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Abstract
Malicious management of the caching process disrupts data retrieval, causing an unavoidable threat known as a
cache pollution attack (CPA), which reduces network performance, increases information retrieval time, and
decreases the cache hit rate. Due to the importance of CPA detection in NDN, this study introduces the enhanced
deep learning (EDL) model to improve data integrity and security. The EDL model integrates the idealogy of
recurrent neural networks and a memetic optimization algorithm to eliminate malicious user participation in
networks. During the analysis, the CICIDS 2017 dataset was utilized due to its high-dimensional data and
coverage of diverse attacks. The gathered details are processed by traffic preprocessing blocks that remove
irrelevant, missing, and redundant information by considering specific filtering conditions. Then, the normal-
ization process is applied to mitigate the overfitting issue and reduce computational complexity. The normalized
inputs are fed into the recurrent layer, which identifies the relationship between features such as temporal patterns,
cache hit rates, and frequency of access requests. According to the relationship, the malicious and legitimate users
are identified with maximum accuracy. In addition, memetic operators such as selection, crossover, and mutation
parameters are utilized to balance the stability between the features. The effective selection parameter ensures
optimal results while managing the cache in NDN, achieving a 3.2% error rate and a cache hit rate of 98% to 99%.

Keywords Named data networking � Cache pollution attack � Traffic processing � Memetic optimization �
Recurrent layer � Stability

1 Preliminary analysis

The data-centric networking concept, such as named data networking (NDN) [1], is a concept in which data is
accessed by initiating a name request instead of its location. Caching [2, 3] is a key feature of NDN that enables
routers to store data packets temporarily, thereby enhancing efficiency and minimizing transmission redundancy.
This caching process is more vulnerable to NDN because cache pollution attacks (CPAs) [4] are created, which
compromise the efficacy and integrity of the caching layer. The CPA occurred while malicious users were
attempting to transmit several requests for unfamiliar content, which resulted in the loss of legitimate user caches
[5]. Therefore, the CPA maximizes the retrieval delay, and NDN resource exhaustion also affects typical caching
characteristics, minimizing network performance by creating bottlenecks [6]. The NDN faces several types of
CPA attacks, including cache flooding, cache poisoning, and interest flooding attacks. In cache poisoning [7], the
attacker inserts malicious data into the cache, thereby altering the original information. If a trusted user accesses
the information and retrieves false or invalid data, it affects system reliability. Then, cache flooding [8] occurs, in
which attackers demand a high volume of content, causing legitimate users to fail to access high-quality
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information and thereby minimizing network performance and cache hit rates. The last type is interest flooding
[9], in which the attacker indirectly creates cache pollution by crushing the network with the help of more interest
packets. The type of CPA [10, 11] is illustrated in Fig. 1.

The different types of CPA create various impacts [12], such as reduced cache efficiency, performance
degradation, and service denial due to frequent cache exclusions and repeated uncached content [13, 14]. Various
mitigation techniques are utilized to identify and mitigate CPA in NDN. The mitigation techniques are described
in Fig. 2.

Security threats involving the NDN cache system underscore the necessity of effective security mechanisms for
in-network cache storage while maintaining efficiency. By eliminating such flaws, NDN is a strong challenger for
the future of scalable and secure data-centric networking.

1.1 Concern clarification

Cache pollution attack (CPA) identification is a complex task in NDN due to its intrinsic architectural charac-
teristics. The NDN process aims to provide privacy and security to users without considering their requests and
patterns. Additionally, the system encounters challenges in distinguishing between malicious and legitimate user
behavior and irregular access patterns. In addition, the NDN’s decentralized nature also introduces complexity
because the nodes operate independently, making it challenging to identify and respond to distributed attacks. The
mitigation algorithm effectively identifies cache activities; however, this reduces network efficiency and creates a
computational overhead problem. The attackers mimic legitimate activity patterns and access the network to
develop traffic-related issues. These difficulties result in a high delay and a low hit rate, negatively impacting the
system’s scalability. The research issues are addressed using the enhanced deep learning (EDL) model, which
uses the deep neural network function to train the system to identify malicious user strategies and cache patterns.
Additionally, the memetic optimization technique is employed to minimize the delay and deviation between the
predictions. The deep neural networks in EDL are used to train the systems to identify malicious cache patterns,
which increases the attack detection accuracy. During this process, the memetic optimization approach is inte-
grated with the deep learning approach, which enhances overall reliability and performance by reducing pre-
diction deviation and delay. The integrated CPA prediction design addresses various NDN challenges, including
privacy-focused design, decentralized operations, and differentiating between legitimate and malicious access
patterns.

Fig. 1 Types of CPA in NDN
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1.2 Focus of this work

The primary focus of this work is listed below.

• To create a robust, enhanced deep learning model to categorize legitimate and malicious users’ cache patterns
and confirm maximum CPA prediction accuracy at dynamic network settings.

• To combine the memetic optimization technique with the DL approach to observe the cache strategies in a
resource-intensive and large-scale environment for minimizing prediction deviation. This process manages
scalability, reduces computational overhead, and maximizes network size.

• To develop the EDL systems by adjusting system parameters to differentiate between stealthy and coordinated
behavior, which helps predict malicious activities even when using different cache policies and criteria.

The memetic optimization algorithm enhances the deep learning framework by integrating global evolutionary
strategies with an adaptive local search mechanism to detect cache pollution attacks (CPAs) in dynamic named
data networking (NDN) environments. Unlike conventional approaches, adaptive local search dynamically
adjusts step sizes based on the magnitude of the gradient and the curvature of the loss landscape, thereby
enhancing convergence stability and speed. This refinement facilitates effective exploration and exploitation,
especially in large-scale, resource-intensive contexts. Convergence analysis demonstrates that the update rule
satisfies the Robbins–Monro conditions under restricted gradients, thereby ensuring that the gradient norm
asymptotically approaches zero. That the approach converges to a stationary point validates its accuracy and
computational efficiency. The optimization algorithm also distinguishes stealthy and coordinated harmful
activities under shifting popularity dynamics, exceeding existing methods.

Then, the rest of the script is systematized as follows: Sect. 2 discusses the literature exploration to understand
the importance of learning techniques in predicting the CPA. Section 3 discusses the working process of the
EDL-based CPA detection process and evaluates the system’s efficiency in Sect. 4. Section 5 concludes the entire
work.

Fig. 2 CPA detection and mitigation techniques
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2 Literature exploration

The present-day systematic literature review aims to analyze previously published research that identifies various
types of network attacks, including those targeting wireless sensor networks, software-defined networks, and web
servers. According to several studies conducted, it has been proved that the use of machine learning (ML) and
deep learning (DL) techniques significantly helps in the detection of and dealing with distributed denial of service
(DDoS) attacks (Tariq Emad Ali et al. [15]; Meenakshi Mittal et al., 2022 [16]). These techniques have also
proven effective in identifying advanced attacks and handling large amounts of data. The papers reviewed include
detailed descriptions of the existing state of detection methods, the type of datasets used, data preprocessing
techniques employed, performance indicators set, and the objectives and layout of future trends in network
security. Yao et al. [17] proposed an ensemble learning (EL) approach for identifying the cache pollution attacks
(CPAs) in vehicle content-centric networks (VCCN). This study intends to predict the CPA by collaborating with
multiple vehicles. During this process, the head vehicle consists of several parameters, such as direction, speed,
and position, which help to form the clusters. The cluster head is the base learner that trains the system to identify
attacks based on the hit rate. The false ratio is minimized with the help of an ensemble learning classifier, which
reduces the linear optimization problem retrieval delay and improves the attack detection rate. The introduced
learning approach addresses the overfitting issues when analyzing vehicle features, thereby ensuring system
generalization. Wang et al. [5] recommended a request pattern change-based algorithm (RPCA) to identify the
cache pollution attacks in edge computing. This study analyzes the various strategies to determine the CPA in
mobile and edge devices. Initially, content requests are examined using the eavesdropping strategy. Then, the
RPCA approach was applied at the request to explore patterns that effectively recognize abnormal ones. Then, an
aware cache defense approach is proposed to take the appropriate actions on CPA. This procedure ensures a high
hit rate and effectively minimizes deviation errors.

Hidouri [18] suggested a Q-learning approach to identify and mitigate CPA in ICAN for named data net-
working. The author aims to enhance the overall CPA detection rate and reduce the retrieval delay in ICAN. The
objective is achieved by integrating every router with a reinforcement learning process to identify the actions in
the network. The reward and penalty values help predict the hit rate and arrival time. These features identify the
malicious and normal activities with 95.09% accuracy, 94% hit rate, and reduced delay (18%). Kim, H. et al. [19]
applied the deep learning (DL) approach to identify the multiple cache channel attacks. This study focuses on
ABORT and PRIME attacks to identify cache events. The DL approach utilizes several layers that receive
network inputs and process intermediate functions, which detect integrated attacks with minimal deviation error.
During the analysis, various learning classifiers, including a recurrent layer, multilayer perceptron, and long short-
term memory (LSTM) neural networks, are utilized to identify cache attacks. Among the various analyses, the
LSTM approach achieves the highest recognition rate for detecting the integrated cache attack. Yao et al. [20]
detecting CPA using federated learning (FL) in ultra-dense networks. This study associates several small base
stations to form clusters based on load and distance similarities. The cluster head trains the system to identify
cluster members based on their characteristics, which impacts CPA detection efficiency. The classification
process is improved by accumulating macro-stations, thereby enhancing overall clustering efficiency. In effec-
tively utilizing the FL concept, every head works independently to manage the unbalanced issues while suc-
cessfully predicting the CPA.

Kar et al. [21] created CPA detection systems using a rank comparison approach in named data networking.
The anomaly or cache attack is identified by analyzing the requested packets based on the packet request rate and
volume. The ranking process helps differentiate between normal and legitimate entries, achieving a maximum hit
rate and minimum delay. This ranking-based detection process enhances NDA data security and signature
privacy, effectively mitigating attacks. However, the system requires additional methodologies to strengthen the
CPA mitigation procedure. Sameer, M. K., & Salman, M. I. (2023) [22] recommended popularity variation
mechanism (PV) cache pollution detection systems to observe legitimate users. The PV system predicts cache
attacks based on deviations, content popularity, and request rate. This study focuses on cache pollution, privacy,
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and poisoning attack detection and mitigation processes, aiming to create robust security systems. Although the
system effectively mitigates various cache attacks, it faces computational issues due to pollution attacks. Yao
et al. [23] used an ensemble learning approach to detect cache pollution attacks in information-centric networking
(ICN) based on vehicular ad hoc networks (VANETs). This approach attempts to combine the strengths of
multiple machine learning models to enhance detection capabilities and mitigate the impact of cache pollution,
which can hinder network performance and increase latency. The results of the experiment conducted revealed
that the suggested method considerably increases security and reliability in VANET environments when com-
pared to conventional detection methods.

Wang et al. [5] suggest a method for detecting and defending against cache pollution attacks in edge computing
by analyzing pattern modifications. Their approach detects abnormal request content distribution patterns, con-
sidering the presence of potential attacks that may reduce the effectiveness of the cache and heighten network
congestion. Those attacks increase system resource consumption and network mapping. The study confirms that
the proposed approach can achieve high security for the system and manage caches efficiently, making edge
computing systems less prone to attacks.

Zou et al. [24] examine the performance metrics of a neural network-based attack detector in combating
possible network threats. This research explores various models and assesses their effectiveness in identifying
anomalies, as well as intrusions and cache pollution, within the network. The data support the notion that streams
in the form of deep learning achieve the best performance in capturing and classifying content with significant
changes within the volume network, especially through the use of convolutional and recurrent networks. Kumar
and Srivastava [25] introduce the interface-based popularity control (IBPC) method to address polluting attack
threats within the cache in named data networking (NDN). The technique examines how changes in the request
patterns of specific interfaces impact the overall merit of the content being sought, distinguishing between
genuine and malicious access. Results from the experiments demonstrate that IBPC has a considerable effect on
reducing the pollution of caches. According to multiple researchers, cache pollution attacks can be predicted with
the help of several intelligent learning approaches. However, the system faces difficulties in processing dynamic
packet requests, leading to high retrieval delays and problems in making malicious decisions. The research
difficulties are addressed with the help of the enhanced deep learning (EDL) model, which identifies malicious
attacks with a maximum hit rate and minimum delay. Under dynamic and unexpected packet request patterns,
content-centric networking faces cache pollution attacks. Traditional intelligent learning methods, while suc-
cessful, struggle to adjust in real time, which can delay retrieval and lead to misidentifying malevolent conduct.
This study presents a new enhanced deep learning (EDL) model to overcome these constraints. The proposed
EDL system employs a multilayer learning structure designed for real-time anomaly detection, enabling it to
adapt to changing traffic patterns and differentiate between genuine and malicious requests more accurately than
standard models. Adaptive feature selection and temporal behavior analysis enhance cache hit rates and reduce
retrieval delays. This improvement increases cache protection techniques, network stability, and efficiency,
setting a new standard for intelligent threat mitigation in content delivery systems.

3 Intelligent deep learning framework

The main objective of this work is to detect the cache pollution attacks (CPAs) in NDN using the enhanced deep
learning (EDL) framework. The EDL framework integrates the memetic optimization algorithm with a deep
learning model to identify malicious requests in the networks. The malicious requests cause performance
degradation and flooding issues, affecting data security and privacy. The system objective is achieved by
exploring network features such as temporal variations, cache hit ratio, and request patterns, which help identify
the CPA with the maximum detection rate. During the analysis, a deep learning model was utilized to train the
system, reducing the error rate and addressing optimization problems. The optimization process reduces the
retrieval delay ðrdÞ and false positive rate with the help of a memetic optimization approach that fine-tunes the

Neural Computing and Applications 123

https://doi.org/10.1007/s00521-025-11620-9

https://doi.org/10.1007/s00521-025-11620-9


network parameters according to the local and global searching strategies. The parameter updating procedure
ensures the system’s robustness, flexibility, and scalability while detecting CPA attacks. The overall structure of
the CPA prediction process is illustrated in Fig. 3.

Figure 3 illustrates the architecture representation of the EDL-based CPA detection process in the NDN
environment. The system receives the input from the NDN traffic sources because various users (malicious mu

and legitimate lu) send the request data to the router ðRnÞ to access the information from the processor. The
received data packets ðPaÞ is processed by several layers to predict the mu and lu by exploring the CPA in NDN.
The Pa is normalized to get the various features, such as access frequency f cð Þ; content diversity DðtÞ, temporal
pattern ðTiÞ, cache hit rate ðChrÞ, and anomaly indicator ðaiÞ. These features are examined by recurrent networks
that effectively process the sequence of Pa and identifies the mu and lu with maximum prediction rate. During the
analysis, a memetic optimization algorithm is incorporated to perform the local ls and global gs search to choose
the optimized parameter used to minimize the output deviations ðodÞ. Therefore, the main goal of this work is to
analyze the NDN traffic ðNDNtXÞ and classifier into normal traffic ðTxluÞ and malicious ðTxmuÞ with minimum
cost ðcÞ and maximum accuracy ðaÞ. Let us consider the traffic information tX ¼ x1; x2; . . .:xnf g; xi 2 Rd. Here, xi
is represented as features which is derived from Pa and the EDL classification is defined as

fH xið Þ ¼ Txmu otherwise
Txlu if P Txlujxið Þ[P Txlu xijð Þ

�

The overall objective of this work is then defined in Eq. (1).

Fig. 3 Architecture of EDL-based CPA detection
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max
H

a� k1c� k2Lp

a ¼ tpþ tn

total instance
c ¼ g Hð Þ

Lp ¼ a:fpþ bfn

H� ¼ arg
min
H

Ltotal

Ltotal ¼ Lcl þ Lp þ l:Lreg

9>>>>>>>>=
>>>>>>>>;

ð1Þ

According to Eq. (1), objective maxðaÞ is achieved by computing the true positive ðtpÞ, true negative ðtnÞ; and
total instances. The a computation considers the Lp misclassification penalty and hyperparameters k1 and k2 to
ensure the minimum computational cost c ¼ g Hð Þ. The H is improved with the help of the memetic optimization
that utilizes the regularization parameter l for reducing the overfitting and computational issues in NDN.

3.1 Pa Preprocessing block

The objective of this block is to clean Pa in NDN traffic data and preparing features for identifying mu. The Pa

data is defined as x1; x2; . . .:xnf g, for every xi consists of important information like content name (cÞ, time stamp
ti; packet type ðptÞ, source id sið Þ and response status Rs. The gathered Pa is examined to eliminate the irrelevant
information at a small time window ðDtÞ using the below condition and the filtered Pa is defined as in Eq. (2)

Conditions:

Cond 1 : If xi & xj satisfy ci ¼ cj & ti � tj
�� ���Dt then remove xj

Cond 2 : if c 62 recont set R; then removed xi

Cond 3 : if xi 6¼ pa standard then removexi

Cond 4 : if ti\Tstart or ti Tend ; then remove xi

According to the cond 1 the duplicate c is removed from X 2 pa is removed as
X0 ¼ Xn xj : ci ¼ cj and ti � tj

�� ���Dt
� �

. Then cond 2 is applied to remove the irrelevant data to maintain the
target cinR and the filtered data is X00 ¼ X0nfxi : c 62 Rg. Afterward cond 3 is utilized for filtering the anomalous
information or incomplete data. The condition checks the X 2 pa in terms of valid packet names, sið Þ, ðptÞ, and
ðtiÞ. The cond 3 produces the filter data as X000 ¼ X00nfxi : malformed xið Þ ¼ Trueg. Finally, cond 4 is applied
to identify the traffic window Tstart; Tend½ �. The filtering data is defined as xfinal ¼ X000nfxi : ti\Tstartorti[Tendg.
Then, the combined filtering process is defined in Eq. (2)

Xfi data ¼ Xn xj : ci ¼ cjand ti � tj
�� ���Dt

� �
nn fxi : c 62 Rgnfxi : malformed xið Þ ¼ Trueg

fxi : ti\Tstart or ti[Tendg
ð2Þ

The Xfidata data is analyzed using a normalization process that converts the X data into a unified format, which
is computed as X0 ¼ xi�l

r . After normalizing the X, features like access frequency f cð Þ; content diversity DðtÞ,
temporal pattern ðTiÞ, cache hit rate ðChrÞ, and anomaly indicator ðaiÞ. The below conditions are utilized to derive
the feature from X 2 pa.

Conditions:
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Cond 1 : c 2 Cvalid==f cð Þ

Cond 2 : ti 2 t1; t2½ �==DðtÞ

Cond 3 : ci ¼ ci þ 1==Ti

Cond 4 : Cr xið Þ 2 fHit;Missg==Chr

Cond 5 : z� score f cð Þð Þ[ s==ðaiÞ

Based on the above cond1; the f cð Þ is derived, which extracts the number of requests for a particular c; which
is obtained as f cð Þ ¼

Pn
i¼1 1ðxi ¼ cÞ. In the f cð Þ computation, 1ðxi ¼ cÞ verifies that xi the packet is relevant to

the requested content c. Then, cond2 is utilized to obtain the c variety at timet. The DðtÞ is obtained from the
content name of pðaÞ; D tð Þ ¼ ci : xi 2 X0at tf gj j. The cond3 is utilized while extracting Ti for interest packets
Ti ¼ tiþ1 � ti. This Ti feature used to identify malicious traffic because it has small intervals. Cond4 and 5 used to
obtain the Chr and ai. If c is presented in the cache, which is chr else miss and the chr is estimated as
number of cache hit

total request . Then, the cache irregularities are identified with the help of cond5; which is estimated with the

help of

1 if z� score f cð Þð Þ[ s
0 otherwise

;

�
z� score ¼ x� l

r

. Finally, the overall feature representation is defined in Eq. (3a)

U x0i
� �

¼ f cð Þ;D tð Þ;Ti;Chr;ai

� 	
ð3aÞ

fH U x0i
� �� �

¼ Txmu otherwise
Txlu if P TxlujU x0i

� �� �
[P TxmujU x0i

� �� ��
ð3bÞ

The extracted U x0i
� �

used to achieve the overall objective of the work, which is defined in Eq. (3b). Then, the
graphical analysis of pa in the preprocessing block is shown in Fig. 4.

Figure 4 illustrates that the graphical representation of Pa in the preprocessing block. The analysis uses the
access frequency distribution ðf reqÞ which is explored with the content name ðcnÞ. According to the cn, DðtÞ is
examined for every request with ti. In addition, the Ti is examined for every cn at which some intervals do not
receive any packets that indicate no traffic events. In addition, the preprocessed data was explored to determine
the hits ch and misses cm which are utilized to analyze the Txmu and Txlu in the NDN traffic. The derived features
fed into the classifier to categorize the Txmu and Txlu. To ensure the dataset is of sufficient quality, trustworthiness,
and uniformity for training the deep learning detection model, a multi-phase preprocessing pipeline was
employed. Data filtering was implemented according to four primary conditions (Cond 1–4): (1) removal of
incomplete records containing missing or null values; (2) elimination of duplicate entries to decrease noise; (3)
selection of traffic pertinent to cache interaction based on named data networking metadata; and (4) outlier
exclusion based on the interquartile range (IQR) method. To ensure balanced feature influence during training,
continuous numerical features were scaled using Min–Max normalization to [0,1] for normalization, while
categorical features such as protocol types and attack labels were one-hot encoded to maintain their categorical
nature and avoid ordinal bias. For high-dimensional sparse data, such as request content types, neural networks
with embedding layers were applied to capture latent patterns and reduce dimensionality. Using stratified sam-
pling, the dataset was divided into training (70%), validation (15%), and test (15%) sets, while preserving the class
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distribution. Furthermore, a time-series-aware split was performed to maintain temporal causality, simulating real-
world scenarios. This thorough preprocessing approach ensured integrity while enabling efficient learning and
generalization of the proposed detection framework. The detailed working process is described below.

3.2 EDL process for CPA classification

The next important phase is CPA classification, which applies the enhanced deep learning (EDL) approach. The
EDL approach uses the recurrent network with a memetic optimization algorithm to classify the U x0i

� �
¼

f cð Þ;D tð Þ;Ti;Chr; and ai
� 	

into Txmu and Txlu. Then, the process of recurrent networks is shown in Fig. 5.
The generated U x0i

� �
are unified by applying the normðU x0i

� �
Þ which predicts the minðxiÞ and max xið Þ. Then

the norm U x0i
� �� �

is computed as xi�minðxiÞ
max xið Þ�minðxiÞ

which is denoted as xnormi . The xnormi value is fed into the

recurrent layer to identify the temporal dependencies, and the parameter utilized in the classification process is
defined in Table 1.

The received input xnormi is further defined as X ¼ xnorm1 ; xnorm2 ; xnorm3 ; xnorm4 ; xnorm5

� 	
is fed into the 1st hidden

state ht which uses the W and b and produces the Zð1Þ as output by utilizing the /. The Zð1Þ is fed into the next
state htþ1 to compute the Zð2Þ. From the computed Zð2Þ value final output is predicted, and the computation of ht is
defined in Eq. (4)

Fig. 4 Visualization analysis of Pa
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H 1ð Þ ¼ / Z 1ð Þ� �
¼ / W1:X þ b1

� �
H 2ð Þ ¼ / Z 2ð Þ� �

¼ / W2:H 1ð Þ þ b2
� �

ZðoÞ ¼ Wo:H 2ð Þ þ bo

9=
; ð4Þ

The X ¼ f cð Þ;D tð Þ; Ti;Chr;ai
� 	

is processed in the recurrent layer, and the obtained ht using Eq. (5) and final
output by is computed using Eq. (6). The computed output ht is fed into the output layer by that uses the ReLU
activation function to predict the NDN traffic status.

Fig. 5 Recurrent neural network structure

Table 1 Parameter
description

Parameter Description

xnormi Normalized input

ht�1 A previously hidden layer at t time stamp

ht t time stamp hidden layer

Wh Hidden state recurrent weight value

f cð Þt t time stamp access frequency, which is weighted by WfðcÞ

Ti Request’s temporal pattern by WTi

D tð Þt t time stamp content diversity weighted by WDðtÞ

Chr Cache hit rate by WChr

/ ReLu activation function

ai Anomaly indicator by Wai

bh Hidden state bias value

W1 Dense layer one weight value

b1 Dense layer one bias

W2 and b2 Dense layer two weight and bias

Z 1ð Þ and Zð2Þ Dense layer 1 and 2 pre-activation output
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ht ¼ / Wh:ht�1 þ hf cð Þ þ hD tð Þ þ hTi
þ hai þ bh

� �
hf cð Þ ¼ Wf cð Þ:f cð Þt
hD tð Þ ¼ WD tð Þ:D tð Þt

hTi
¼ WTi

:Ti

hChr
¼ WChr

:Chr

hai ¼ Wai:ai

9>>>>>=
>>>>>;

ð5Þ

by ¼ r W oð Þ:/ W 2ð Þ:/ W 1ð Þ: f cð Þ;D tð Þ;Ti;Chr;ai
� 	

þ b 1ð Þ� �
þ b 2ð Þ� �

þ b oð Þ� �
r wo:ht þ boð Þ

�
ð6Þ

According to Eq. (6), the predicted by value is compared with the threshold value to detect theTxmu and Txlu.

The detection is done as Cl ¼ Txmu if by� 0:5
Txluif by\0:5

�
; this Cl process’s main intention is to reduce the deviations

ðLÞ. The L ¼ � 1
N

PN
i¼1 yilog byið Þ þ 1� yið Þlogð1� byi½ �. If the system receives a high L value, then the network

parameters W and b should be updated via the local ls and global gs search. The searching process improves the
neural training process and improves the overall ðaÞ. During the analysis, gs uses the genetic operators to identify
the near-optimal solutions and ls uses the gradient techniques to update the parameter recognized by gs. The
search process enhances overall data analysis and mitigates high computational problems and overfitting issues.
The first step of this work is candidate solution initialization CS ¼ fp1; p2; p3; . . .:pNg; N is population size.
Every pi denoted that the recurrent network parameters pi ¼ W 1ð Þ; bð1Þ;W 2ð Þ; bð2Þ;W 3ð Þ; bð3Þ; . . .W oð Þ; bð0Þ

� 	
. After

that, fitness function FðpiÞ is computed for pi to identify the optimized parameters for minimizing the L byi ; yið Þ:
Therefore, gs is performed by applying crossover and mutation operators to get the new solution by analyzing
parent solutions ðpi; pjÞ. After that, ls is performed in which gradient refinement is done to get the optimal
solution. The selected parameters are arranged in the search space and compared with FðpiÞ for getting the best
solution. The effective utilization of ls and gs maintains the stability between exploitation and exploration. This
searching process is defined in Eq. (7)

Potþ1 ¼ select gsðPotð Þ [ ls PO
tð Þð Þ � position update

ptþ1
c ¼ a:pti þ 1� að Þ:ptj þ d; d�N 0; r2ð Þ � gs process

ptþ1
i ¼ pti � g:rL pti

� �
� ls process

F pið Þ ¼ � 1

N

Xn
j¼1

L byi ; yið Þ � fitness fucntion

9>>>>>=
>>>>>;

ð7Þ

According to the above process, the selectedW and b parameters are updated frequently to reduce the L byi ; yið Þ.
The effective utilization of ls and gs minimize the local minima and improve the overall CPA detection a. In
addition, the integrated analysis ensures robustness and maximum convergence rate while predicting cache
pollution attacks. According to this process, the pseudocode of the CPA detection process is shown in Table 2.

According to the algorithm steps, the optimized parameters are selected from the search space by combining
the gs and ls to improve the overall network output by. The NDN network analyzes cache activity data, including
cache hit rates, miss rates, requests, and access patterns. This data is explored to extract the features
f cð Þ; D tð Þ;Ti;Chr;; ai
� 	

to identify the pattern for predicting the CPA malicious activities. Then, features are
normalized to ensure the input is consistent during data training. For every t time stamp, hidden states computes
the output by and the deviation between the outputs are reduced by estimating the fitness function F pið Þ ¼
�L byi ; yið Þ according to the local and global search. The selected parameters Oppara help to minimize the over-
fitting issues, and intricate temporal dependencies and convergence while updating the network parameters.
Therefore, the system recognizes the anomalies and attacks with maximum accuracy and ensures robustness
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while exploring NDNtX. In addition, the Oppara in neural networks improves the cache demands, which leads to
maximize the cache hit ratio Chr and minimize the retrieval delay (rdÞ. Then the Chr for various numbers of
epochs and configurations is analyzed, and the results obtained are shown in Fig. 6.

Figure 6 illustrates that the Chr analysis while updating the network parameters using the memetic optimization
algorithm Oppara. The selected Oppara utilized for fine-tuning the parameters such as learning rateðqÞ,
number of neuronsðnÞ, regularization parameter dð Þ, weight ðwijÞ, and bias ðbiÞ. These parameters are fine-tuned
continuously to enhance the classification ai while observing the Chr during the training process. The analysis
explores the frequency distribution of Chr over the epochs. Configurations of 1 to 20 parameters for every analysis
are fine-tuned based on optimization algorithms. The explored histogram was used to analyze the spread (range of
Chr), peaks (frequency of ChrÞ, and skewness (distribution status). The distribution of the Chr is used to identify
the low and high performance of the classifiers while identifying the CPA attacks. In configuration 1, the model
attains a narrow peak with a high Chr which indicates that the model ensures efficient and stable cache man-
agement. In configuration 5, the distribution of Chr is mid-range (0.4–0.6), which shows inconsistent performance
because of the suboptimal parameter updating process. Then, in configuration 10, the model ensures the lower Chr

which indicates the model is trying to adapt the network parameters. Thus, the selected Oppara helps to manage the
classifier performance, which is clearly shown in the Chr analysis. The EDL method not only ensures the high Chr

it also attains the minimum retrieval data while requesting the cache in the NDN network environment. Then the
obtained rd is shown in Fig. 7.

Figure 7 shows rd analysis of the EDL approach concerning various epochs training in the CPA detection
process. The selected Oppara creates an impact on rd on the cache management process. From the analysis,
configurations 1–5, the method attains rd minimum value and low variability. The minimum rd indicates that the
model utilizes the optimized parameters, ensuring robustness while managing the cache. The configuration
moved into a higher range from 15 to 20; then, the rd attains fluctuations while training the data in the NDN
network, sometimes leading to stability issues. However, frequent training minimizes the delay and improves
attack detection efficiency. In addition, memetic parameters and training attributes are utilized to enhance the
overall CPA attack detection process. The attained results are illustrated in Fig. 8.

Figure 8 shows that the memetic optimization impact on Chr while predicting the cache pollution attack. The
efficiency of the method is evaluated over different parameters such as population size ðIpsÞ, mutation rate ðmrÞ,
and crossover rate ðcrÞ impact on Chr. These parameters are utilized to fine-tune the network parameters, which
helps manage the cache according to user requests. The graph 8 indicates that the Chr is a relative constant for
each epoch as it stays near 95.6%. Such moderate performance is only expected as the default parameters are
designed to strike a balance between exploration efforts and exploitation. The baseline hit rate seems to follow a
curve, which is slightly decreasing. This is possibly evidence that the system was defected gradually or that the
metrics used to measure the system had improved over the same period. On the other hand, when Ips the Chr

continues to go up. The graph also indicates that the scatter points experienced smaller fluctuations when the
population size was more significant than the preceding parameters, which led to more and better solutions being
available. It can be inferred that the Ips the better the performance will be after the evolutionary algorithm has
completed searching for solutions. Furthermore, the baseline hit rate remained constant, indicating that the
increase in population size does not incur additional overhead for the system. These findings demonstrate the
intricate arrangement that should be considered when configuring the evolutionary algorithms for cache opti-
mization. The performance improves substantially when the population size is increased; however, higher
mutation rates, although necessary, can lead to instability. A combination of Ips and Chr mutations appear to
optimize trade-offs by improving performance levels with some fluctuations. At the same time, configurations
with smaller populations and low mr do not perform well in optimal search and have a slow convergence rate,
thus indicating the effect of tuning such parameters on cache effectiveness. Therefore, the frequent training of
parameters using Oppara improves the overall cache management according to the user’s request.

123 Neural Computing and Applications

https://doi.org/10.1007/s00521-025-11620-9

https://doi.org/10.1007/s00521-025-11620-9


Table 2 Algorithm for CPA detection process
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4 Findings and analysis

This section analyzes the efficiency of the EDL-based collusion pollution attack detection process. The ndnSIM
simulation framework and hierarchical topology are utilized to develop real-time applications during the analysis.
The contents are distributed in uniform and skewed patterns in which both access the traffic patterns mu and lu.
The mu create the attack in the form of interest flooding, access frequency manipulation, and content poisoning,
which makes cache pollution attacks. The CPA is identified by extracting the features f cð Þ;D tð Þ;Ti;Chr; and ai
which are fed into the recurrent networks that identify the temporal patterns by analyzing the pa and interest data.
The network performance is optimized with the help of a memetic optimization algorithm that selects the Oppara
to fine-tune the network parameters. For every run, 10–30 min is taken to complete the cache management
process. The duration ðsÞ is determined depending on the traffic complexity and network size, and the attack
injection rate is changed from 10% to 20% and 50% to evaluate the system0s efficiency at various conditions. The
efficiency of the developed system is explored using different metrics, such as cache hit rate ðChrÞ, cache
efficiency ðCeffÞ, false positive rate ðEfprÞ, false negative rate ðEfnrÞ, error rate (err), and retrieval rate ðrdÞ. These
simulation settings are developed using the Python tool that supports the PyTorch libraries and an Intel Core i7/i9
processor, 32 GB RAM, and an NVIDIA RTX 2080/3090 GPU hardware configuration is used. The network
uses 64 batch size layers, a learning rate of 0.001, 100 epochs, and 2 dense layers with 128 hidden units to obtain

Fig. 6 Analysis of Chr
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the output. The optimization technique uses a population size of 20, 50 generations, a crossover rate of 0.8, and a
mutation rate of 0.2 for implementation. This study uses the CICIDS 2017 Dataset (https://www.kaggle.com/
datasets/sateeshkumar6289/cicids-2017-dataset) [26] to evaluate EDL efficiency. The dataset consists of
parameters such as flag counts, interval time, packet length, flow duration and network behavior. The dataset also
includes active–idle times, flow indicators, and statistical measures that help identify malicious users when
sending requests in the network environment. The dataset comprises 2.8 million records collected from July 2017,
covering various attacks such as flooding, web attacks, and infiltration. Every record has 79 features that help
identify malicious and legitimate users. Then, the visualization representation of the dataset is shown in Fig. 9.

The gathered data is processed using the EDL traffic preprocessing blocks, which eliminate noise and
redundant information to reduce overfitting issues while examining the CPA in the NDN environment. The
efficiency of the EDL is compared with different algorithms described in Sect. 2: ensemble learning (EL) [17],
request pattern change algorithm (RPCA) [5], and Q-learning ICAN (QICAN) [18]. According to the analysis, the
flow duration distribution has a mean value of 686 ms, with a standard deviation of 972.51. The method ensures
that the information flow occurs effectively in both the forward and backward directions, at 20 packets and 15
packets, respectively. Then, the packet length distribution pattern has a mean value of 1781.53 bytes for forward
packet length and 1090.57 bytes in a right-skewed distribution. The system ensures that the maximum packet

Fig. 7 rd analysis
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Fig. 8 Memetic optimization impact on Chr
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sizes are consistent, which is a forward packet length maximum distribution of 397 bytes. Then, the model
extends the IAT max distribution rate to 7000 ms, indicating that the packet has a specific flow while distributing
data in the network environment. The result obtained from the implementation setup is shown in Table 3. The
analysis is performed for different attack injection rates (10%, 20%, 30%, 40% and 50%).

Table 3 illustrates the efficiency analysis of EDL while predicting the CPA in the NDN environment. The EDL
efficiency is examined in various varrate and ns in which the EDL method achieves high Chr achieve rates of up to
99% compared to other methods. In addition, if the user enters into the system method to recognize the malicious
users mu and legitimate user lu with a maximum recognition accuracy of 98% above. The effective parameter
utilization procedure reduces the retrieval delay and deviation between the outputs. The enhanced deep learning
(EDL) stands out due to its unique memory organization technique, which efficiently utilizes intelligent caching
mechanisms. The EDL achieves 96–99% hit rates, significantly higher than the 75–80% averages of legacy
systems. In addition, EDL has a two-level cache structure, whereby the L1 cache is used for data that are used
more often, allowing for fast access. At the same time, the L2 comprises data about a more extended range
dependency, which allows limited access. This interplay between predictive caching and a multi-tiered memory
architecture enables EDL to perform well on many workloads. Then, the efficiency of the EDL approach is
compared with other existing methods, such as federated learning (FL) [20], the popularity variation mechanism
(PV) [22], and the interface-based popularity control (IBPC) [25]. The obtained results are then shown in Fig. 10.

The proposed EDL (efficient deep learning-based caching system) outperforms FL, PV, and IBPC in all
primary metrics, confirming its suitability for intelligent caching systems. EDL maintains highly relevant cached

Fig. 9 Visualization analysis of dataset
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Table 3 Efficiency Analysis of EDL at different varrate and ns

varrate Metrics EDL EL RPCA QICAN

varrate : 10% Chr 98.98 ± 0.12 88.37 ± 2.40 91.50 ± 2.34 85.28 ± 2.67

Ceff 97.38 ± 0.22 87.57 ± 2.30 92.45 ± 2.34 87.71 ± 2.73

Efpr 7.82 ± 0.10 8.35 ± 0.22 8.43 ± 0.03 8.20 ± 0.23

Efnr 2.34 ± 0.02 10.32 ± 0.12 9.26 ± 2.45 13.70 ± 1.46

rd 36.3 ± 0.23 53.89 ± 3.50 47.25 ± 3.23 56 ± 1.34

err 5.24 8.66 8.24 7.5

varrate : 20% Chr 99.0 ± 0.12 92.27 ± 2.40 91.25 ± 2.34 86.50 ± 2.67

Ceff 98.65 ± 0.12 91.42 ± 2.40 91.87 ± 2.34 87.30 ± 2.67

Efpr 8.25 ± 0.10 8.93 ± 0.22 9.02 ± 0.03 8.320 ± 0.23

Efnr 2.02 ± 0.02 9.68 ± 0.12 8.45 ± 2.45 12.10 ± 1.46

rd 34.34 ± 0.23 50.02 ± 3.50 48.2 ± 3.23 50.20 ± 1.34

err 5.53 8.7 8.64 8.2

varrate : 30% Chr 99.02 ± 0.12 91.47 ± 2.40 92.93 ± 2.34 87.24 ± 2.67

Ceff 98.76 ± 0.12 91.65 ± 2.40 92.64 ± 2.34 88.43 ± 2.67

Efpr 8.30 ± 0.10 9.30 ± 0.22 9.15 ± 0.03 8.30 ± 0.23

Efnr 1.82 ± 0.02 8.25 ± 0.12 6.43 ± 2.45 11.02 ± 1.46

rd 31.0 ± 0.23 44.30 ± 3.50 39.3 ± 3.23 48.0 ± 1.34

err 5.35 9.2 8.23 8.4

varrate : 40% Chr 98.98 ± 0.23 89.50 ± 0.12 91.20 ± 0.32 85.70 ± 1.46

Ceff 98.34 ± 0.21 90.50 ± 0.12 92.34 ± 0.32 86.30 ± 1.46

Efpr 8.10 ± 0.02 8.50 ± 0.20 8.90 ± 0.10 8.10 ± 0.10

Efnr 1.50 ± 0.13 10.20 ± 0.14 8.50 ± 1.45 13.20 ± 2.50

rd 30 ± 0.13 43.0 ± 0.23 40 ± 1.20 52.00 ± 1.30

err 5.16 8.25 8.5 7.38

varrate : 50% Chr 98 ± 0.24 92.80 ± 0.13 93.10 ± 3.35 88.34 ± 1.50

Ceff 98.34 ± 0.12 91.560 ± 0.13 93.460 ± 3.35 87.84 ± 1.50

Efpr 7.30 ± 0.01 8.34 ± 0.01 8.53 ± 0.01 8.13 ± 0.23

Efnr 1.32 ± 0.13 7.24 ± 0.34 7.43 ± 1.40 11.34 ± 3.10

rd 30 ± 0.30 42.2 ± 3.00 44.3 ± 0.23 54 ± 0.23

err 4.5 7.7 7.9 7.1

ns : 10 Chr 98. ± 0.001 91.80 ± 1.20 94.50 ± 1.40 90.30 ± 1.20

Ceff 98.90 ± 0.30 91.40 ± 2.40 92.90 ± 2.50 88.40 ± 2.40

Efpr 7.60 ± 0.0002 9.24 ± 0.02 8.30 ± 0.30 8.50 ± 0.30

Efnr 1.40 ± 0.02 8.60 ± 1.40 7.20 ± 1.40 6.00 ± 2.60

rd 31.00 ± 1.20 51.40 ± 2.50 46.00 ± 1.20 38.00 ± 2.10

err 4.3 9.1 8.91 7.4

ns : 20 Chr 99.10 ± 0.11 91.70 ± 0.18 94.40 ± 0.25 89.10 ± 0.34

Ceff 98.90 ± 0.12 90.30 ± 0.22 92.70 ± 0.21 88.30 ± 0.33

Efpr 8.03 ± 0.01 8.56 ± 0.01 8.20 ± 0.01 8.60 ± 0.12

Efnr 1.54 ± 0.13 8.40 ± 0.22 8.10 ± 0.30 11.60 ± 0.40

rd 29.4 ± 0.30 44.00 ± 0.30 33.00 ± 0.23 36.00 ± 0.23

err 3.54 8.45 7.8 7.3

ns : 30 Chr 99.20 ± 0.11 91.50 ± 0.18 94.30 ± 0.25 87.30 ± 0.34

Ceff 98.67 ± 0.12 90.10 ± 0.22 93.50 ± 0.21 85.70 ± 0.33

Efpr 7.20 ± 0.01 8.40 ± 0.01 8.10 ± 0.01 8.30 ± 0.12

Efnr 1.40 ± 0.13 9.30 ± 0.22 7.30 ± 0.30 11.10 ± 0.40

rd 28.00 ± 0.30 39.00 ± 0.30 40.00 ± 0.23 49.00 ± 0.23

err 3.5 7.8 7.4 8.32

123 Neural Computing and Applications

https://doi.org/10.1007/s00521-025-11620-9

https://doi.org/10.1007/s00521-025-11620-9


Table 3 (continued)

varrate Metrics EDL EL RPCA QICAN

ns : 50 Chr 99.40 ± 0.10 93.50 ± 0.15 95.210 ± 0.20 88.50 ± 0.30

Ceff 99.10 ± 0.11 91.60 ± 0.20 94.520 ± 0.25 87.30 ± 0.33

Efpr 7.54 ± 0.01 8.30 ± 0.01 9.31 ± 0.01 8.60 ± 0.12

Efnr 1.32 ± 0.12 6.46 ± 0.22 7.40 ± 0.30 11.45 ± 0.40

rd 27.4 ± 0.30 35.00 ± 0.30 39.00 ± 0.23 52.00 ± 0.23

err 3.2 6.9 7.2 8.23

Fig. 10 Efficiency analysis of EDL. a Cache hit rate, b cache efficiency, c false positive rate, d false negative rate, e retrieval
delay, and f error rate
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content with a 98.5% cache hit rate and 97% cache efficiency, outperforming alternatives (82–85% hit rates). The
system’s low false positive rate (3.5%) and false negative rate (2%) surpass those of competitors by 2–5 times,
demonstrating its accuracy in content identification and retrieval. EDL has the lowest retrieval delay (25 ms),
real-time responsiveness, and an ultra-low error rate (2.5%), which is half that of its nearest competitor. The
unique deep learning architecture of EDL dynamically adapts to content access patterns while minimizing
computing costs to yield these gains. EDL is a reliable option for current caching systems that require accuracy,
speed, and efficiency due to its consistent performance gap across all measures, especially error-sensitive mea-
surements. The system’s balanced hit optimization (high values) and error minimization (low values) suggest that
it resolves the cache responsiveness–reliability trade-off, making it suitable for latency-sensitive applications such
as edge computing and content delivery networks. In the present setup, the attack injection rates were evaluated at
10%, 20%, 30%, 40%, and 50% to assess the effectiveness of the proposed deep learning detection system’s
framework. These discrete levels, while providing a baseline understanding of system performance, fall short of
capturing the multifaceted complexities of the NDN world, wherein cache pollution attacks (CPAs) are often
executed in erratic, bursty, or sustained low-intensity patterns or through prolonged periods of subdued intensity.
This is particularly important, given that system performance does not degrade linearly with the level of attack, as
noted in federated learning-based NDN security models [20], the popularity variation mechanism [22], and
interface-based popularity control (IBPC) strategies [25]. These works highlight that even slight increases in the
rate of attack can disproportionately damage cache optimization, detection accuracy, and processing delays. In
support of these conclusions, further extensions of this research should be done using coarser levels of injection
(5%, 15%, 25%) alongside temporal burst models that simulate adversarial behavior. In addition, analysis would
reveal how detection accuracy and resource efficiency are related to each other, thereby increasing the practical
relevance and scope of the proposed framework.

5 Conclusion

Thus, the paper discusses detecting enhanced deep learning (EDL)-based cache pollution attacks in NDN. This
study creates effective simulation settings with hardware setup to evaluate the collected CICIDS 2017 dataset
information. The traffic preprocessing block is designed with a setup filtering and normalization process that
unifies the data, overcoming overfitting issues. Then, the recurrent layer and the memetic optimization technique
are applied to predict the malicious and legitimate users with a maximum prediction rate. The network receives
input from the preprocessing block that covers every request attribute, such as frequency access request, cache hit
rate, temporal pattern, content diversity, and anomaly indicator. These features help to identify how effectively
the system recognizes the irrelevant access and provides an effective cache management process. During the
classification process, memetic operators such as selection, crossover, and mutation identify the best solution by
balancing the exploitation and exploration. The selected parameter balances the system’s robustness and flexi-
bility while sending requests in the NDN environment. The EDL approach attains a 3.2 error rate and 98–99%
cache hit rate from the developed system compared to other methods. The variability rates of various attacks and
the network size determine the system’s effectiveness. Although the system effectively processes the different
features when handling high-dimensional data, it incurs a high computation overhead. Therefore, the system
requires optimization techniques in the future to reduce the feature subset and manage computation overheads by
up to 10%.
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