, and the movement of the sickness will rely upon the impacts of the actual illness, as well as the character and strength of the individual. Dementia can be partitioned into three phases:

- Beginning phase first little while
- Middle of the road stage - second to fourth or fifth year
- Late stage - fifth year and then some

Causes and risk factors of Alzheimer's disease

Promotion it was viewed as a multifactorial sickness related with a few gamble factors (Figure 3) like age, hereditary variables, head injury, vascular illness, contaminations and natural elements (weighty metals, follow metals and others). The basic reason for the obsessive changes in Alzheimer's infection (A β , NFT and synaptic misfortune) is at this point unclear. A few speculations have been proposed as the reason for AD, yet two of them are viewed as the underlying driver: some accept that disabled cholinergic capacity is a basic gamble factor for AD, while others recommend that impeded creation and handling of amyloid protein is the essential trigger. Nonetheless, as of now, there is no acknowledged hypothesis to make sense of the pathogenesis of AD [Armstrong 2019; Anand 2013].

Alzheimer's hypothesis

Cholinergic hypothesis

During the 1970s, neocortical and presynaptic cholinergic shortfalls were accounted for regarding the catalyst choline acetyltransferase (ChAT), which is liable for the blend of acetylcholine (ACh). ACh in mental capacity has been proposed to be a cholinergic speculation of AD. ACh is incorporated in the cytoplasm of cholinergic neurons from choline and acetyl coenzyme A by the catalyst ChAT and moved to synaptic vesicles by the vesicular acetylcholine carrier (VAChT) (Figure 3). In the cerebrum, ACh is associated with different physiological cycles like memory, consideration, tangible data, learning, and other basic capacities. It has been observed that degeneration of cholinergic neurons happens in AD, causing changes in mental capacity and cognitive decline. It is trusted that amyloid influences cholinergic neurotransmission, causing a diminishing in choline take-up and an arrival of ACh. Studies have shown that cholinergic synaptic misfortune and amyloid fibril development are connected with the neurotoxicity of A β oligomers and to collaborations among AChE and the A β peptide. There are different elements that likewise add to the movement of AD, for example, the decrease in nicotinic and muscarinic Ach receptors (M2) Ach, which are situated in the presynaptic cholinergic finishes, and the shortfall in excitatory amino corrosive neurotransmission (EAA). The glutamate focus and take-up of dissimilar are altogether diminished in numerous cortical regions in AD minds notwithstanding the utilization of cholinergic receptor bad guys, for example, scopolamine which initiates amnesia. This impact can be turned around by utilizing intensifies that enact acetylcholine arrangement (Babic et al., 1999; Monczor 2005).

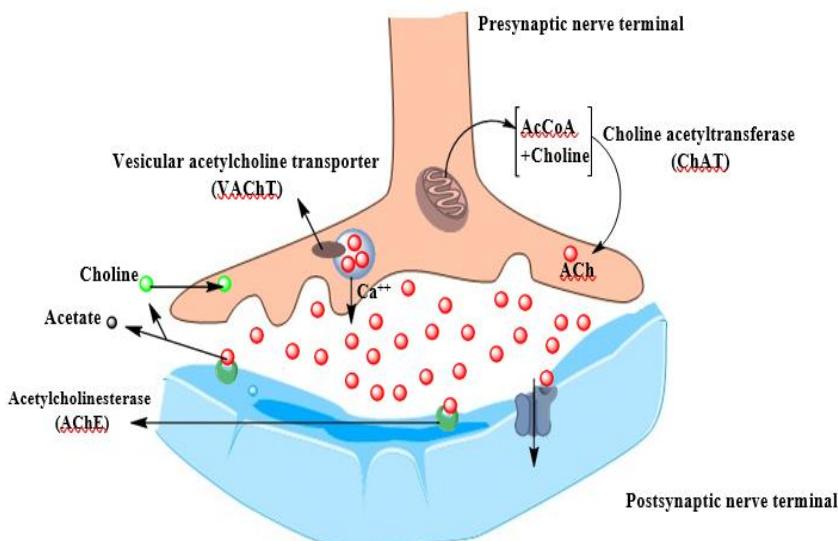


Figure 2. The pathway for the synthesis and transportation of acetylcholine between presynaptic and postsynaptic nerve terminals

Hence, the cholinergic theory depends on three ideas: diminished presynaptic cholinergic markers in the cerebral cortex, serious neurodegeneration of the Meynert basal core (NBM) in the basal forebrain, which is liable for cortical cholinergic innervation, and the job of cholinergic adversaries. in memory diminishes contrasted with agonists, which have the contrary impact Wattmo et al., 2016).

Amyloid Hypothesis

For a really long time it has been perceived that strange β -sheet testimony in the focal sensory system has areas of strength for a with dementia, prompting the idea of the amyloid theory; However, amyloid plaques (AP) have likewise been found to store in ordinary sound maturing cerebrums, bringing up the issue of whether the AP store is answerable for the event of AD. The amyloid speculation stays the most generally acknowledged obsessive component for acquired ADI (ADI). The amyloid speculation proposes that the breakdown of $A\beta$, got from APP by β and γ secretase, diminishes with age or neurotic circumstances which prompts the collection of $A\beta$ peptides. ($A\beta40$ and $A\beta42$). An expansion in the proportion of $A\beta42/A\beta40$ actuates the arrangement of $A\beta$ amyloid fibrils, which prompts neurotoxicity and acceptance of tau pathology and thus to neuronal cell demise and neurodegeneration. they impact $A\beta$ catabolism and anabolism and cause quick $A\beta$ gathering and fast movement of neurodegeneration (Paroni et al., 2019; Ricciarelli, et al., 2017).

Risk factor of AD

Aging

The main gamble factor for AD is maturing. More youthful people seldom have this sickness and most instances of AD show up late following 65 years (Guerreiro et al., 2015) Aging is a mind boggling and irreversible interaction that happens across various organs and cell frameworks with a decrease in cerebrum size and weight, loss of neurotransmitters and growth of the ventricles in unambiguous regions joined by stores of SP and NFT. Moreover, a few circumstances like glucose hypometabolism, cholesterol homeostasis, mitochondrial brokenness, melancholy, and mental deterioration can show up with maturing. These progressions additionally show up during typical maturing, making it challenging to separate cases at the beginning of AD (Riedel et al., 2016; Hou et al., 2019). AD can be partitioned by the time of beginning in beginning stage AD (EOAD), the uncommon structure with around 1 to 6% of cases, in which the majority of them are familial AD portrayed by the reality of 'have more than one appendage in more than one age with AD, and reaches from 30 to 60 or 65 years of age. The subsequent sort is late-beginning AD (LOAD), which is more normal with a time of beginning more prominent than 65 years. The two sorts can happen in individuals with families with a positive history of AD and families with late-beginning sickness (Bekris et al., 2010).

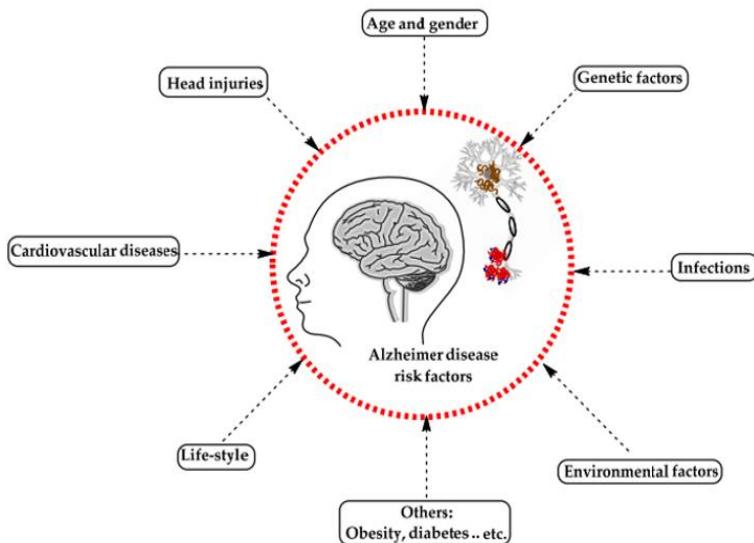


Figure 3. The risk factors for Alzheimer's diseases

Hereditary qualities

Hereditary elements have been found throughout the long term and assume a significant part in the advancement of AD. 70% of AD cases were connected with hereditary variables: most instances of AEO will accompany an autosomal prevailing example and transformations in predominant qualities like the amyloid forerunner protein (APP), presenilin1 (PSEN1), presenilin2 (PSEN2), and apolipoprotein E (ApoE). Inherited are related with EA (Van Cauwenbergh et al., 2016; Khanahmadi et al., 2015)

Ecological Factors

Maturing and Genetic Risk Factors Cannot Explain All Cases of AD Environmental gamble factors like air contamination, diet, metals, diseases, and numerous others can set off oxidative pressure and irritation and increment the gamble of growing AD. the main ecological variables and their associations with AD (Wainaina et al., 2014; Grant, W.B. et al., 2002)

Clinical Factors

A few gamble factors are related with the improvement of Alzheimer's illness. Notwithstanding this rundown, the old with AD normally has conditions like cardiovascular infection (CVD), weight, diabetes, and others. expanded chance of AD (Stampfer et al., 2006 Santos et al., 2017)

Treatment by Natural Compounds

Normal mixtures were the principal particles utilized as restorative specialists. (Silva et al., 2014) the investigation of these normal accumulates has uncovered

that they show neuroprotective impacts, igniting expanding revenue in established researchers and the drug business (Dey. et al., 2017; David et al., 2015). An assortment of regular mixtures of Different starting points have been depicted as ready to forestall and ease different pathologies, including neurological illnesses, like AD (Asha, H et al., 2017; Andrade et al., 2019) Several in vitro and in vivo examinations have exhibited the helpful capability of normal mixtures, notwithstanding, just a little rate has arrived at the phase of clinical preliminaries (Butler, et al., 2014) Several causes being connected to this sickness, the preventive properties of normal builds can be related with various systems, as displayed in figure 1 (Zhang, et al., 2015; Doig, et al., 2015; Ahmed, et al., 2017)

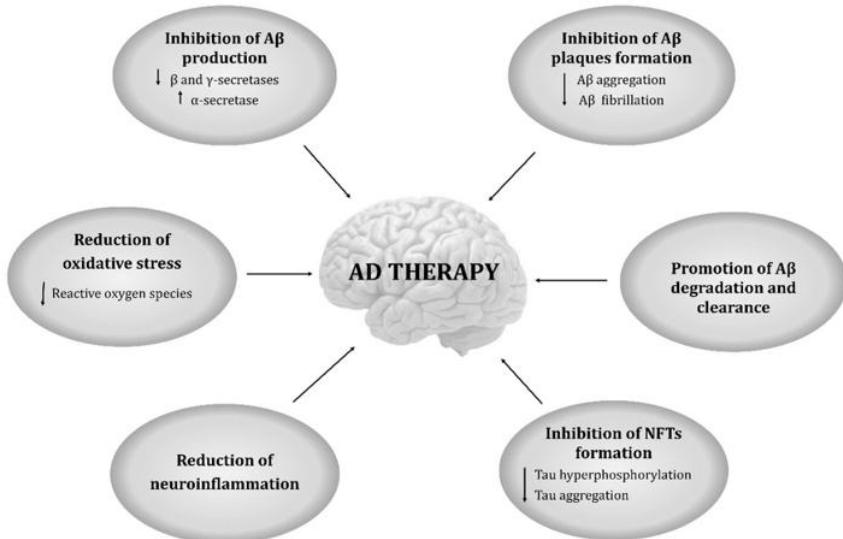
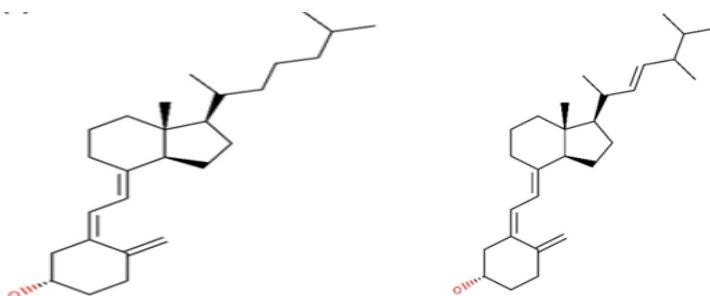


Figure 4. Schematic representation of the several mechanisms associated with Alzheimer's Disease (AD) therapy. Down and up oriented arrows indicate the decrease and the increase of the phenomena, respectively.

Natural compounds in clinical trials and their effects on AD

Normal mixtures are an arising way to deal with AD treatment. To survey their remedial viability and possible aftereffects, human examinations have been done lately. The main regular item concentrated in a clinical report was nicotine in 1992. In any case, no clinical review has been led for this atom during the most recent twenty years. During the 1990s, a few different mixtures were read up in clinical preliminaries for the treatment of AD, like nutrients. These particles are as yet tried in human examinations right up to the present day. As of late, other regular accumulates have stimulated the interest of established researchers and have arrived at the phase of clinical preliminaries, for example, briostatin, the impacts of which started to be assessed in people in 2017. A nitty gritty report of these outcomes is portrayed. at this moment. Regular mixtures have been separated into two gatherings: bioactive mixtures and normal concentrates, a bioactive compound alludes to a restorative atom while a characteristic

concentrate is the combination of a few particles are more members and a more drawn out length.


Bio active compound

Bioactive compounds in clinical trials for AD therapy.

Bio active compound	Condition of participants	Number of subjects	Duration	Out comes	References
Vitamin D	Moderate AD	43	24 weeks	Improvement of cognitive functions	Annweiler C et al. ,2012
Vitamin D	Mild to moderate AD	78	16 weeks	Reduction of oxidative stress	Galasko DR ET AL., 2012
Bryostatin	AD	9	46 weeks	Safe and well tolerated: Improvement of cognitive functions	Nelson et al., 2017
		150	12 weeks	Improvement of memory	(Farlow et al., 2018
Nicotine	AD	6	9 weeks	Safe; Improvement of learning	Wilson et al., 1995
		8	10 weeks	Improvement of attentional performance	White et al., 1999

Vitamin D

Vitamin D additionally assumes a significant part in neurodegenerative cycles. Its lack is a hereditary gamble factor for AD, Parkinson's infection, numerous sclerosis and vascular dementia (Jarosz et al., 2017)

Vitamin D3

Vitamin D2

Figure 5. Chemical structure of vitamin D2, D3

This nutrient settles the action of calcium channels, managing calcium homeostasis, upset by the testimony of amyloid. Also, expands the outflow of the vitamin D receptor, which further applies a cancer prevention agent impact (Dursun et al., 2018) Vitamin D treatment in AD has been displayed to repress amyloid union and to advance freedom of this peptide from the cerebrum (Annweiler et al., 2016) A portion of 50,000 IU, utilized 3 times each week for a very long time, was protected and actually standardized to 25 (OH) D levels in patients' blood serum Annweiler et al., 2011). In an article by Annweiler et al. (2011) (Nelson et al., 2017), it was theorized that supplementation with 100,000 IU of Nutrients 2020, 12, 3458 9 of 15, cholecalciferol with memantine for one month worked on mental and memory limit in patients with moderate AD. There is some proof that elevated degrees of vitamin D further develop comprehension, especially in gentle AD (Przybelski et al., 2008). Likewise, the utilization of vitamin D with memantine in patients with moderate types of the illness is thought to work on mental execution and memory limit by lessening neuronal misfortune. The neuroprotective impacts of vitamin D and memantine can be potentiated (Annweiler et al., 2016). In rundown, a low serum vitamin D level is related with the gamble of mental impedance, however supplementation at a portion of 400 IU brings no outcomes (the old are suggested dosages a few times higher). For instance, the suggestions on vitamin D admission for the populace in Poland, at the level of the AI is 15 μ g of cholecalciferol/day for people (Przybelski et al., 2015)

Bryostatin

Bryostatin is a macrolide lactone separated from the bryozoan Bugula neritina (Tian et al., 2018) The underlying equation of the compound. An in vivo study showed that briostatin diminished $\text{A}\beta$ creation by invigorating α -secretase movement, subsequently lessening the mortality of AD model mice (Etcheberrigaray, et al., 2004). Furthermore, briostatin has been displayed to further develop learning and memory in the AD mouse model (Schrott et al., 2015)

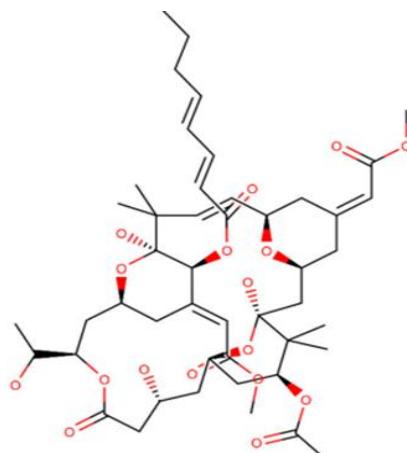


Figure 6. Chemical structure of Bryostatin

As of late, Nelson et al. (2017) assessed the security, decency and impacts on mental capacity of briostatin in patients with AD in a stage II clinical preliminary (Nelson et al., 2017) A solitary portion of briostatin 25 $\mu\text{g}/\text{m}^2$ was directed to six patients, while three patients got a fake treatment. Briostatin has been displayed to work on mental capacity and is protected and very much endured. One more stage II clinical preliminary was led with similar goals, (Farlow et al., 2018) Farlow et al. (2018) expect to work on mental capacity and be protected and all around endured. One more stage II clinical preliminary was directed with similar targets (Farlow et al., 2018) Farlow et al. (2018) managed 20 or 40 μg of briostatin or fake treatment to 150 patients with AD for a considerable length of time. This study affirmed the security of the two portions of bryostatin. Likewise, an improvement of the mental capacities was noticed utilizing portions of 20 μg of bryostatin.

Nicotine

Nicotine is extricated from the leaves of the tobacco plant (*Nicotiana tabacum* L., Solanaceae) and its primary recipe Nicotine can defer amyloid beginning by hindering leaf structures *in vitro* (Schrott et al., 2015) diminishing *in vivo* secretase articulation (Srivareerat et al., 2011) and which restrain the conglomeration of A β *in vivo* (Nordberg et al., 2002) An *in vitro* study has shown that nicotine represses the development of A β fibrils and their length and disaggregates A β fibrils (Ono et al., 2002) an involving a reduction in A β (Srivareerat et al., 2011) and how much plaque *in vivo* (Nordberg et al., 2002). Also, an *in vitro* concentrate on recommended important impacts of nicotine because of its cell reinforcement properties (Lahiri et al., 2002) moreover, the decline in APP containing the A β peptide saw *in vivo* investigations might be the reason for the reduction in A β and amyloid plaque levels (Lahiri et al., 2002)

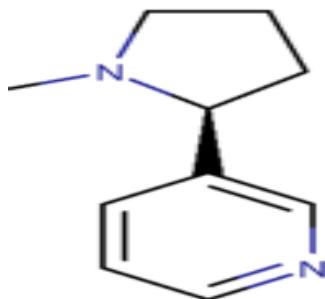


Figure. Chemical structure of Nicotine

Jones et al. (1992) concentrated on the impact of nicotine on patients with AD (Jones et al., 1992). Three intense portions of nicotine (0.4, 0.6 and 0.8 mg) were directed subcutaneously to 22 patients with AD and 48 controls. The outcomes uncovered that nicotine worked on perceptual consideration and visual shortages found in patients with AD.

The impact of nicotine on the way of behaving, comprehension and physiology of six patients with AD was assessed in a pilot study proposed by Wilson et al. (1995) (Wilson et al., 1995). Fake treatment, nicotine and disposal were controlled successively for seven, eight and seven days, separately. After the organization of nicotine, an improvement in learning was noticed, which continued with filtering.

Memory, conduct and comprehension were not impacted. Likewise, the wellbeing of nicotine has been demonstrated.

The clinical and neuropsychological impacts of nicotine were assessed in eight patients with AD by White et al. (1999) (White et al., 1999) The transdermal nicotine was managed north of two four-week time frames, isolated by a fourteen day withdrawal. A nicotine fix was involved day to day for 16 hours with the accompanying portions: 5 mg/day the main week, 10 mg/day the second and third weeks, lastly 5 mg/day the fourth week. The outcomes recommend that nicotine essentially further develops consideration execution. Nonetheless, the restricted example of the review doesn't permit to acquire indisputable outcomes.

Natural extracts and other natural products

Garlic (*Allium sativum* L., Amaryllidaceae) is frequently used in cooking and medicine. Several studies have shown that the administration of aged garlic extract significantly improves memory impairment in several ways. In vitro studies have shown that aged garlic extract has antioxidant properties (Jeong et al., 2013) inhibits the formation of A β fibrils by inhibiting A β aggregation [296] and is able to defibrillate A β fibrils (Gupta et al., 2009) In addition, in vivo tests have shown that aged garlic extract has anti-inflammatory properties (Nillert et al., 2017) increases α -secretase activity and inhibits hyperphosphorylation of the tau protein (Chauhan, N.B 2006)

Cinnamon (*Cinnamomum verum* J. Presl., Lauraceae) is one of the most widely used spices and has traditionally been applied in the treatment of certain diseases and their symptoms. Cinnamon extract inhibits tau aggregation in vitro and promotes disassembly of tau filaments (George et al., 2013) there in vitro studies have suggested that the potential therapeutic effect of cinnamon against AD may also be due to its anti-inflammatory activity (Ho et al, 2013).In vivo evidence has shown that cinnamon extract has antioxidant activity (Modi et al.,2015) prevents oligomerization of A β (Frydman-Marom et al., 2016)reduces the level of A β and corrects cognitive impairment in transgenic mice (Modi et al., 2015)

The olive (*Olea europaea* L., Oleaceae) is the source of olive oil, one of the most important ingredients of the Mediterranean diet. In vivo studies have shown that extra virgin olive oil improves behavioural disorders. In addition, the oil reduced the levels of A β and phosphorylated tau This decrease may be due to an increase in A β clearance and APP modulation (Qosa, et al., 2015) in vivo study (Lauretti et al., 2017) have also demonstrated its antioxidant activity, protective against cytotoxicity induced by A β (Amel et al., 2016)

The walnut (*Juglans regia* L., Juglandaceae) is a dry fruit composed of fatty acids, vitamins, alpha tocopherol and polyphenols, in particular ellagic acid. An in vitro study has shown that walnut extract inhibits the formation of A β fibrils by inhibiting A β fibrillation and also defibrillated A β fibrils (Chauhan et al., 2004) In addition, in vivo studies have shown that walnut extract reduced oxidative stress and A β -induced neuroinflammation in an AD mouse model (Zou et al., 2016)

Grapes (*Vitis vinifera* L., Vitaceae) are composed of various polyphenols including catechin, epicatechin, epigallocatechin and epicatechin gallate. In vivo studies have revealed that grape seed extract increases memory performance and reduces ROS production, thereby protecting the central nervous system (Balu Met al., 2005)]. In vitro work has revealed that grape seed extract blocks the formation of A β fibrils (Ono et al., 2008) by inhibiting the aggregation of A β (Wang, J et al., 2009). As a result, the amount of amyloid plaques in the brains of AD mice was reduced. In addition, grape seed extract can attenuate neuroinflammation in vivo (Wang et al., 2009). In vivo studies have shown that grape skin extract has antioxidant properties [Pervin, M et al., 2014] and inhibits the formation of A β fibrils in vitro (Andrade et al., 2015; Loureiro et al., 2017)

Pomegranate (*Punica granatum* L., Lythraceae) is a fruit containing a variety of antioxidant polyphenols. Pomegranate juice reduced A β levels and amyloid plaques in an AD mouse model, improving spatial learning and cognitive performance (Hartman et al., 2006). Further in vivo analyses revealed that these results could be the product of an inhibition of secretase activity (Subash et al., 2014). In addition, in vivo studies have shown that pomegranate has anti-inflammatory (Essa et al., 2015) and antioxidant (Subash et al., 2014) activities. *Scutellaria* (*Scutellaria baicalensis* Georgi, Lamiaceae) is a Native American herb commonly used in traditional Chinese medicine. An in vivo study showed that skullcap was able to protect, hippocampal neurons from A β -induced damage by attenuating oxidative stress and neuroinflammation (Jeong et al., 2011).

Strawberry (*Fragaria x ananassa* (Weston) Duchesne, Rosaceae) is known to contain a high content of phenols. In vivo studies have shown that strawberries have anti-inflammatory (Ebenezer et al., 2016)] and antioxidant activities, protecting against oxidative stress (Ma et al., 2018) Moringa (*Moringa oleifera* Lam., Moringaceae), an Asian and African plant, has several nutrients, including β carotene, vitamins C and E, and phenols including quercetin and kaempferol. In vivo studies have shown that this plant improves memory and learning due to its antioxidant activity (Sutalangka et al., 2013)

Conclusion

Alzheimer's sickness is currently viewed as a worldwide medical issue; thus, the National Institute on Aging-Alzheimer's Association renamed and refreshed the 1984 NINCDSADRDA standards for expanded particularity, awareness, and early ID of patients in danger of growing AD. A few models have been proposed for a more precise determination of AD, including clinical biomarkers, body liquids, and imaging studies. A few investigations have shown that changing way of life propensities, for example, diet and exercise can further develop mind wellbeing and lessen AD without clinical intercession and is viewed as a first-line mediation for all patients with AD. Right now no medication has been created to forestall or treat for AD. The current particles are simply planned to control the side effects. With expanding future, it is fundamental to find and foster new particles equipped for forestalling and treating AD. a few normal items have shown guarantee for the treatment of AD in clinical and preclinical investigations. Clinical examinations have shown that few mixtures seem, by all accounts, to be viable in treating AD, while others have bombed in human investigations. Regular

mixtures in the beginning phases of examination require further review to find their helpful potential for AD.

References

Anand P, Singh B (2013) A review on cholinesterase inhibitors for Alzheimer's disease. *Arch. Pharmacal Res.*

Andrade S, Ramahalo MJ, Loureiro, JA Pereira (2019) M.C. Interaction of natural compounds with bio membrane model, *Colloids Surf. B Bio interfaces* A biophysical approach for the Alzheimer's disease therapy 180, 83–92.

Annweiler C, Fantino B, Perot-Schinkel E, Thiery S, Gautier J, Beauchet O (2011) Alzheimer's disease input of vitamin D with memantine assay (AD-IDEA trial): Study protocol for a randomized controlled trial. *Trials* 12, 230.

Annweiler C (2016) Vitamin D in dementia prevention. *Ann. N. Y. Acad. Sci* 1367, 57–63.

Annweiler C, Herrmann FR, Fantino B, Brugg B, Beauchet O (2012) Effectiveness of the Combination of Memantine Plus Vitamin D on Cognition in Patients with Alzheimer Disease: A Pre-Post Pilot Study. *Cogn. Behav. Neurol.* 25, 121–127.

Armstrong, RA (2009) The molecular biology of senile plaques and neurofibrillary tangles in Alzheimer's disease. *Folia Neuropathology* 47, 289–299.

Armstrong, RA (2019) Risk factors for Alzheimer's disease. *Folia Neuropathology* 57, 87–105.

Asha H (2017) A Review: Natural Compounds as Anti-Alzheimer's Disease Agents. *Curr. Nutr. Food Sci* 13, 247–254.

Babic T Geriatr J (1999) The cholinergic hypothesis of Alzheimer's disease: A review of progress, *Neurosurg Psychiatry* 67, 558.

Baddeley (1978) AD 'The trouble with levels: a re-examination of Craik and Lockhart's framework for memory research', *Psychological Review*. 85: 139–152

Baddeley (1999) A.D. 'Working memory', *Science* 255: 556–559.

Bekris LM, Yu CE, Bird TD, Tsuang DW, Geriatr J (2010) Genetics of Alzheimer disease, *Psychiatry Neurol* 23, 213–227.

Biron JP (1998) Neurofibrillary tangles and Alzheimer's disease. *Eur. Neurol* 40, 130–140.

Blass JP, Gruenburg EM (1985) Alzheimer's disease. *Dis a Mon, Epidemiology of senile dementia* 31, 1–69.

Cho HS, Huang LK, Lee YT, Chan L, Hong CT (2018) Suboptimal baseline serum Vitamin B12 is associated with cognitive decline in people with Alzheimer's disease undergoing cholinesterase inhibitor treatment. *Front, Neurol.* 2018, 9, 325.

Cipriani G, Dolciotti C, Picchi L, Bonuccelli U, (2011) Alzheimer and his disease, A brief history. *Neurol. Sci, Off. J. Ital. Neurol. Soc. Ital. Soc. Clin. Neurophysiol* 32, 275–279.

Cras P, Kawai M, Lowrey D, Gonzalez-DE Whitt P, Greenberg B, Perry G (1991) Senile plaque neurites in Alzheimer disease accumulate amyloid precursor protein. *Proc. Natl. Acad. Sci. USA* 88, 7552–7556.

David B, Wolfender JL, Dias DA (2015) The pharmaceutical industry and natural products: Historical status and new trends. *Phytochem. Rev* 14, 299–315.

De-Paula VJ, Radanovic M, Diniz BS, Forlenza OV, (2012) Alzheimer's disease. *Sub-Cell. Biochem*65, 329–352.

Dey A, Bhattacharya R, Mukherjee A, Pandey DK, (2017) Natural products against Alzheimer's disease: Pharmaco-therapeutics and biotechnological interventions. *Biotechnology Adv* 35, 178–216.

Dursun E, Gezen-Ak D (2018) Vitamin D basis of Alzheimer's disease: From genetics to biomarkers, *Hormones* 18, 7–15.

Galasko DR, Peskind E, Clark CM, (2012) Antioxidants for Alzheimer disease: A randomized clinical trial with cerebrospinal fluid biomarker measures. *Arch. Neurol.* 69, 836–841.

Grant WB, Campbell A, Itzhaki RF, Savory J (2002) The significance of environmental factors in the etiology of Alzheimer's disease. *J. Alzheimer's Dis. Jad* 4, 179–189.

Guerreiro R, Bras J (2015) The age factor in Alzheimer's disease. *Genome Med* 7, 106.

Hampel H, Mesulam MM, Cuello AC, Farlow MR, Giacobini Grossberg GT, Khachaturian AS, Vergallo A, Cavedo E, Snyder PJ (2018) The cholinergic system in the pathophysiology and treatment of Alzheimer's disease. *Brain A J. Neurol* 141, 1917–1933.

Hou Y, Dan X, Babbar M, Wei Y, Hasselbalch SG, Croteau DL, Bohr VA (2019) Ageing as a risk factor for neurodegenerative disease. *Nat. Rev. Neurol* 15, 565–581.

Jarosz M (2017) Normy Zywienia dla Populacji Polski Instytut Zywności i Zywienia: Warsaw, Poland (In Polish: Nutrition standards for the Polish population)

Jatoi S, Hafeez A, Riaz SU, Ali A, Ghauri MI, Zehra M (2020) Low Vitamin B12 levels: An underestimated cause of minimal cognitive impairment and dementia. *Cureus* 12, e6976.

Khanahmadi M, Farhud DD, Malmir M (2015) Genetic of Alzheimer's disease: A narrative review article. *Iran. J. Public Health* 44, 892–90

Livingston G, Huntley J, Sommerlad A, Ames D, Ballard Banerjee S, Brayne C, Burns A, Cohen-Mansfield J, Cooper C (2020) Dementia prevention, intervention, and care: report of the Lancet Commission. *Lancet* 396, 413–446.

Lleo A, Nunez-Llaves, R Alcolea D, Chiva C, Balateu-Panos D, Colom-Cadena Gomez-Giro G, Munoz L, Querol-Vilaseca M, Pegueroles (2019) Changes in synaptic proteins precede neurodegeneration markers in preclinical Alzheimer's disease cerebrospinal fluid. *Mol. Cell. Proteom. Mcp* 18, 546–560.

McKhannG, Drachman D, Folstei, M, Katzman R, Price D, Stadlan EM (1984) Clinical diagnosis of Alzheimer's disease: Report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer's Disease. *Neurology* 34, 939–944.

Metaxas A Kempf SJ (2016) Neurofibrillary tangles in Alzheimer's disease: Elucidation of the molecular mechanism by immunohistochemistry and tau protein phospho-proteomics. *Neural Regen. Res.* 1579–1581.

Monczor M (2005) Diagnosis and treatment of Alzheimer's disease. *Curr. Med. Chem. Cent. Nerv. Syst. Agents* 5, 5–13.

Neugroschl J, Wang S (2011) Alzheimer's disease: Diagnosis and treatment across the spectrum of disease severity. *Mt. Sinai J. Med. N. Y.* 78, 596–612.

Paroni G, Bisceglia P, Seripa D (2019) Understanding the amyloid hypothesis in Alzheimer's disease. *J. Alzheimer's Dis. Jad* 68, 493–510.

Przybelski R, Agrawal, S, Krueger D, Engelke JA, Walbrun F, Binkley N (2008) Rapid correction of low vitamin D status in nursing home residents. *Osteoporos. Int.* 19, 1621–1628.

Rasool M, Malik A, Qureshi MS, Manan A, Pushparaj PN, Asif M, Qazi MH, Qazi AM, Kamal MA, Gan SH (2014) Recent Updates in the Treatment of Neurodegenerative Disorders Using Natural Compounds. *Evid. Based Complement. Altern. Med.* 979730.

Rathmann KL, Conner CS (1984) Alzheimer's disease: Clinical features, pathogenesis, and treatment. *Drug Intell. Clin. Pharm.* 18, 684–691.

Ricciarelli R, Fedele, E (2017) The amyloid cascade hypothesis in Alzheimer's disease: It's time to change our mind. *Curr. Neuropharmacol.* 15, 926–935.

Riedel BC, Thompson PM, Brinton RD. (2016) Age, APOE and sex: Triad of risk of Alzheimer's disease. *J. Steroid Biochem. Mol. Biol.* 160, 134–147.

Santos CY, Snyder PJ, Wu WC, Zhang M, Echeverria A, Alber J (2017) Pathophysiologic relationship between Alzheimer's disease, cerebrovascular disease, and cardiovascular risk: A review and synthesis. *Alzheimer's Dement.* 7, 69–87.

Schachter AS, Davis KL (2000) Alzheimer's disease. *Dialogues Clin. Neurosci.* 2, 91–100.

Serrano-Pozo A, Frosch MP, Masliah E, Hyman BT (2011) Neuropathological alterations in Alzheimer disease. *Cold Spring Harb. Perspect. Med.* 1, a006189.

Shen L (2015) Ji H.-F. Associations between Homocysteine, Folic Acid, Vitamin B12 and Alzheimer's Disease: Insights from Meta-Analyses. *J. Alzheimer Dis.* 46, 777–790

Silva T, Reis J, Teixeira J, Borges F. (2014) Alzheimer's disease, enzyme targets and drug discovery struggles: From natural products to drug prototypes. *Ageing Res. Rev.* 15, 116–145.

Singh SK, Srivastav SY, adav AK, Srikrishna S, Perry G (2016) Overview of Alzheimer's disease and some therapeutic approaches targeting a beta by using several synthetic and herbal compounds. *Oxidative Med. Cell. Longev.* 7361613.

Stampfer MJ (2006) cardiovascular disease and Alzheimer's disease: Common links. *J. Intern. Med.* 260, 211–223.

Tabaton M, Piccini A (2005) Role of water-soluble amyloid-beta in the pathogenesis of Alzheimer's disease. *Int. J. Exp. Pathol.* 86, 139–145.

Tarawneh RD, Angelo G, Crimmins D, Herries E, Griest T, Fagan AM, Zipfel GJ, Ladenson JH, Morris JC, Holtzman DM (2016) Diagnostic and prognostic utility of the synaptic marker neurogranin in Alzheimer Disease. *JAMA Neurol.* 73, 561–571.

Terry RD, Davies P (1980) Dementia of the Alzheimer type. *Annu. Rev. Neurosci.* 3, 77–95.

Van Cauwenbergh C, Van Broeckhoven C, Sleegers K (2016) The genetic landscape of Alzheimer disease: Clinical implications and perspectives. *Genet. Med. Off. J. Am. Coll. Med Genet.* 18, 421–430.

Wainaina MN, Chen Z, Zhong C (2014) Environmental factors in the development and progression of late-onset Alzheimer's disease. *Neurosci. Bull.* 30, 253–270.

Wattmo C, Minthon L, Wallin AK (2016) Mild versus moderate stages of Alzheimer's disease: Three-year outcomes in a routine clinical setting of cholinesterase inhibitor therapy. *Alzheimer's Res. Ther.* 8, 7.

Yaari R, FleisherAS, Tariot P N (2011) Updates to diagnostic guidelines for Alzheimer's disease. *Prim. Care Companion Cns Disord.* 13, 11f01262.

Yiannopoulou KG, Papageorgiou SG (2020) Current and future treatments in Alzheimer disease: An update. *J. Cent. Nerv. Syst. Dis.* 12.