

Algorithms for Intelligent Systems

Series Editors: Jagdish Chand Bansal · Kusum Deep · Atulya K. Nagar

Satyasai Jagannath Nanda
Himanshu Mittal
Meng-Hiot Lim *Editors*

Proceedings
of International
Conference
on Paradigms
of Communication,
Computing and Data
Analytics

PCCDA 2025, Volume 1

Springer

Algorithms for Intelligent Systems

Series Editors

Jagdish Chand Bansal, Department of Mathematics, South Asian University,
New Delhi, India

Kusum Deep, Department of Mathematics, Indian Institute of Technology Roorkee,
Roorkee, India

Atulya K. Nagar, School of Mathematics, Computer Science and Engineering,
Liverpool Hope University, Liverpool, UK

This book series publishes research on the analysis and development of algorithms for intelligent systems with their applications to various real world problems. It covers research related to autonomous agents, multi-agent systems, behavioral modeling, reinforcement learning, game theory, mechanism design, machine learning, meta-heuristic search, optimization, planning and scheduling, artificial neural networks, evolutionary computation, swarm intelligence and other algorithms for intelligent systems.

The book series includes recent advancements, modification and applications of the artificial neural networks, evolutionary computation, swarm intelligence, artificial immune systems, fuzzy system, autonomous and multi agent systems, machine learning and other intelligent systems related areas. The material will be beneficial for the graduate students, post-graduate students as well as the researchers who want a broader view of advances in algorithms for intelligent systems. The contents will also be useful to the researchers from other fields who have no knowledge of the power of intelligent systems, e.g. the researchers in the field of bioinformatics, biochemists, mechanical and chemical engineers, economists, musicians and medical practitioners.

The series publishes monographs, edited volumes, advanced textbooks and selected proceedings.

Indexed by zbMATH.

All books published in the series are submitted for consideration in Web of Science.

Satyasai Jagannath Nanda · Himanshu Mittal ·
Meng-Hiot Lim
Editors

Proceedings of International Conference on Paradigms of Communication, Computing and Data Analytics

PCCDA 2025, Volume 1

Springer

Editors

Satyasai Jagannath Nanda
Department of Electronics and Communication Engineering
Malaviya National Institute of Technology
Jaipur, India

Himanshu Mittal
Department of AI and Data Sciences
Indira Gandhi Delhi Technical University for Women
New Delhi, Delhi, India

Meng-Hiot Lim
Department of Electrical and Electronics
Nanyang Technology University
Singapore, Singapore

ISSN 2524-7565

Algorithms for Intelligent Systems

ISBN 978-981-96-6842-7

<https://doi.org/10.1007/978-981-96-6843-4>

ISSN 2524-7573 (electronic)

ISBN 978-981-96-6843-4 (eBook)

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2026

This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Singapore Pte Ltd. The registered company address is: 152 Beach Road, #21-01/04 Gateway East, Singapore 189721, Singapore

If disposing of this product, please recycle the paper.

Preface

This book contains outstanding research papers from the 5th International Conference on Paradigms of Communication, Computing and Data Analytics (PCCDA 2025) organized by Pt. Lalit Mohan Sharma Campus, Rishikesh, Sri Dev Suman Uttarakhand University, Uttarakhand, India, and technically sponsored by Soft Computing Research Society, India. The conference was conceived as a platform for disseminating and exchanging ideas, concepts, and results of the researchers from academia and industry to develop a comprehensive understanding of the challenges of the advancements in communication, computing, and data analytics and innovative solutions for current challenges in engineering and technology viewpoints. This book will help strengthen the affable networking between academia and industry. The conference focused on machine learning, deep learning algorithms, models, and their applications.

We have tried our best to enrich the quality of the PCCDA 2025 through a stringent and careful peer-review process. PCCDA 2025 received many technical contributed articles from distinguished participants from home and abroad. PCCDA 2025 received 443 research submissions. After a very stringent peer-reviewing process, only 47 high-quality papers were finally accepted for presentation and the final proceedings.

This book presents the first volume of 24 research papers on communication, computing, and data analytics and serves as reference material for advanced research.

New Delhi, India
Jaipur, India
Singapore

Himanshu Mittal
Satyasai Jagannath Nanda
Meng-Hiot Lim

Contents

1	Convolutional Network Optimization for Call Identification of African Bird Species Using Modified Metaheuristics	1
	Snezana Malisic, Mihajlo Protic, Vladimir Markovic, Smiljana Tedic, Luka Jovanovic, Nebojsa Bacanin, and Miodrag Zivkovic	
2	Wealth Recommendation Conversational Finance Assistant Using NLP, Transformer Models, and LangChain Technologies	17
	S. Selva Kumara Samy, Batchu Devarchith Parashara, Gudla Sai Nitish, N. Gopinath, C. G. Anupama, and C. Arun	
3	Advanced Chest X-Ray Analysis for Predicting Pulmonary Diseases Using Deep Learning Techniques	31
	Vanshraj Singh Rathore, Akshar Kankar, and Manoj Kushwaha	
4	Convolutional Neural Networks-Based Prediction of Bone Fracture in Medical Imaging	43
	Disha Bajaj, Gauri Mittal, and Ritika Kumari	
5	Transfer Learning for Generalized Multi-Species Crop Disease Classification: A Comparative Analysis of Fine-Tuned CNN Models	55
	Daisy Wadhwa and Kamal Malik	
6	Exploring Temporal Video Captioning Using Deep Learning	69
	Velchand Madhukar Hole and Sandip Shankarrao Patil	
7	Optimized Segmentation for Accurate Rooftop Solar Power Estimation Using Satellite Images	87
	Bandam Deekshitha, Paduru Akshaya Reddy, Krushi Sirimalle, T. Satyanarayana Murthy, K. Gangadhara Rao, and P. Ramesh Babu	

8	Performance Study of Hybrid PO-FUZZY MPP Tracking for SEPIC Converter in Partial Shading Condition of PV	99
	J. Malathi, M. Marimuthu, B. Paranthagan, S. Anu Thilak, D. Sanjay, and P. Navinkumar	
9	Pathways to Smart Detection and Notification of Anomalies in Financial and Insurance Datasets	115
	Vinayak Pillai	
10	Classification of Thyroid Nodule in Ultrasound Images Using CNN-SVM Hybrid with Data Augmentation	133
	Duong Trong Luong, Dang Le Dat, Nguyen Phuong Huy, Duong Minh Khanh, Tran Ngoc Tuan, and Do Duy Thai	
11	Decentralized Blockchain-Based Cloud Storage with Smart Contracts and ABE for Enhanced Security	145
	L. Naveenkumar and S. H. Manjula	
12	A Quantitative Structure-Activity Relationship Model for Optimization and Feature Selection for Predicting Bioactivity	155
	Selina Hodel, Rolf Dornberger, and Thomas Hanne	
13	Segmentation of Retina Images Using Deep Learning Model and Explainable AI	167
	Sudha S. Tuppad, Vidya S. Handur, and Vishwanath P. Baligar	
14	Denoising Filters for Enhancing Histopathological Imaging Quality in Ovarian Cancer Diagnosis	181
	K. Anandakumar and C. Chandrasekar	
15	Novel Symlet Denoising Autoencoder for CT Diagnosis of Respiratory Diseases	195
	S. Nivetha and H. Hannah Inbarani	
16	ViT-LSTM: Image Caption Generation	215
	Astha Kathar, Mithil Gogri, and Arsh Mathur	
17	Buried Landmine Detection Using Deep Convolutional Neural Networks	227
	R. S. Ponmagal, V. Srividhya, Sujatha Kesavan, G. Vijaya Gowri, N. P. G. Bhavani, and U. Janaki	
18	Electrocardiogram Signal-Based Analysis and Prediction of Emotions Using Deep Networks	237
	L. Monish and S. G. Shaila	
19	Soft Computing-Based PID Controller Design for PMDC Motor	247
	Ramakant S. Patil, Sharad P. Jadhav, and Machhindranath D. Patil	

20	Gen AI in Market Research: Synthesizing Consumer Insights from Unstructured Data	261
	Guru Prasad Selvarajan	
21	The Design of Scalar AES Instruction Set Extensions for RISC-V Processor	277
	Chinmay Parmar and Vijay Savani	
22	Factors Affecting Research Outcomes in South Indian Higher Education Institutions Using Fuzzy-Set Qualitative Comparative Analysis	291
	Geo Kuruvila George, Georgy P. Kurien, N. Ramakrishnan, and Sreerengan V. R. Nair	
23	Dynamic Resource Allocation in Cloud Computing Environments: AI-Driven Approaches for Optimizing Workload Distribution and Cost Efficiency	313
	Sumit Bhatnagar and Roshan Mahant	
24	A Comprehensive Analysis of DNA Sequencing Using Machine Learning: SVM, Random Forest, and Enhanced Encoding Techniques	329
	Akash Singh Yadav, Avishek Singh, and Manoj Kushwaha	

Chapter 17

Buried Landmine Detection Using Deep Convolutional Neural Networks

**R. S. Ponmagal, V. Srividhya, Sujatha Kesavan, G. Vijaya Gowri,
N. P. G. Bhavani, and U. Janaki**

1 Introduction

The global rise in terrorism increases on a daily basis, despite the advancements in government measures for combating terrorists. This has posed a serious threat to the government and civilians. The development of more security systems is required to curb this menace. The use of weapons by terrorists has a significant impact on the public, psychological effects, and economic costs of society. Thousands of people die annually as a result of terrorist's violence. It is affirmed that children that are exposed to high levels of terrorism in their communities usually face a high level of psychological trauma [1]. Children that witness terrorist activities or those that become victims can experience negative psychological effects for a very long time. There are two different types of weapons: the primary weapon and the secondary weapon. Studies show that handheld guns and knives are the primary weapons mostly

R. S. Ponmagal

Department of CTECH, SRM Institute of Science and Technology, Kattankulathur, India

V. Srividhya

EEE Department, Meenakshi College of Engineering, Chennai, India

S. Kesavan

Department of EEE, Dr. M.G.R. Educational and Research Institute, Chennai, India

G. Vijaya Gowri

EEE Department, K.S. Rangasamy College of Technology, Namakkal, India

N. P. G. Bhavani (✉)

Department of Electronics and Communication Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, India

e-mail: sbreddy9999@gmail.com

U. Janaki

EEE Department, Vels Institute of Science, Technology and Advanced Studies, Chennai, India

e-mail: janaki.se@velsuniv.ac.in

used by terrorists for their nefarious activities. These tools are normally hidden by these terrorists whenever they want to carry out their operation until they get to their target. On this note, these researchers want to develop a model that can identify these disruptive tools in humans, monitor any suspicious activities, and report the same to law enforcement agencies for further necessary actions [2].

The use of landmines such as improvised explosive devices (IED), guns, and knives has been a major threat to Nigerians for the past decade, which has involved a series of attacks by Nigerian terror organizations that make use of these dangerous weapons for their nefarious activities [3]. Unique among its sort occurred in Nigeria in 1986 when a letter bomb was sent to Dele Giwa in his house, which led to his untimely death [4]. Nothing of the sort was heard until 2011, when a series of blasts occurred at the UN headquarters in Abuja that claimed many lives and destroyed lots of properties [5]. These incidences have been occurring since then at different places, such as markets, places of worship, bus stops, and campuses, where many people are involved [6]. The most advanced and dangerous new bombs use mobile phones to enable terrorists to set off a device immediately [7]. This arose with the development of weapon detection using CNN. The key contribution is to detect the buried landmine using deep convolutional neural networks.

1.1 *Convolutional Neural Network (CNN)*

An integral part of deep learning that is used for intelligence, processing, accuracy, and data improvement. It is composed of a multi-data processing layer that trains the data representation through an abstraction of the various levels. Convolutional neural network (CNN) is been used in various research studies such as: human pose segmentation, face recognition, image classification, image detection, speech recognition, and so on [8]. CNNs have been found to be more accurate and faster, and it is a combination of layers in which each layer plays a distinct role in the network [9].

1.2 *Object Detection*

Object detection according to [10] is a term used to describe the process of locating things inside an image. Detection of face, pedestrian detection, and detection of skeleton are some of the most common tasks in object detection. One of the fundamental issues in computer vision is object detection, and it is very useful in providing information for semantic comprehension of images and videos. It is also useful in different applications like image categorization, analysis of human behavior, face recognition, and autonomous driving detection. Object detection can be viewed as a means of finding and classifying objects in an image. This can be approached using deep learning like regions with CNN that combines rectangular region indicating the

features. Object detection is the combination of localization and classifications. It uses feature extraction and learning algorithms or models to recognize instances of various category objects [11]. Object detection is the estimation of the class and location of objects contained within an image. It is basically an instance-wise vision task. Prior to the rise of deep learning, object detection in computer vision was accomplished using manually created machine learning features including shift-invariant feature transform, histogram of directed gradients, and many more [12].

Some variables were pointed out by researchers [3] that can be used to identify the terrorists, especially in a gathering. This can be further strengthened by developing a model for detecting such weapons in order to eradicate such a menace in our society. The use of weapons to perform evil acts has been posing a serious threat to Nigerians, as seen during number of attacks by the terrorist. This kind of occurrence claimed numerous lives and left numerous buildings and businesses in ruins for a decade in Nigeria. The deployment of improvised explosive devices, targeted killings, ambushes, drive-by shootings, suicide bombers, and kidnappings are some of the terrorists' tactics that call for urgent attention [13].

1.3 Research Motivation

Insecurity has been a major challenge confronting our societies these days. There are rumors of wars from different quarters of the world almost every day with the use of weapons. This is worrisome and calls for concern. Weapons are harmful objects that are used by some groups of people, most especially terrorists to injure governments, civilians, and the military. Most of these weapon objects are not easily identified by naked eyes. On this basis, there is a need to develop a model that can be used to identify and detect these objects on the human body, especially while in a crowd, to save people from being injured.

1.4 Aim and Objectives of the Study

To develop ResNet50, ResNet10, InceptionV1, and multi-magnification deep residual network (MM-ResNet) models to identify and detect any form (anti-personnel and anti-tank mines) of buried landmines from the aerial infrared imagery captured by the drone.

2 Related Works

It is observed that automatic control system should be the primary key for security measure with increased number of criminal activities [1–4]. A model that detects seven different types of weapons using deep learning method were proposed by the researchers. An object detection algorithm [5–8] was proposed by jointing semantic segmentation (SSOD) for images. One of the researchers improved the convolutional pose machines for estimating human pose using image sensor data [9–11]. The goal was to create a new system that uses Google neural network and convolutional pose machines to estimate human position. Few of them worked on the design of a training network based on a convolutional neural network for the classification of objects [12]. The goal was to create a convolutional neural network-based training network and train the picture dataset for object classification in a limited number of class problems. Visible light camera sensors were used for detection of night time images with convolutional neural network-based human detection [13]. The goal was to use a convolutional neural network to detect humans in a range of situations. Fox et al. (2017) [3], worked on the simulation and mathematical modeling for the identification of suicide bombers. The plan was to use radar to find people wearing suicide bomb vests with wires for detonation. Rafi (2016) [9] explored an effective convolutional network for estimating human poses. A network architecture was created with a minimal memory footprint that is effective for estimating human position, and he trained it with components that follow best practices for effective learning. The objective was to learn features at various scales and in various levels. Akcay et al. (2020) used several CNN-driven detection paradigms, including sliding window-based CNN, to work on a convolutional neural network architectures to detect and categorize object within X-ray baggage security footage [2]. In all the literature that was evaluated, no researchers investigated the use of convolutional neural networks to detect hidden objects. Therefore, in order to protect civilians from the threat of insecurity in the society, there is need to identify all instances of weapons on human body, especially when in a crowded setting.

3 Methodology

The proposed method was used to detect the landmines using ResNet50, ResNet10, InceptionV1, and MM-ResNet, to find the anti-personnel and anti-tank mines as objects on an image. ResNet50, ResNet10, InceptionV1, and the proposed multi-magnification deep residual network (MM-ResNet) model is a type of deep learning approach that is used to detect various objects on an image. The various CNN models first generate the region of interest. These regions may contain a buried landmine identified using a selective search algorithm. The computation of this algorithm is based on hierarchical grouping of similar regions based on color similarity, fitness, shape, size, and texture.

Color Similarity: This works on grouping the most similarly colored regions as in Eq. 1

$$S_{color}(R_i, R_j) = \sum_{k=1}^n \min(C_i^k, C_j^k) \quad (1)$$

where S is the similarity, and $C_i^k, C_j^k = K^{th}$ the values of histogram bin of region R_i and R_j of the object.

Texture Similarity: This is calculated by generating Gaussian derivatives as in Eq. (2).

$$S_{texture}(R_i, R_j) = \sum_{(k=1)}^n \min(t_i^k, t_j^k) \quad (2)$$

where : $t_i^k, t_j^k = K^{th}$ are the value of texture histogram bin of region R_i and R_j , respectively.

Size Similarity: This makes smaller region merge easily by reducing many bounding boxes to fewer ones that contain objects within the given image.

$$S_{size}(R_i, R_j) = 1 - \left(\frac{\text{size}(R_i) + \text{size}(R_j)}{\text{size}(img)} \right) \quad (3)$$

Fit Similarity: This merges different regions that are fit with each other to reduce the number of bounding boxes to fewer ones for easy identification. This is obtained using Eq. (4).

$$S_{fit}(R_i, R_j) = 1 - \left(\frac{(\text{size}(BB_{ij}) - \text{size}(R_i) - \text{size}(R_j))}{\text{size}(image)} \right) \quad (4)$$

Equations (1–4) are combined to form Eq. (5). This will be used to determine the presence of an object(s) in the image. This is obtained in Eq. (5).

$$S_{R_i R_j} = a_1 * s_{color}(R_i, R_j) + a_2 * s_{texture}(R_i, R_j) + a_3 * s_{size}(R_i, R_j) + a_4 * s_{fit}(R_i, R_j) \quad (5)$$

The CNN classifies the cropped and resized regions into weapons and non-weapons. Performance evaluation was measured using detection rate, accuracy, and precision. Detection rate measures the percentage of true targets that is detected. It is obtained using Eq. (6).

$$\text{Detection Rate(DR)} = \frac{\text{TP}}{(\text{TP} + \text{FN})} \quad (6)$$

Accuracy is the measure of the actual performance of the system with regard to both correctly detecting and rejecting targets. It is calculated by the sum of the true positives and the true negatives relative to the total number of GT objects as obtained in Eq. (7).

$$Accuracy(A) = (TP + TN) / (TP + TN + FP + FN) \quad (7)$$

Precision is the fraction of detected items that are correct. This is obtained in Eq. (8).

$$Precision = TP / (TP + FP) \quad (8)$$

4 Results and Discussion

4.1 Training the Network for Classification

The datasets were trained for classification. The images were converted to JPG, for the datasets to follow the same format and the datasets were converted to XML file, because the targets were represented as XML files. The target in XML files was converted into strings; “0” to represent anti-personnel mines and 1 to represent anti-tank mines”. The RGB format size of the images is $227 \times 227 \times 3$. Same function was developed for the four models used for buried landmine detection. They are the ResNet50, ResNet101, Inception model, and the proposed multi-magnification deep residual network model (MM-ResNet).

4.2 Confusion Matrix for the Models

Figure 1 denotes the confusion matrix for the various models used for predicting the landmines.

<table border="1" style="display: inline-table; vertical-align: middle;"> <tr> <td style="background-color: #90EE90;">19</td><td style="background-color: #FFFF99;">10</td></tr> <tr> <td style="background-color: #FF9999;">05</td><td style="background-color: #FFFF99;">26</td></tr> </table> True label Predicted	19	10	05	26	<table border="1" style="display: inline-table; vertical-align: middle;"> <tr> <td style="background-color: #90EE90;">25</td><td style="background-color: #90EE90;">04</td></tr> <tr> <td style="background-color: #FF9999;">21</td><td style="background-color: #FFFF99;">10</td></tr> </table> True label Predicted	25	04	21	10	<table border="1" style="display: inline-table; vertical-align: middle;"> <tr> <td style="background-color: #90EE90;">00</td><td style="background-color: #90EE90;">29</td></tr> <tr> <td style="background-color: #FF9999;">00</td><td style="background-color: #FF9999;">31</td></tr> </table> True label Predicted	00	29	00	31	<table border="1" style="display: inline-table; vertical-align: middle;"> <tr> <td style="background-color: #90EE90;">27</td><td style="background-color: #90EE90;">02</td></tr> <tr> <td style="background-color: #FF9999;">03</td><td style="background-color: #FFFF99;">28</td></tr> </table> True label Predicted	27	02	03	28
19	10																		
05	26																		
25	04																		
21	10																		
00	29																		
00	31																		
27	02																		
03	28																		

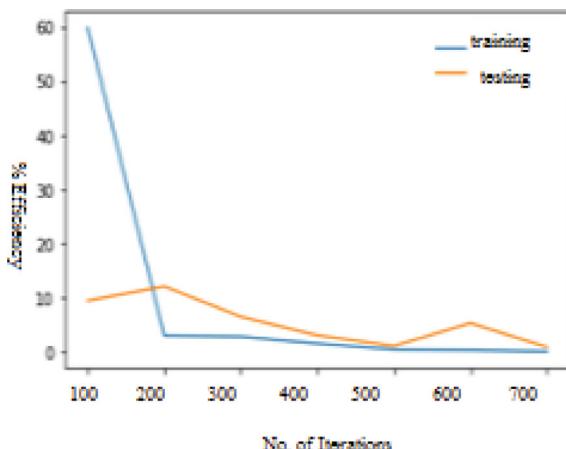
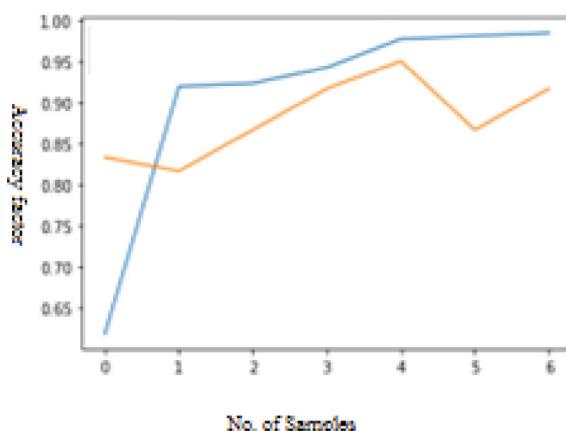

Fig. 1 Confusion matrix representation. This figure denotes the confusion matrix for the various CNN models denoting the relation between true and predicted classes in determining the hidden landmines. It is matrix representation which deliberates on the performance of the classifier indicating the correct and incorrect predictions

Table 1 and Figs. 2 and 3 clearly demonstrated that MM-ResNet has a sensitivity rate of 94%, specificity rate of 91%, and accuracy rate of 93% which were better than the other models like inception model, ResNet50, and ResNet101. The comparison between the models is represented in Fig. 4.


Table 1 Training results for the ResNet50, ResNet101, Inception, and MM-ResNet

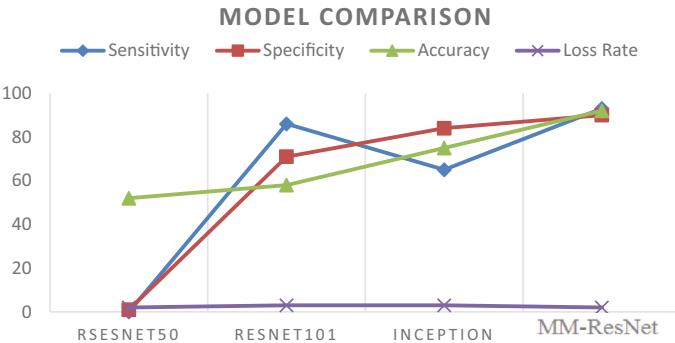

	RsesNet50	ResNet101	Inception	MM-ResNet
Sensitivity	5	87	66	94
Specificity	10	72	85	91
Accuracy	53	59	76	93
Loss rate	4	2	3	1

Fig. 2 Graph for training the deep learning neural network model. Plot for training rate of MM-ResNet-target Vs actual values. This is a graphical illustration where the proposed deep learning models are made to learn the patterns of the input images for classification purpose

Fig. 3 Graph for testing the deep learning neural network model. Plot for testing rate of MM-ResNet-target Vs actual values. This is a graphical illustration with which the performance of the proposed deep learning neural network model is tested for obtaining the correct output

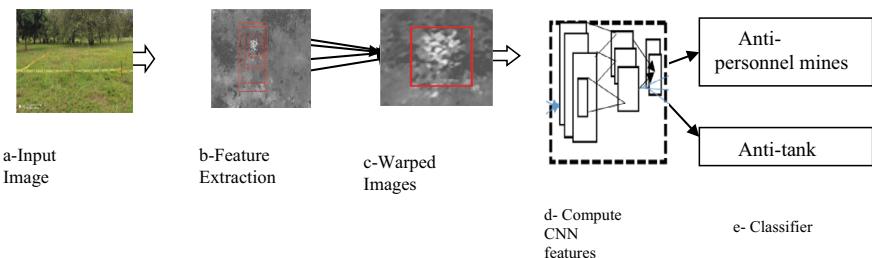


Fig. 4 Graphical representation for comparison of various DNN models. The ResNet50 and MM-ResNet have the lowest values and highest values for the performance measures, respectively

4.3 Performance Evaluation

The performance of the MM-ResNet model was evaluated by the prepared test data from images of anti-personnel mines and anti-tank mines captured by the infrared camera mounted on the drone. MM-ResNet, a type of deep learning approach from selective search algorithm, was adopted to test the accuracy of the model. This is shown in Fig. 5. From Fig. 5, a represents the input image, 'b' is the extracts series of region proposals from the image, 'c' produces warped images, 'd' computes feature for each proposal using a convolutional neural network (CNN), and 'e' denotes the classified each region into various categories [5].

The weights of the individual neurons were adjusted to extract the right features from the images. This method of adjusting the weights refers to training the neural network. The CNN starts the training with random weights, and the researcher provides the neural network with datasets of images annotated with their corresponding classes. The MM-ResNet compares the output of various images with its

Fig. 5 Block diagram for detection of landmines using MM-ResNet. From this figure, a represents the input image, 'b' is the extracts series of region proposals from the image, 'c' produces warped images, 'd' computes features for each proposal using a convolutional neural network (CNN), and 'e' denotes the classified each region into various categories

correct label assigned with random values after processing. This makes it easier for the network to decide which parts are to be adjusted instead of making random corrections. Each run of the entire training dataset is called an epoch. During training, the MM-ResNet passes through a number of epochs and modifies the weights. The neural network gets a little bit more adept at categorizing the training images after each epoch. The CNN makes fewer and smaller changes to the weights as it gets better until the network converges. Sufficient datasets are necessary to train sophisticated models, but in this situation, obtaining large datasets for the study was difficult. Datasets were immediately loaded from Google Drive, utilizing the mount drive approach. The runtime instance received a full import of the drive's data. In order to access the datasets, Google Drive was mounted. An image labeler was used to construct the object detection system in a more organized manner. The predicted coordinates were evaluated and contrasted with the actual ground true coordinates in order to evaluate an item detector. In addition to classifying the object in the image, their location within the image was also determined. Some of the objects detected with the developed model and their interval rates. This implies that the developed model can be used to detect an object hidden by a human being.

5 Conclusion

Due to the increase in terrorist activities in societies nowadays, it is imperative for individuals, organizations, and the government to devise a means of securing their environment. This study developed a model that identified hidden mines in warfare and classified them as anti-personnel mines or anti-tank mines or non-explosive mines whose images are taken from infrared thermal camera. The essence of this work is to provide a safe and secure military environment during warfare. The limitation of this work is restricted to anti-personnel mines or anti-tank mines only. It can also be recommended that further research is to be carried out on the detection of complex weapons, highly explosive materials and even to nuclear or biological weapons.

References

1. Adewumi MG, Adewale OS, Akinwumi AO, Ajisola KT (2022) Security intelligence framework for suicide bombers identification in a crowd. *Int J Acad Res Bus Soc Sci* 12(4):697–706. <https://doi.org/10.6007/ijarbs/v12-i4/13124>
2. Akcay S, Kundegorski ME, Willcocks CG, Breckon TP (2020) On using deep convolutional neural network architectures for object classification and detection within X-ray baggage security imagery, pp 1–13
3. Fox W, Vesely J, Laws K (2017) Mathematical modeling and simulation for detection of suicide bomber, pp 993943, 22–30
4. Kim JH, Hong HG, Park KR (2017) Convolutional neural network-based human detection in nighttime images using visible light camera sensors. MPDI

5. Kaya V, Tuncer S, Baran A (2021) Detection and classification of different weapon types using deep learning. *Appl Sci (Switz)* 11(16). <https://doi.org/10.3390/app11167535>
6. Kingdom U, Nnamdi AC, Assembly N, Sebastine AI, Junior EO, Kingdom U, Anyanwu K (2015) Boko-haram crisis and implications for development in the Northern Nigeria 3(4):1–12
7. Lim S (2017) Classification in few class problem. *Elsevier J* 21(1):144–150
8. Qiang B, Chen R, Zhou M, Pang Y, Zhai Y (2020) convolutional neural networks-based object detection algorithm by jointing semantic. *MPDI*
9. Rafi U (2016) An efficient convolutional network for human pose estimation. *IEEE J Comput Soc* 10(6):1002–1034
10. Sultana F, Sufian A, Dutta P (2019) A review of object detection models based on convolutional neural network
11. Vanimireddy A, Kumari DA (2012) Detect Explos Using Wirel Sens Netw 3:277–280
12. Wei S, Ramarkrishna V, Kanade T, Sheikah Y (2019) Convolutional pose machines. *CVF. IEEE Xplore*, pp 4724–4731
13. Barnawi A, Budhiraja I, Kumar K, Kumar N, Alzahrani B, Almansour A, Noor A (2022) A comprehensive review on landmine detection using deep learning techniques in 5G environment: open issues and challenges. *Neural Comput Appl* 34:21657–21676