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Abstract 

This study reveals that leveraging XAI to assess the impact of 

nutritional and contextual parameters on blood sugar for type 

1 diabetes mellitus in machine learning methods. The method 

of this study includes Type 1 diabetes mellitus (T1DM) is 

defined by insulin dependent diabetes as well as difficulty in 

controlling blood sugar. This project introduces a blood 

glucose forecasting model that utilizes machine learning 

methods, namely the Random Forest algorithm, to predict 

blood glucose levels from past patient data. The model utilizes 

different input features, such as past glucose levels, insulin 

doses, and carb intake, to make precise short-term predictions. 

Data preprocessing methods are used enhance the dataset 

quality. The model is gauged as effective through its 

performance measures in terms of Root Mean Squared Error 

(RMSE) and Mean Absolute Error (MAE), reflecting that the 

model could effectively predict high variability in blood 

glucose with utmost precision. Last but not least, the adoption 

of XAI such as SHAP and LIME adds interpretability to this 

model and helps users to trace in what manner the given feature 

contributes towards prediction results. The intended system 

will enable patients and clinicians which directly contributes 

patient safety and quality of life. Future developments involve 

merging real-time data from continuous glucose monitoring, 

personalization of prediction models for individualized 

patients. This research establishes the foundation for an 

extended diabetes management tool that closes the gap 

between data science and medicine. 

Keywords: Type 1 Diabetes Mellitus, Blood Glucose 

Prediction, Random Forest Algorithm, SHAP(Shapley Additive 

explanations), LIME(Local Interpretable Model-agnostic 

Explanations). 

 

1.Introduction 

 

Insulin Dependent Diabetes Mellitus or T1DM [1][7]is 

a persistent condition where the pancreas secretes little 

or no insulin, and the patients need to control their blood 

sugar levels by taking external insulin and making life- 

 

 

style modifications. Effective glycaemic control is 

necessary to avoid complications like hypoglycaemia 

(hypoglycaemia) or hyperglycaemia (hyperglycaemia), 

which can result in serious health problems. Continuous 

Glucose Monitoring (CGM) devices are commonly 

employed for monitoring blood glucose levels during the 

day, which gives real-time information that individuals 

and clinicians can use to resolve and to make correct 

choice about insulin therapy and meal planning. 

Managing blood glucose levels is a complex task due to 

various factors that affect glucose metabolism, including 

insulin dosing, food intake, physical activity, and stress. 

Predicting future blood glucose levels is a challenging 

problem because it involves nonlinear relationships and 

dynamic factors that interact in real time. Although 

CGM systems provide valuable data, there is a need for 

predictive models to alert patients of impending hypo- 

or hyperglycaemia. 

The current methods aim to develop a more accurate and 

interpretable predictive model for predicting blood 

glucose level for every 15 minutes for one hour given 

past data and patient-specific covariates.  

This study suggests a machine learning-driven blood 

glucose prediction system that uses the Random Forest 

algorithm to improve prediction accuracy. The solution 

is organized as follows: 

1. Data-Driven Predictive Modeling 

2. Machine Learning Model – Random Forest 

3. Explainability Using SHAP & LIME 

 

 

2.Related work 

 

Blood glucose prediction has emerged as an active 

research domain as a result of increased accessibility of 
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wearable devices, which yield abundant data on real-

time glucose fluctuations. Conventional methods have 

relied on rule-based systems or basic linear models to 

forecast blood glucose levels, but these models are 

incapable of handling the intricate, nonlinear 

interrelations between factors like insulin dosing, 

carbohydrate consumption, exercise, and circadian 

cycles. With advancements in machine learning 

methods, more advanced models have been proposed for 

enhanced prediction accuracy such as decision trees, 

neural networks, and hybrid models that incorporate 

patient-specific information. This section discusses the 

current methods of blood glucose prediction, as well as 

certain research on serial number extraction for time-

based prediction intervals, feature extraction methods, 

and the shortcomings that are present in current systems. 

Giovanni annuzzi1 et al,[1] have proposed effect of 

various factors of food in glycaemic prediction in 

juvenile diabetes through algorithms in machine 

learning, this study has proposed glycaemic prediction 

which involves collecting data from continuous glucose 

monitors (CGM), dietary intake (carbohydrates, fats, 

proteins), insulin dosage, physical activity, and other 

relevant factors. Data preprocessing includes cleaning, 

handling missing values, normalizing, and creating 

time-lagged features. Feature selection techniques 

identify key nutritional factors influencing blood 

glucose levels. ML models like XGBoost, or LSTMs are 

applied, followed by model evaluation using metrics 

such as MAE, RMSE, or R-squared. Explainability tools 

like SHAP or LIME provide insights into the impact of 

nutritional factors. However, limitations include the 

potential for inaccurate dietary data, difficulties in 

generalizing models across individuals, and challenges 

in predicting delayed glucose responses from high-fat 

meals.  

Annuzzi, Giovanni, Lutgarda et al,[2] have proposed 

examine the factors of food that effects on blood glucose 

anticipating for juvenile diabetes using XAI, the 

methodology involves collecting real-time data such as 

continuous glucose monitoring (CGM) readings, 

detailed dietary intake (carbohydrates, fats, proteins), 

insulin dosage, activity, and other factors. Data 

preprocessing includes data scaling, missing data 

management and feature creation to capture time-

dependent patterns. Machine learning models like 

LSTMs, GRUs, or XGBoost are applied for time-series 

blood glucose prediction. Explainability techniques are 

used to interpret model predictions, providing insights 

into the influence of food on glycemic levels. 

Limitations include the dependence on accurate dietary 

data, individual variability in glucose response, and 

challenges in predicting delayed effects of certain foods.  

E. A. Pustogerov, A. S. Tkachuk, E. A. Vasukova,et 

al,[3] have suggested a method of forecasting blood 

glucose after via meal in diabetes mellitus during 

pregnancies called gestational diabetes includes the 

collection of real-time data such as blood glucose values, 

the intake of food (particularly the carbohydrate), basal 

insulin dose, physical workouts, and other parameters of 

the state of body. The process involves data 

preprocessing using data scaling, data missing 

management and feature creation for the generation of 

time-lagged variables. Model performance which 

monitored utilizes the metrics such as MAE, RMSE, and 

R-squared. Explainable AI (XAI) methods like SHAP or 

LIME offer insights into how various features impact 

predictions. Some limitations are the need for precise 

dietary and activity information, variability between 

individuals in their glucose responses, and inability to 

capture delayed impacts of fat or protein intake.  

 

Duckworth,C, Guy, M.J.Kumaran, A.O.Kane, et al,[4] 

[9] have suggested AI methods for real time prediction 

for high and low glycemia and also to provide personal 

suggestion. In this the research used the XGBoost 

machine learning algorithm to forecast hypoglycaemia 

and hyperglycaemia events up to 60 minutes ahead 

based on continual blood glucose details from 153 

people with juvenile diabetes. Features capturing 

according to time frames, and population data were 

included. SHAP (Shapley Additive explanation’s) was 

used to explain individual predictions and determine the 

top features driving risk predictions for a given user. The 

research concentrated on one particular age group 

(young adults) and might not be generalizable to other 

populations.  

 

Taiyu Zhu, Kezhi Li, Pau Herroro, Pantelis Georgiou, 

et.al,[5] have suggested Personalized Blood Glucose 

Prediction Using Machine Learning Techniques. The 

model incorporated historical continuous glucose 

monitoring (CGM) data, insulin dosages, carbs intake, 

and other activity levels to enhance prediction accuracy. 

Meta-learning was used to adapt the model to individual 

patient variations, allowing personalized predictions. 

Data preprocessing involved data scaling, addressing 

uncertainty, and creating features to enhance model 

accuracy. Real-time deployment challenges were not 

fully addressed, impacting the practical application of 

the system. Finally, the lack of explainability approaches 

makes healthcare providers to feel difficult to explain 

and belief the model forecast. 

Erico Tjoa, Cuntai Guan,et al,[6] have proposed 

Explainable AI (XAI) toward medicinal applications, the 

methodology typically involves reviewing existing XAI 

techniques used to interpret complex AI models in 

healthcare. It categorizes these methods into model-

specific (e.g., decision trees, linear models) and model-

agnostic approaches (e.g., SHAP, LIME) that provide 

post-hoc explanations. The survey also assesses their 

applicability in various medical domains like 

diagnostics, prognosis, and treatment recommendations. 

Emphasis is placed on evaluating interpretability, 

transparency, and usability for medical practitioners. 

However, limitations include the trade-off between 

model accuracy and explainability, potential biases in 

Proceedings of the 8th International Conference on Computing Methodologies and Communication (ICCMC-2025)
IEEE Xplore Part Number: CFP25K25-ART; ISBN: 979-8-3315-1211-8

979-8-3315-1211-8/25/$31.00 ©2025 IEEE 1772
Authorized licensed use limited to: SRM Institute of Science and Technology Kattankulathur. Downloaded on December 16,2025 at 03:58:55 UTC from IEEE Xplore.  Restrictions apply. 



 

data and model interpretation, and challenges in 

validating the reliability of explanations.  

3. Proposed Methodology 

 

The proposed system aims to develop a robust 

forecasting model to forecasting blood glucose levels in 

juvenile Diabetes patients. Here, major elements of the 

system proposed are: 

1. Dealing with Missing Data: The system uses 

missing data imputation methods to make sure that the 

gaps in the CGM readings do not hamper the model's 

accuracy. 

2. Enhanced Feature Extraction: A robust 

feature engineering process is utilized, extracting 

meaningful time-based, event-based, and physiological 

features. This involves rolling windows to extract 

historical trends and derive features like time of day, 

insulin timing, and carbohydrate intake. 

3. Machine Learning-Based Prediction: The 

model utilizes a Random Forest Regressor to address the 

intricate, nonlinear relationships between different 

features that influence blood glucose levels. The model 

is trained on historical glucose data as well as external 

variables, including insulin doses, food consumption, 

and exercise. 

4. Multiple Time Horizons: The system makes 

predictions for blood glucose levels at a series of time 

intervals of every 15 minutes for one hour and provides 

flexibility in dealing with short-term and long-term 

glucose excursions. 

5. Model Explainability: The use of 

Explainability AI such as SHAP and LIME will allow 

for greater transparency in the forecast outcomes, 

helping users, healthcare providers to realize the factors 

that are contributing most to the predicted glucose 

levels. 

By addressing the shortcomings of existing models and 

building on the literature around serial number and 

feature extraction, the proposed system aims to offer a 

more accurate and personalized approach to blood 

glucose prediction. 

3.1 Architecture 

The architecture diagram Fig 1.1 has provided outlines a 

machine learning workflow that can be closely mapped 

to the preprocessing steps and subsequent model 

validation procedure in the code. This system 

architecture diagram outlines the pipeline for developing 

and validating a machine learning model for diabetic 

prediction, such as predicting Type 1 Diabetes Mellitus 

(T1DM) outcomes. Here's a breakdown of the 

components: 

 
FIG 1.1:  Architecture Diagram 

3.2 Dataset 

A T1DM Data sample is a collection of the data that were 

gathered from kaggle dataset that has CGM 

measurements. It comprises data of 100 T1D patients 

having CGM device, which was meant to calculate the 

glycemic levels in the scale of 40-400mg/dl. The details 

of data that contains both genders, between the age from 

18 upto 80 years, with a T1D diagnosis. The dataset that 

includes comprehensive data on dietary factors such as 

carbohydrate intake, glycemic index, protein, fiber, fat, 

continuous blood glucose of every 15 minutes for one 

hour. The dataset is often stored in CSV or other 

structured formats. The system loads this data using 

libraries like Pandas in Python, enabling seamless 

handling of large datasets. Table1.1 and 1.2 provides 

detailed attribute information for the T1DM diabetes 

dataset. 

Table 1.1 T1DM Diabetes Dataset 1 

patient

_id 

 

patient_

age 

 

carbs 

 

protein 

 

fat 

 

fiber 

 

glycemi

c_index 

 

continuo

us_ 

blood_gl

ucose 

 

timestam

p 

 

0 56 

 

57.66051

7 

 

31.23738

3 

14.3966

20 

 

14.31134

8 

 

62.43620

8 

 

176.47711

4 

2024-01-01 

00:00:00 

1 69 94.86612

1 

 

27.91132

7 

21.9847

96 

 

13.08532

1 

 

66.51262

6 

 

79.724905 2024-01-01 

00:05:00 

2 46 80.90904

0 

 

32.11572

4 

 

18.0440

40 

 

18.99004

9 

 

71.72259

2 

 

157.09996

2 

2024-01-01 

00:10:00 

3 32 52.85785

4 

 

33.70786

9 

18.8142

01 

 

18.99652

9 

 

62.68410

9 

 

134.89514

9 

 

2024-01-01 

00:10:00 

4 60 69.93107

8 

 

13.23413

3 

 

34.5474

60 

 

17.60958

1 

 

70.26010

4 

 

122.80505

6 

 

2024-01-01 

00:20:00 
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                          Table 1.2  T1DM Diabetes Dataset 2 

 

3.3 Data Cleaning and Pre-Processing 

Data cleaning and preprocessing module is crucial for 

preparing the dataset to place it into the model workflow 

pipeline. The set of data with high quality has better 

model performance and interpretability. 

i. Handling Missing Values: 

• Drops rows with missing 

continuous_blood_glucose. 

• Fills missing values in basal and bolus using the 

mean, which helps quantify the number of 

missing values in each feature column. 

• Missing values are then imputed based on the 

nature of the data, For continuous features like 

blood glucose or carbohydrate intake, missing 

values are filled with the average value of the 

respective column. For discrete data, such as 

meal type or insulin type, the method is often 

used to replace missing values. Visualize the 

missing data patterns with missingno. 

ii. Filtering: 

• Filters out patients under the age of 18. 

• Filters blood glucose values outside realistic 

ranges (40–400 mg/dL). 

iii. Statistical Calculations: 

• Computes basic descriptive statistics for all 

numeric columns. 

• Calculates the standard deviation and coefficient 

of variation (CV) for continuous blood glucose. 

• Computes the mean and standard deviation for 

future blood glucose predictions (15, 30, 45, 60 

minutes). 

iv. Timestamp Handling: 

• Converts timestamps to date, time and extracts 

time features like the hour in a day and days in a 

week. 

• Calculation of time difference between 

consecutive readings. 

v. Outlier Removal: 

• Optionally removes unrealistic blood glucose 

levels. Outliers are either removed or capped 

depending on their significance. Outlier 

treatment helps stabilize the model and prevents 

skewed predictions. 

3.4 Feature Extraction 

Feature engineering is about building new features or 

reworking the current features to more accurately reflect 

the hidden patterns in the data. This module contains  

• Time-based features: Time since last meal, time 

of insulin administration. 

• Composite features: Features like total 

carbohydrate-to-insulin ratio. 

• Encoding Categorical Variables: Categorical 

variables, such as meal type, are encoded as 

numerical values (e.g., one-hot encoding) for 

model compatibility. Use ordinal encoding for 

ranked ordered features like severity scale. Use 

target encoding in cases of high cardinality 

features wherein the mean target value per 

category is calculated. 

Feature engineering is the process of choosing 

appropriate variables (features) from the data that can 

potentially affect blood glucose levels [8]. The chosen 

features are nutritional intake variables (carbohydrates, 

protein, fat, Fiber), which affect blood glucose during 

digestion and absorption. The glycemic_index 

quantifies how rapidly foods increase blood glucose and 

is thus an important factor [14]. Insulin management 

factors such as basal and bolus units are also included 

since they directly control glucose levels [9]. patient_age 

is also taken into consideration, because age has an 

impact on glucose metabolism and insulin sensitivity 

[10]. These are stored in variable X, the independent 

variables upon which predictions will be made. The 

target variable y, assigned continuous_blood_glucose, is 

the actual blood glucose to be predicted. This systematic 

selection of features is a crucial first step in feature 

engineering to enable the model to learn useful patterns 

and associations to be able to predict glucose levels 

accurately. 

3.4 ML Model Validation 

The validation process is performed by utilizing a two-

stage splitting of the data to separate the dataset into 

three sets: 60% training, 20% validation, and 20% test 

sets. Initially, the train_test_split () method is employed 

to separate the data into a training set (X_train, y_train) 

comprising 60% of the data, and a temporary set 

(X_temp, y_temp) comprising the remaining 40%. Next, 

the temporary set is split again by train_test_split() into 

halves: a validation set such as X_valid, y_valid and a 

test set such as X_test, y_test. The validation set is 

utilized to adjust model hyperparameters and measure 

model performance during training to avoid overfitting. 

The test set is kept unseen until the point of final 

evaluation, giving an unbiased estimate of the 

generalization capacity of the model. Random_state=42 

ensures reproducibility by stabilizing the random seed 

for stable results across run repetitions. The well-

structured validation process is a necessity to develop 

robust, reliable predictive models. 

3.5 Scaling the Data 

missing_

cbg 

 

basal 

 

bolus 

 

blood_gluc

ose_15 

 

blood_gluc

ose_30 

 

blood_gluc

ose_45 

 

blood_gluc

ose_60 

 

0 1.96109

8 
 

4.09901

9 
 

148.795325 

 

210.899638 

 

229.513553 

 

193.723999 

 

0 1.88743

5 
 

2.07224

1 
 

180.572836 

 

94.454010 

 

105.875114 

 

195.205564 

 

0 0.83346

2 
 

2.60704

3 
 

128.525780 

 

86.280534 

 

194.848611 

 

135.844093 

 

0 2.25725

8 

 

3.31239

2 

 

172.509365 

 

92.112318 

 

118.383231 

 

187.138091 

 

0 1.49084

7 

 

2.19976

7 

 

130.644327 

 

96.953360 

 

222.245570 

 

132.214124 
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   Scaling is used to make all features contribute equally to 

the model, particularly when they have different scales, 

as is usual in medical data. Various dietary and 

contextual factors are usually measured in various units 

and also have different ranges. For instance: 

Carbohydrate consumption would be quantified in 

grams and would generally lie between 0 to 100+ grams 

whereas Blood glucose can be quantified in mg/dL and 

lie between 40 to 400 mg/dL. In intended work Standard 

scaler is utilized which works on the basis of 

standardization to get the mean value as 0 and also have 

to attain the value 1 for standard deviation for every 

factors. The change carried out by Standard Scaler has 

been expressed as: 

𝑧 =
𝑥 − µ

𝜎
 

x represents the real factor value, μ represents the mean 

of the factors, σ is the standard deviation, and z is the 

standardized factors value. 

Feature scaling is done by using the StandardScaler () 

from the sklearn.preprocessing module. Scaling is one 

of the important step in data preprocessing especially for 

models sensitive to feature value magnitudes, like linear 

models or neural networks. The StandardScaler () scales 

the factors by subtracting the mean and scaling the unit 

variance, thus converting the factors in the dataset to get 

the mean value as 0 and also attain the value 1 for 

standard deviation. This is done through the formula: 

                       Xscaled     =    
        𝑋−𝑚𝑒𝑎𝑛

𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛
 

 

First, X_train calculates the mean and the standard 

deviation using the training set and performs scaling 

transformation on the same. Then, X_valid and X_test 

apply the same transformation parameters to the 

validation and test sets, ensuring consistency. This 

prevents data leakage, as information from the validation 

or test sets is not used during the scaling of the training 

data. Standardization improves model convergence, 

particularly for algorithms that rely on gradient-based 

optimization, and make sure that all features have an 

equal importance on the model’s training. 

 

3.6 Training the Model 

3.6.1 Random Forest Regressor: 

           The machine learning algorithms which can be 

used for regression tasks can build a group of decision 

trees. Each tree is trained on random subsets of the data 

and features. The ultimate prediction is usually the 

average of the predictions from all the individual trees 

in the forest.  

3.6.2 Hyperparameter Tuning: 

In this context, hyperparameters such as n_estimators 

and max_depth are adjusted. 

i. n_estimators: More trees can lead to better 

performance as the model averages more 

results, but it also increases computational cost. 

ii. max_depth: Deeper trees can fit the training 

data better (leading to low training error) but 

may overfit if they become too complex. 

3.6.2.1 Training Multiple Models: 

           Different combinations of n_estimators and 

max_depth values are used to train multiple Random 

Forest Regressor models. For example, one model might 

have 100 trees with a max depth of 5, while another 

might have 200 trees with a max depth of 10, and so on. 

3.6.2.2 Validation Set MSE (Mean Squared Error): 

• After training, each model is evaluated on a 

validation set, which is a subset of the data not 

used for training. 

• MSE is used as the performance metric for 

evaluating the validation set’s model. MSE 

estimates the mean squared difference between 

predicted and actual values, and lower values 

indicate better performance. 

3.6.2.3 Best-Performing Model: 

• Once trained and tested on all the models, the 

best model is the one that has the minimum 

validation set MSE. This best model should 

perform better on unseen data since it has been 

picked on the basis of its accuracy on the 

validation set (how well the model will actually 

do in real situations). 

• In short, this is a type of hyperparameter tuning 

in which varying values for the number of trees 

(n_estimators) and the tree depths (max_depth) 

are experimented with, and the model that 

results in the least prediction error (MSE) on a 

validation set is selected as the best one. 

 

4  Results and Discussions 

 

4.1  Model Evaluation 

         The ultimate assessment of the best-tuned Random 

Forest Regressor model is performed based on the 

unseen test set. Following hyperparameter tuning, the 

best model (best_model) is utilized to make predictions 

(y_test_pred) on the scaled test data (X_test_scaled). 

The performance of the model is subsequently evaluated 

based on two important assessment metrics: 

 

4.1.1       Mean Squared Error (MSE): 

This calculates the mean of the square of differences 

between predicted (y_test_pred) and actual (y_test) blood 

glucose levels. MSE is a sensitive measure for large 

errors, hence it is a good measure to use in pointing out 

large deviations in predictions. 
                            𝑀𝑆𝐸 =

1

𝑛
 ∑ (𝑦𝑎𝑐𝑡𝑢𝑎𝑙 − 𝑦𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑)2 

 

4.1.2 Mean Absolute Error (MAE): 

MAE is the mean absolute difference between the values 

of actual and predicted, a more understandable metrics 

of the model prediction accuracy. It is less sensitive to 

outliers than MSE. 

                   𝑀𝐴𝐸 =
1

𝑛
  ∑ |𝑦𝑎𝑐𝑡𝑢𝑎𝑙 − 𝑦𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑| 

These values are output to give a clear view of 

the accuracy of the model and the magnitude of the 

errors. A smaller MSE and MAE show that the model is 

performing better. Testing on the test set provides a final, 

unbiased measurement can be applied to new model, 
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unseen information, making it reliable for real-world 

blood glucose prediction applications [13]. 

4.2 Explainability and Visualization Tools 

The overall process is implemented to analyse the 

performance of the best-selected Random Forest 

Regressor model, interpret its predictions using SHAP 

and visualize both model insights and blood glucose data 

trends. 

4.2.1 Explainability using SHAP 

• The SHAP values are calculated using 

shap.TreeExplainer(best_model) to explain the 

predictions by determining the contribution of 

each attribute to the predicted blood glycemic 

levels. 

• A SHAP summary plot (shap.summary_plot) is 

generated to provide a global view of the 

feature importance, indicating which features 

had the most significant influence on 

predictions. 

The Fig 1.2 and Fig 1.3 provides insights into the impact 

of individual features like carbohydrates, protein, fat, 

etc., on the prediction of blood glucose levels. 

 
 

FIG 1.2:  Impact of Dietary factors on Blood Glucose 

 

 

 
FIG 1.3 SHAP Value Plot for Carbohydrates Showing the Impact on 
Blood Glucose Prediction with Protein Levels as a Colour Gradient 

4.3 Correlation Matrix: 

A correlation matrix as shown in Fig 1.4 is generated 

using to visualize correlations between the features and 

the blood glucose levels. Strong correlations indicate 

which factors are most influential in determining 

glucose levels, aiding in model interpretation and feature 

selection. 

 
FIG 1.4 Correlation Matrix 

4.4 Blood Glucose Trend Analysis 

One of the main issues in juvenile diabetes patients is to 

control blood Glucose occurring after meal, through 

dosing the insulin bolus to be delivered pre-prandial 

meals [11][12]. According to these assumptions, an 

experiment to find the influence of nutritional 

parameters such as carbohydrates, proteins, fats, fibres 

and other factors that acts on blood glucose over short 

and middle time range has been predicted by Machine 

Learning (ML) methods. The Fig 1.5 shows the 

prediction of the blood glucose readings for every 15 

minutes for one hour after meals using insulin dosing, 

blood glucose, and nutritional variables in T1D patients 

on AP systems was used. 

 

 
FIG 1.5   Continuous Blood Glucose Levels Over Time with 

Hyperglycemic and Hypoglycemic Thresholds 

 

4.5 Actual vs Predicted Plot 

A scatter plot as shown in Fig1.6 is drawn via 

plt.scatter() for comparing observed blood glucose 

measurements and predicted ones. A dotted diagonal red 

line illustrates the desired case when observed and 

predicted are the same. Shifts away from this line 

identify prediction flaws and model inefficiencies. 
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FIG 1.6   Actual vs. Predicted Blood Glucose Levels with Reference 

Line 

4.6 Interpreting Model Prediction using LIME For 

Explainability 

Interpretability is a critical component of the blood 

glucose prediction system, especially in a healthcare 

context where model decisions must be explainable.  

The LIME framework is used to generate local 

explanations for individual predictions, making the 

Random Forest model more interpretable. LIME (Local 

Interpretable Model-agnostic Explanations) explains 

individual predictions by modeling the behavior of the 

model in the vicinity of each data point using a simple 

interpretable model, like a linear model. LIME helps to 

understand features (e.g., carbohydrate consumption, 

insulin) influencing blood glucose predictions. 

 

4.6.1 Validating LIME Explanations 

• To test LIME's validity, explanations from 

similar instances are compared. Consistent 

explanations verify that the model's decision-

making is in accordance with established 

physiological factors. 

• Clinicians review explanations produced by 

LIME as shown in Fig 1.7 to verify that they 

are consistent with medical understanding of 

glucose control and Fig 1.8 shows the model 

prediction of blood glycemic values using 

LIME for the corresponding features. 

 

 
FIG 1.7   Blood Glucose Prediction Using LIME Based On Features 

 

4.6.2 Feature value Table 

The “Feature Value” in Table 1.3 contains the list of real 

values of the respective instance: 
                         Table 1.3 Feature Value Table 

 
 

 

 
FIG 1.8   Model Prediction Using LIME with Feature Contributions 

for Blood Glucose 

 

4.7 Model Improvement Strategies 

 

In order to enhance the performance and consistency of 

the blood glucose prediction model, a number of 

improvement strategies were investigated: 

1)  Performance was improved by hyperparameter 

tuning of Random Forest parameters n_estimators and 

max_depth, and by sophisticated feature engineering 

with time-based and physiological features. 

2)   Accuracy was enhanced through time-aware cross-

validation, which minimized model bias and captured 

true-world trends more accurately. Clinical relevance 

was leveraged to inform feature selection based on 

domain expertise. 

3)   Reliability was enhanced by strong cross-validation, 

repeated random seed use, and data anomaly 

management. Regular model updating and drift 

detection were prioritized for long-term stability. 

4)  Precision was improved by the addition of weighted 

loss functions to focus on key glucose ranges and 

incorporating SHAP and LIME analysis insights to 

optimize feature importance and model behavior. 

5) The model has been improved by employing temporal 

sequences, includes contextual factors such as physical 

activities create hybrid predictions and combine the 

random forest with thin neural network. 

6) The tools like SHAP and LIME make clinicians to 

validate model behaviour, increase transparency and 

increase patient confidence in automation decision 

making. 
These approaches in combination provide a high-

performing, interpretable, and clinically valuable 

glucose prediction model for the management of 

juvenile diabetes. 

5. Conclusion  

 

The creation of a blood glucose prediction model with 

the Random Forest algorithm proves a strong, data-

bolus 2.03 

protein 37.83 

basal 2.15 

carbohydrates 55.96 

Patient_age 29.00 
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driven methodology for predicting future glucose values 

for Type 1 Diabetes (T1DM) patients. By leveraging 

historical patient information, including insulin dosing, 

blood glucose values, and carbohydrate ingestion, the 

system can produce short-term forecasts useful for 

patients and clinicians to inform decisions. The use of 

SHAP (Shapley Additive explanations) for 

explainability of the model guarantees not only the 

accuracy of the predictions but also their interpretability 

so that users can perceive the reasons behind variations 

in glucose levels. 

The program effectively processes different tasks 

ranging from data cleaning to missing value 

management, model optimization, and result 

visualization. Performance measures such as Root Mean 

Squared Error (RMSE) and Mean Absolute Error (MAE) 

reflect the model's precision in forecasting glucose 

levels. Additionally, the system's capability to interpret 

individual predictions as regards of significance (via 

SHAP values) provides important perceptions into how 

different factors, for instance, insulin usage or past 

glucose readings, impact future glucose levels. This 

solution provides a possible means for healthcare 

professionals to better monitor patients and for patients 

to better control their condition themselves. By 

anticipating glucose fluctuations, the system can 

minimize the dangers of hypoglycaemia and 

hyperglycaemia, enhancing diabetes care overall. 
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