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10.1 Introduction

The binding process of protein ligands is essential to biological functions, rendering
them a critical focus in drug design and molecular biology [1, 2]. Therefore, under-
standing the structural components of these interactions is crucial when formulating
targeted therapies to improve drug efficacy [3]. Advancements in computational
biology and artificial intelligence have enabled us to predict protein structures with
greater accuracy and simulate molecular interactions more effectively [4]. Among
these advancements, the DeepMind product AlphaFold has proven to be an effective
technique for accurately predicting protein shapes [5, 6]. Utilizing this approach, we
focused on the prediction and analysis of the 3D structure of the calpain receptor, a
protein implicated in various physiological and pathological processes [7, 8]. The
calpain receptor is a calcium-dependent cysteine protease that contributes to signal
transduction, apoptosis, and cytoskeletal remodeling [9]. Aberrant control of cal-
pain activity is linked to neurological illnesses, cardiovascular disorders, and
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cancer, rendering it a potential therapeutic target [10]. Nevertheless, information
concerning the structural characteristics of calpain and its ligand-binding patterns is
limited. This research addresses this deficiency by employing AlphaFold to forecast
an accurate structure of the calpain receptor, hence enhancing ligand-binding pre-
dictions and virtual screening.

We employed DeepBindPoc and DeepBindGCN to delineate ligand-binding
pockets and characterize protein-ligand interactions. DeepBindPoc, a deep learning
framework, evaluates geometric and physicochemical features to forecast probable
binding sites [11], whereas DeepBindGCN, another deep learning model, predicts
binding affinities [12]. These methodologies provide swift, high-throughput screen-
ing of extensive chemical libraries, hence enhancing the rate of identifying new
treatments. To assess ligand binding and protein stability, we conducted molecular
dynamics simulations to evaluate the structural flexibility of the protein. The result-
ing RMSD and RMSF measurements provided insights into the dynamic character-
istics of the ligand-bound complexes [13]. These simulations were essential for
evaluating the conformational stability of receptor-ligand interactions and their
impact on medication design.

This chapter delineates a comprehensive methodology that includes Al-driven
modeling, deep learning pocket prediction, and molecular dynamics simulations.
Our technique elucidates the structural characteristics of the calpain receptor and
proposes compounds with advantageous binding constants. The findings endorse
the application of computational methods to improve drug development procedures,
providing a foundation for subsequent experimental validation.

The rest of this chapter is organized as Sect. 10.2, Methods, and outlines the
implementation of various approaches, including the artificial intelligence-based
structural modelling of the Calpain-10 receptor. It also covers the virtual screening
of ligands using DeepBindGCN and AutoDock Vina and explores DeepBindPoc
and molecular dynamics simulations. Section 10.3 presents the results and findings
related to comparison, clustering, and classifier performance assessment. Section
10.4 evaluates the role and effectiveness of computer-aided drug design and virtual
screening methodologies in contemporary drug discovery. Here, Section 10.5 con-
cludes a framework for leveraging computational techniques to accelerate drug dis-
covery and enhance the study of protein-ligand interactions.

10.2 Methods

10.2.1 Artificial Intelligence-Based Structural Model
of the Calpain-10 Receptor

The AlphaFold Protein Structure Database was employed to acquire the structural
model of the Calpain-10 receptor. AlphaFold, a deep learning-driven tool for pre-
dicting protein structures created by DeepMind, delivers high-confidence structural
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predictions derived from amino acid sequences [5, 14]. The database contains pre-
computed structural models for several proteins, enabling rapid access to superior
structural data. The amino acid sequence of the Calpain-10 receptor was obtained
from a reputable protein sequence database (UniProt ID: Q9HC96), such as UniProt
or NCBI GenBank, utilizing the relevant accession number or protein identifier
[15]. This sequence was used to query the AlphaFold Protein Structure Database via
its web interface (https://alphafold.ebi.ac.uk/) to identify the precomputed model.

When the Calpain-10 receptor structure was not present in the AlphaFold data-
base, the sequence was immediately submitted to the AlphaFold pipeline for struc-
ture prediction. The prediction approach encompassed the development of numerous
sequence alignments, identification of templates, and inference using a deep neural
network-based model [16]. Upon computation, the highest-ranked structural model,
together with corresponding confidence scores, was downloaded in PDB format for
subsequent study [17]. The acquired structure was visualized and confirmed utiliz-
ing molecular visualization software, including PyMOL and ChimeraX [18, 19].
The projected local distance difference test (pLDDT) scores were analyzed to eval-
uate the confidence level of the structural regions, with elevated values (>70) signi-
fying dependable predictions. Regions with diminished confidence were examined
to ascertain potential structural flexibility or disordered segments. This structural
model provided the basis for later computer analyses, such as docking simulations,
molecular dynamics studies, and functional evaluations.

10.2.2 Virtual Screening of Ligands by DeepBindGCN
and AutoDock Vina

A virtual ligand screening of the ZINC database was performed using DeepBindGCN
and AutoDock Vina to identify possible binders for the Calpain-10 receptor [20].
Compounds from the ZINC database were evaluated, resulting in the selection of
1000 compounds exhibiting favorable drug-like properties according to Lipinski’s
Rule of Five, with a molecular weight ranging from 200 to 600 Da, an appropriate
number of hydrogen bond donors and acceptors, and a suitable logP value [21].
Ligands were initially converted from their SMILES notation into three-dimensional
conformations, followed by the adjustment of protonation states and the generation
of tautomers [22]. The Calpain-10 receptor’s 3D structure was obtained from the
AlphaFold Protein Structure Database, preprocessed by removing water molecules
and including polar hydrogens; Gasteiger charges were applied, and the file was
saved in PDBQT format. The calpastatin (an endogenous inhibitor) is used as con-
trol for docking and molecular dynamics simulations.
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10.2.3 DeepBindPoc and DeepBindGCN

DeepBindPoc is a proof of concept for a predictive deep learning network that eval-
uates protein-ligand interactions with exceptional accuracy and rapidity [11].
Utilizing advanced Graph Convolutional Networks (GCNs), it incorporates physi-
cochemical properties and spatial configurations of protein-ligand complexes for
precise predictions. DeepBindPoc excels in classifying binders and non-binders and
assessing binding propensity, both of which are essential for drug discovery. These
predictions are further corroborated by the incorporation of supplementary scoring
systems, thereby yielding precise and dependable assessments of protein-ligand
binding affinity [23]. Ligand-binding site prediction was conducted using
DeepBindGCN, which analyzed the receptor’s surface topology to identify proba-
ble ligand-binding sites [12]. The ligand screening approach utilizing DeepBind GCN
predicted probable binding sites on the calpain receptor and assessed the interac-
tions of the ligands inside these sites. DeepBindGCN, a method based on graph
convolutional neural networks, utilized geometric and chemical information from
the receptor’s three-dimensional structure and surface to anticipate ligand-binding
pockets. The receptor structure, obtained from the AlphaFold Protein Structure
Database, was initially created by eliminating water molecules, incorporating
hydrogens, and subsequently assigning partial charges. The anticipated binding
sites were checked with established functional residues or conserved areas to ensure
correctness. Compounds from the ZINC database were generated using conforma-
tion generation from 2D SMILES codes, optimization of protonation states, and
tautomer generation. The ligands were subsequently subjected to virtual screening
via docking into the anticipated pockets, and their binding affinities were assessed
based on the docking scores. The predictions obtained by DeepBindGCN enhanced
the selectivity of target binding sites, facilitating the prioritization of ligands for
further screening in detailed research.

10.2.4 AutoDock Vina

The ligand screening process utilizing AutoDock Vina was succeeded by molecular
docking analysis, a method for determining the interaction energies between the
calpain receptor and prospective ligands [24]. The receptor structure was obtained
from the AlphaFold Protein Structure Database and further modified by eliminating
water molecules, including polar hydrogens, and assigning Gasteiger charges via
AutoDock Tools [25]. Ligands from the ZINC database were generated by inter-
preting the SMILES codes, constructing three-dimensional conformations, optimiz-
ing protonation states, and producing tautomers. The receptor and ligand files were
prepared for docking with AutoDock Vina software, requiring the files to be in
PDBQT format. The binding site coordinates were predicted using DeepBindPoc,
and the docking grid boxes were then optimized to encompass the pockets.



10  Graph Neural Network Approaches for Identifying Calpain-10 Inhibitors... 209

Molecular docking was conducted with an exhaustiveness of 8 to sample the con-
formational space of ligands efficiently. The binding affinities were ranked based on
the lowest binding energy values, and the interactions between the ligand and recep-
tor, including hydrogen bonding and hydrophobic contacts, were visualized using
Discovery Studio Visualizer [26].

10.2.5 Molecular Dynamics Simulations

Molecular dynamics simulations were conducted using GROMACS software, ver-
sion 2022, to examine the stability and dynamics of the top three Calpain-10
receptor-ligand complexes previously found using molecular docking [27]. The
receptor-ligand combinations exhibiting optimal binding energies from AutoDock
Vina were utilized for 50 ns simulations. The CHARMM36 force field was employed
for the receptor, while the ligand topologies and parameters were obtained via the
CGenFF website (https://cgenff.com/). The initial intricate structures were intro-
duced into the simulation cube, which contains TIP3P water molecules, maintaining
a minimum distance of 1.0 nm from the cube’s perimeter [28]. The incorporation of
appropriate counter ions equilibrated the systems, and the ionic strength was
adjusted to 0.15 M NaCl to simulate physiological conditions. Geometry optimiza-
tion was performed using the steepest descent method until the maximum force fell
below 1000 kJ/mol/nm. Thereafter, each system underwent equilibration via two
phases: Subsequent to the initial minimization, a 100 ps NVT (constant volume and
temperature) equilibration was conducted, followed by a 100 ps NPT (constant
pressure and temperature) equilibration, both at 300 K utilizing the V-rescale ther-
mostat and at 1 bar pressure employing the Parrinello-Rahman barostat [29].
Hydrogen bond restrictions were implemented using the LINCS technique. At the
same time, long-range electrostatics were addressed with the PME approach, with
short-range van der Waals and Coulomb interactions truncated at 1.0 nm. The pro-
duction molecular dynamics simulations were conducted for 50 nanoseconds and
all visualizations and analyses were conducted using GROMACS tools, PyMOL,
and VMD [30].

10.3 Results

10.3.1 Al-predicted Structural Model

The structural model is AF-Q9HC96-F1-v4, and we possess a high degree of confi-
dence in the precision of the anticipated three-dimensional structure of the calpain
receptor, as generated by DeepMind’s AlphaFold algorithm. This model is derived
from the amino acid sequence associated with UniProt ID Q9HC96, which was
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docked to provide atomic-level structural information. AlphaFold uses deep learn-
ing and numerous sequence alignments to determine protein folding patterns accu-
rately. The model includes confidence scores such as the projected Local Distance
Difference Test (pLDDT), which assesses the stability of each residue’s positioning,
with scores above 70 being reliable. Secondary structural elements, binding pock-
ets, and flexible loops are clearly delineated, facilitating functional and interaction
analyses. The model is provided in Protein Data Bank (PDB) format, which is suit-
able for integration into molecular docking and dynamics research. AF-Q9HC96-
F1-v4 aids in comprehending receptor structural alterations, ligand interactions, and
potential drug binding sites for application in virtual screening for drug discovery.
Figure 10.1 presents the structural and confidence metrics of the calpain receptor
model as forecasted by AlphaFold. Panel A illustrates the 3D structural model, with
color coding based on confidence levels: blue indicates high confidence areas,
whereas red and yellow denote low or flexible regions, potentially corresponding to
loops or disordered segments. The PAE matrix is displayed in the subsequent panel
B, illustrating the positional uncertainty between two residues. The area of minimal
positional error is indicated by a dark green hue, signifying a higher confidence

Aligned residue

0 100 200 300 400 500 600

Scored residue

I J

0 5 10 15 20 25 30

Expected position error (Angstréms)

Fig.10.1 Structural and confidence analysis of the calpain receptor model predicted by AlphaFold.
Panel A shows the 3D model with color coding representing confidence levels: blue for high con-
fidence and red/yellow for low confidence, indicating flexible or disordered regions. Panel B dis-
plays the PAE matrix, illustrating the positional uncertainty between residues, with dark green
indicating minimal error and lighter green indicating more significant uncertainty. The bar at the
bottom represents the predicted positional error in angstroms, which is essential for evaluating
structural quality for molecular docking and simulations
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level in the predictions. In contrast, the lighter green hue denotes a positional sig-
nificant mistake and, thus, greater uncertainty. The bar at the bottom signifies the
anticipated positional error in angstroms, providing a metric for the structural qual-
ity required for molecular docking and simulation.

10.3.2 Deep Learning-Based Ligand Binding
Pocket Prediction

The pocket prediction for the AlphaFold protein structure AF-QIHC96-F1-v4 was
conducted using DeepBindPoc, a deep learning method designed for predicting
ligand-binding sites [11]. The calpain receptor structure was obtained from the
AlphaFold Protein Structure Database, subsequently purified of water molecules,
hydrogen atoms were included, and atomic charges were adjusted. The processed
structure was subsequently uploaded to the DeepBindPoc server, which employs a
graph convolutional neural network to assess the geometric and physicochemical
characteristics of the protein surface. In DeepBindPoc, binding pockets were pre-
dicted through the analysis of residue spatial distribution, surface morphology, and
charge distribution. Each projected pocket was allocated a confidence value that
assesses the likelihood of ligand binding based on the obtained data. The highest-
ranked binding sites were isolated and superimposed on conserved residues and
functional domains of the protein to validate their biological relevance. The antici-
pated coordinates of the pockets were utilized to generate docking grids for molecu-
lar docking analysis, facilitating accurate virtual screening and ligand-binding
assessment. We have used Arg202 as a central binding pocket residue for docking
calculations. These predictions were essential in elucidating receptor-ligand inter-
actions, facilitating structure-based drug design, and further computational
investigations.

10.3.3 Virtual Screening Using DeepBindGCN
and AutoDock Vina

DeepBindGCN is a deep learning system based on Graph Convolutional Networks
(GCNs) designed for high-throughput analysis of extensive datasets [12, 31, 32].
Graph Convolutional Networks (GCNs) is a recognized methodology in deep learn-
ing, wherein nodes transmit residue-related information, and edges denote the spa-
tial relationships among the nodes. Previous research has examined the application
of Graph Convolutional Networks (GCNs) for forecasting chemical characteristics
and molecular fingerprints [23, 33, 34]. Furthermore, GCNs have demonstrated
considerable efficacy in predicting protein—ligand interactions in terms of both time
and accuracy. DeepBindGCN comprises two distinct models: Two models were



212 K. M. Saravanan et al.

created: DeepBindGCN_BC, a binary classifier designed to differentiate between
binders and non-binders, and DeepBindGCN_RG, which forecasts the binding
affinities of protein-ligand complexes. The superior performance of DeepBindGCN_
BC can be attributed to the model’s consideration of both the physicochemical char-
acteristics of proteins and the spatial attributes of the ligands. Three scoring
techniques were employed to assess the significance of protein—ligand complexes:
The three models are DeepBindGCN_BC, DeepBindGCN_RG, and the scoring
algorithm used by AutoDock Vina.

Table 10.1 presents data for 20 compounds, including the findings of
DeepBindGCN_BC, DeepBindGCN_RG, and binding energy measured by
AutoDock Vina in kcal/mol. All chemicals were categorized as binders using
DeepBindGCN_BC, resulting in a binary classification outcome of 1. This indicates
that these may serve as suitable candidates for protein-ligand interactions, provided
the protein side interactions are advantageous. The DeepBindGCN_RG scores,
indicating the expected binding affinity, exhibit minor variations across the com-
pounds, all of which are elevated. Binding energy values, expressed in kcal/mol, are
all negative, signifying that the compounds exhibit favorable interactions with the
target proteins. Among the evaluated compounds, Samatasvir exhibits the highest
DeepBindGCN_RG score of 9.52 and the most favorable binding energy of
—10.60 kcal/mol. This coupling highlights its superior contact capabilities.
Similarly, Orvepitant attains a DeepBindGCN_RG score of 9.44 and a marginally
superior binding energy of —10.90 kcal/mol, validating an effective equilibrium
between computational prediction and thermal stability. Significantly, Mk3207
exhibits a binding affinity of 9.22 and a binding energy of —10.70 kcal/mol, posi-
tioning it as a possible therapeutic candidate. Compounds such as Ditercalinium
(—=9.16 Kcal/mol, —10.80 Kcal/mol) and Vindesine (—9.15 Kcal/mol, —10.60 Kcal/
mol) demonstrate commendable efficacy, suggesting robust interactions. The recur-
rence of Abamectin-component-bla in two entries with distinct binding energies
(—=10.60 and — 10.50 kcal/mol) and nearly identical DeepBindGCN_RG scores
(9.25 and 9.12) suggests it is a likely binder. Nonetheless, compounds with margin-
ally lower DeepBindGCN_RG scores, such as Mergocriptine (9.00) and
Metergotamine (9.01), exhibit commendable binding energy values (—10.50 kcal/
mol and — 11.10 kcal/mol, respectively), indicating their merit for further evalua-
tion. Dihydroergotamine exhibits the lowest enthalpy of production at —11.50 kcal/
mol, yet its moderate binding affinity of 9.09 means it remains a viable contender
for further investigation.

Figure 10.2 illustrates protein-ligand interactions in both 3D and 2D perspec-
tives, emphasizing the binding mechanisms and interactions of specific molecules.
Figures. a, b, and c represent the blue ligands within the active site of their target
proteins, depicted as green ribbon structures, to demonstrate the requisite spatial
compatibility and orientation for interaction. Furthermore, panels D, E, and F illus-
trate 2D interaction diagrams of specific interactions, including van der Waals
(green), hydrogen bonding (blue), n-n stacking (pink), and alkyl (purple) interac-
tions that enhance the stability of the ligand within the binding pocket. ARG, PHE,
and GLN are intricately associated with ligand binding via hydrogen bonding and
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Fig. 10.2 Structural representations and interaction analyses of ligand binding within the protein.
(a—c) 3D structures of the protein-ligand complexes for Ligand1, Ligand2, and Ligand3, respec-
tively, showing ligand positioning within the binding pocket. (d—f) 2D interaction diagrams for
Ligandl, Ligand2, and Ligand3 highlight key molecular interactions such as van der Waals forces,
hydrogen bonds, n-n stacking, and alkyl interactions. Color coding illustrates the interaction types,
emphasizing the binding stability and molecular contacts in each complex

hydrophobic interactions, hence augmenting the stability and binding affinity of the
molecule. Collectively, these models provide a lucid depiction of the binding inter-
actions, demonstrating that the ligand’s orientation, position, and interactions with
particular protein residues are essential to the binding affinity. This comprehensive
study is highly beneficial for medicinal chemistry in the design of novel ligands
with enhanced potency and selectivity.

10.3.4 Molecular Dynamics Simulations

Figure 10.3 presents an RMSD plot comparing the control (calpastatin) with three
ligand-bound systems (Ligandl, Ligand2, and Ligand3) over time measured in
picoseconds. RMSD is a crucial metric for assessing the structural variations and
overall stability of biomolecular simulations concerning molecular complexes. For
the control indicated by the black line, RMSD exhibits a gradual increase in the
initial phases, then oscillating within the range of 0.35-0.45 A after 10,000 picosec-
onds. This indicates that the control system undergoes minor structural modifica-
tions before returning to its equilibrium state while maintaining structural stability
in the simulation [35]. Like the control, Ligand1 (Dihydroergotamine), depicted in
orange, exhibits a rapid early increase followed by a decline to a plateau at
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Fig. 10.3 RMSD profiles of the control and ligand-bound systems (Ligandl, Ligand2, and
Ligand3) over 50,000 picoseconds. The graph shows structural deviations, indicating that Ligand2
exhibits the highest stability with the lowest RMSD, followed by Ligand1 and Ligand3, while the
control displays more significant fluctuations

approximately 0.3—-0.4 A. This indicates that the binding of Ligand] may restrict
conformational alterations and enhance the stability of the complex. Ligand2
(Bolazine), depicted in gray, exhibits the lowest RMSD values (~0.25-0.35 A)
among all groups, signifying little structural variations over time. Consequently, the
reduced RMSD suggests that Ligand2 may enhance the structural stability of the
complex due to robust binding interactions with the site.

The yellow line illustrates that the RMSD for Ligand3 (Metergotamine) begins
at approximately 0.3 to 0.45 A, which is marginally more significant than that of
Ligandl and Ligand2, however comparable to the control level. This signifies mod-
erate stabilizing effects, albeit with significantly greater flexibility than in Ligand?2.
The comparative RMSD profiles demonstrate distinct structural dynamics for each
system, indicating that Ligand2 confers the most excellent stability to the protein,
whilst Ligand1 and Ligand3 provide the subsequent highest stability. These discov-
eries may assist in guiding further research aimed at comprehending ligand binding
mechanisms and their importance in molecular interactions.

Figure 10.4 illustrates the Root Mean Square Fluctuation (RMSF) for the control
and three ligand-bound systems in relation to residue indices. RMSF provides
insights into the flexibility of the backbone and the localized motion of individual
residues; regions exhibiting more flexibility may correlate with loops, termini, or
unstructured segments. The control group (black line) illustrates the variability
value distributed over residues, with increased flexibility indicated by the peaks.
The observed peaks likely result from loop regions or solvent-exposed residues,
which often exhibit greater flexibility in molecular dynamics simulations.
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Fig. 10.4 RMSF profiles of the control and ligand-bound systems (Ligandl, Ligand2, and
Ligand3) across residues. The data highlight regions of higher flexibility, with Ligand2 exhibiting
slightly lower fluctuations, suggesting enhanced structural stability compared to the other systems

Ligandl (orange) and Ligand3 (yellow) exhibit comparable oscillation patterns,
with peak values and placements around those of the control. This observation indi-
cates that these ligands do not influence the intrinsic plasticity of the protein struc-
ture and maintain dynamic properties akin to those of the unbound protein.
Throughout the experiment, Ligand2 (gray) exhibited somewhat reduced oscilla-
tions in various places relative to the other systems. The reduction in flexibility may
indicate increased rigidity, likely in specific residues participating in interactions
with Ligand?2, resulting in a more stable complex, as previously demonstrated.

The RMSF profiles demonstrate that all systems have a similar degree of dynamic
flexibility; however, Ligand2 renders the protein structure somewhat more stable.
These data suggest that Ligand2 may establish more substantial and more stable
connections, perhaps enhancing structural stability while maintaining flexibility in
the functional domains. Further investigation of the binding interactions may eluci-
date the molecular mechanisms behind these differences.

10.4 Discussion

The molecular modeling of the calpain receptor utilizing AlphaFold (AF-Q9HC96-
F1-v4) has provided a robust basis for elucidating the topographical structure and
functional dynamics of the receptor [5]. The model is appropriate for molecular
docking and simulation investigations because of its high-confidence predictions of
secondary structural features, binding pockets, and flexible loops, together with
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pLDDT scores. AlphaFold’s structural data enables this model to deliver precise
evaluations of receptor-ligand interactions, hence enhancing drug discovery efforts.
Pocket predictions utilizing DeepBindPoc identified several critical residues,
including Arg202, as the primary residues interacting with the ligand [11]. Utilizing
GCNs enabled the identification of ligand-binding sites based on structural and
chemical characteristics. The projected pockets coincided with conserved func-
tional domains, so affirming their biological relevance. The data facilitated the cre-
ation of docking grids, and virtual screening of the receptor demonstrated its
suitability for ligand binding, thereby confirming its utility in structure-based drug
discovery [36].

Consequently, we utilized DeepBindGCN and AutoDock Vina for virtual screen-
ing to augment our understanding of ligand-receptor interactions. DeepBind GCN_
BC and DeepBindGCN_RG produced excellent estimates of binding affinity,
corroborated by negative binding energy values from AutoDock Vina. Samatasvir,
Orvepitant, and Mk3207 have been discovered to possess the highest binding affini-
ties and the most advantageous binding energy values, making them promising
therapeutic candidates. Notably, Samatasvir exhibited a DeepBindGCN_RG of 9.52
and a binding energy of —10.60 kcal/mol, whereas Orvepitant demonstrated a mar-
ginally superior binding energy of —10.90 kcal/mol, suggesting robust binding
affinities. The findings indicate that Abamectin-component-bla serves as a binder
across various entry and enhances its application in medication development. The
molecular dynamics simulations provided further insight into the structural stability
and dynamics of the ligand-receptor complexes. The analysis of RMSD values, con-
sidering protein structure and flexibility, indicated that Ligand2 exhibited the most
advantageous RMSD values (~0.25-0.35 A), signifying the compound’s superior
structural stability. Nevertheless, Ligandl and Ligand3 exhibited marginally ele-
vated RMSD values of approximately 0.3—0.4 A, signifying modest stability com-
pared to the control. It is suggested that Ligand2 induces minimal conformational
alteration due to its robust binding and superior compatibility within the bind-
ing region.

A comprehensive evaluation of residue-level dynamics by RMSF analysis cor-
roborated the conclusion about the differential impact of ligand binding on protein
flexibility. Ligand2 exhibited a reduction in fluctuations across multiple areas of the
protein and enhanced stiffness in the interacting residues. Ligandl and Ligand3
exhibited flexibility profiles similar to the control, suggesting they do not impair
intrinsic flexibility while providing minor stability. Collectively, these findings indi-
cate the potential for enhancing structural stability through the use of Ligand2 while
preserving functional versatility—an amalgamation that positions Ligand?2 for fur-
ther advancement. A synthesis of deep learning models and molecular dynamics
simulations has been employed to assess the viability of therapeutic candidates and
characterize their binding properties. The discovered compounds exhibited favor-
able docking scores and dynamic stability with the target protein, indicating their
potential for therapeutic application. Future research will investigate these interac-
tions in further depth through experimentation, improvement of lead compound
structures, and the identification of additional ligands to enhance the chemical
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library. This study emphasizes the efficacy of computer-aided drug design and vir-
tual screening techniques in contemporary drug development processes.

10.5 Conclusion

This study employed computational techniques, such as AlphaFold, DeepBindPoc,
DeepBindGCN, and molecular dynamics simulations, to examine the structural
characteristics and ligand-binding potential of the calpain receptor. The Al-predicted
structural model demonstrated high confidence and accuracy for subsequent analy-
sis. Pocket docking and virtual screening facilitated the identification of several
potent ligand compounds exhibiting favorable binding affinities and stability. MD
simulations validated that the configurations of ligand-receptor complexes were
stable, with Ligand2 exhibiting the highest stability. Based on our discoveries, we
firmly endorse the application of Al and deep learning algorithms in structural biol-
ogy and drug discovery. These computational methods enable high-throughput
screening and precise modeling, significantly reducing the time and cost associated
with experimentation. Subsequent research will focus on the experimental valida-
tion of the specified ligands and the optimization of lead compounds for therapeutic
agent development. This paper establishes a framework for employing computa-
tional methods to accelerate drug discovery and promote the investigation of
protein-ligand interactions.

10.6 Data Availability

The data generated from the current study is presented in the paper.
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