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Abstract—Fusarium wilt, induced by pathogenic fungus,
represents a substantial risk to world agriculture, impacting
several plant species. Timely identification and precise
classification of this disease are essential for optimal care and
control. This research introduces an automated classification
method using the VGG16 deep learning architecture to detect
Fusarium wilt in plants. It collected an extensive dataset of
images of healthy and diseased plant leaves. The VGG16
model, recognized for its depth and feature extraction
proficiency, was fine-tuned and trained on this dataset. The
model's efficacy was assessed using accuracy, precision, recall,
and F1 score. The results indicated that the VGG16
architecture attained superior classification accuracy,
improving conventional approaches. The proposed method
enhances the detection process and offers a dependable
instrument for farmers and agronomists to assess crop health.
This method underscores the promise of deep learning
methods in agricultural applications, facilitating future disease
control and precision agriculture studies. Future efforts will
concentrate on increasing the dataset and including real-time
monitoring functionalities in the system.

Keywords— Fusarium wilt, Plant disease, Deep learning,
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1. INTRODUCTION

The flexibility of bananas as both a fruit and a vegetable
contribute to their unmistakable worldwide appeal [1].
However, whole plantations may be devastated by fungal
diseases, the most notable of which are Fusarium wilt and
Black Sigatoka, which pose a danger to banana production
output. Using a comparative comparison of several
algorithms, this paper presents a deep learning-based
technique for automating the identification of these
disorders. Phalaenopsis plants are at risk of infection from
the fungus Fusarium wilt. Yellowing and withering leaves
are indications of the illness, which may eventually kill
plants and even spread to nearby healthy plants [2]. This
research aims to find an effective and non-destructive way to
identify fusarium wilt using hyperspectral imaging and deep
learning models. Using a 2D-CNN model as its foundation, it
aims to capitalize on any correlations and patterns within
spectral bands. This study aims to evaluate the hyperspectral
data's spectral discriminability and categorize tomato plants

as either healthy or affected by Fusarium wilt [3]. Using
statistical and machine-learning  techniques, in-situ
reflectance data were taken from a tomato-growing area in
Tukur, Karnataka, India, and utilized to distinguish between
healthy and sick plants.

The research forecasts ten cases of Fusarium wilt using
convolutional neural networks (CNNs) and SVMs. High
accuracies are shown by the models' performance measures,
indicating their flexibility to varied class distributions [4].
The results light the challenges of agricultural disease
diagnosis and provide solutions to the problem of Fusarium
wilt management, which in turn allow more effective tactics
for the early identification and control of this disease.
Phalaenopsis is a very valuable agricultural commodity in
Taiwan. But fusarium wilt causes yellowing, weakening,
water loss, and death of Phalaenopsis leaves [5]. This study
introduces a new technique to identify fusarium wilt on the
base of Phalaenopsis stems. The hyperspectral datasets used
to construct the detection models are derived from two
distinct samples of Phalaenopsis: the healthy and the sick.

The pros and cons of using traditional fungicides to
manage Fusarium illnesses in crop production are discussed
[6]. Fusarium and other phytopathogens are among the most
troublesome pests and illnesses that affect the environment.
Even though some manufacturers are switching to greener
methods, others are sticking with chemical management
because of its effectiveness. The goal of this research was to
find a way to identify Fusarium oxysporum f. sp. cubense
(Foc). This fungus causes Fusarium wilt using image
processing methods and neural networks [7]. To categorize
microscope images of clean and Focinfected (microconidia
present) soil, ResNet-50 was used. Preventing the fungus
from infecting whole farms and endangering the worldwide
banana crop depends on detecting it before it reaches a plant.
An approach to evaluate the quality of Phalaenopsis via
hyperspectral imaging methods. Fusarium wilt is a common
infection in Phalaenopsis [8]. The k-means -clustering
approach determined that the Phalaenopsis stem reflection
spectrum changes.
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II. RELATED WORKS

Self-organizing maps (SOM) and case-based reasoning
(CBR) are used to create a hybrid intelligent prediction
technique for CFW [9]. This technique classifies cases using
a trained SOM network and finds a similar case set using a
proposed case similarity metric, unlike conventional similar
case retrieval. This method's optimum dissimilarity threshold
R is determined using CFW prediction trials. Comprehensive
investigation demonstrates that this hybrid forecast approach
may give solid reasoning data for CFW prediction and aid
CFW preventive and treatment decisions. It can quickly and
automatically identify when Phalaenopsis plants have
Fusarium wilt [10]. Created a PHMID, a compact handheld
multispectral imaging device, which utilizes six LEDs to
represent six different spectral bands. This design makes it
more user-friendly for field applications. The Spectral Angle
Mapper (SAM) and the Automatic Target Generation
Process (ATGP) are used to extract the target signal from a
high-spectral image.

The soilborne fungus Fusarium oxysporum f. sp. cubense
(Fus) causes banana wilt. Once within a plant, Foc assaults
its vascular system [11]. When Foc is prevalent in the plant
and plantation, infected plants exhibit symptoms late and
typically die. Once found, Foc should be quarantined and
burned within 7.5 meters, resulting in the loss of a few crops
or whole plantations. Early FOC detection may avoid
damage. Three microscopy approaches are used to create and
analyze CNNs that recognize the microconidia, a fungus
framework, in microscope images. Integrated deep neural
networks (DNN) with hyperspectral imaging methods to
identify Fusarium wilt in Phalaenopsis [12]. A spectral angle
mapper (SAM) and limited energy minimization (CEM)
were used to minimize climatic regions. Band priority (BP),
band decorrelation (BD), and Harsanyi-Farrand-Chang
(HFC) are three band selection (BS) approaches that were
used to get effective bands.

Identification and treatment are key to improving banana
crop health. Insects and illnesses may reduce banana yields,
among other issues [13]. It investigates how detection and
treatment methods may improve banana crop management.
Using machine learning, image processing, and deep
learning, Fusarium Wilt, Yellow Sigatoka, and Black
Sigatoka may be accurately detected. Detection and
personalized treatments may boost crop yield, minimize
pesticide use, and preserve banana output. To ensure high-
quality and productive crops, it is crucial to identify and
control plant diseases [14]. The assessment criteria of a
classification system that can detect 10 different tomato
diseases. The classifications include tomato spotted wilt
virus, powdery mildew, early blight, late blight, septoria,
plant spot, microbial spot, fusarium in wilt, bacterial wilt,
grey mold, and mosaic virus.

Cotton is a major Indian cash crop, and cotton
productivity decreases annually due to illness. Pest insects
and pathogens produce plant diseases, which may reduce
output if not managed [15]. It describes a cotton leaf disease
detection and soil quality monitoring system. SVM-based
regression approach is proposed to identify and classify five
cotton leaf diseases: Bacterial Blight, Alternaria, Grey
Mildew, Cereospra, and Fusarium wilt. Farmers will get
illness names and cures via the Android app after
identification. This study used deep learning algorithms to
classify cotton leaf diseases, with the VGG16 model fine-

tuned being the most effective at identifying bacterial blight,
curl virus, fusarium wilt, and healthy leaf states [16]. This
research proposes an autonomous, accurate, scalable CNN-
based illness diagnosis system that avoids human mistakes
and labor. The VGG16 model, created for enormous image
recognition tasks, was fine-tuned to classify cotton leaf
diseases using a large dataset of high-resolution leaf images.

A method based on deep learning is created to identify
typical cotton illnesses such as curl virus, fusarium wilt, and
bacterial blight [17]. The research indicated that both the

MobileNet and Vision Transformer models achieved
excellent accuracy but that MobileNet generally
outperformed Vision Transformer. Findings from the

research point to the potential of deep learning-based
methods to increase cotton crop yields while decreasing
pesticide use. Further study is required to go into more
extensive datasets and practical uses. The prediction of three
important cotton leaf diseases, curl virus, bacterial blight,
and fusarium wilt, is investigated in this work using transfer
learning methods [18]. The study's overarching goal is to
provide farmers with the tools to detect these illnesses early
and intervene effectively. The model, built on the VGG16
architecture, achieves an average accuracy. However, more
study is required to make the model more practical and easier
to understand for real-world applications.

Strawberry plants need laboratory isolation for non-
specific foliar symptoms caused by soil-borne fungal
pathogen Fusarium wilt. Agriculture relies on early plant
disease detection to find resistant cultivars and optimize
pesticide usage [19]. Remote sensing and ML algorithms
increase agricultural disease detection and -classification.
Using hyperspectral imagery and ML models successfully
estimates Fusarium wilt severity in strawberry plants without
visual symptoms. The global threat of Fusarium wilt to
chickpea production is real. Early detection is key to
controlling this condition. Using a fresh dataset, pre-trained
CNN models classified chickpea leaf disease severity.
DenseNet-201 performed tests with accuracy, outperforming
other models [20]. This implies that pre-trained models can
assess chickpea Fusarium wilt severity, reducing production
disturbance. It emphasizes early diagnosis and management
of this severe illness.

III. PROPOSED SYSTEM

Data gathering is the initial stage in creating the
automated method for classifying Fusarium wilt. An
extensive and varied dataset is necessary for efficient model
training. This collection includes images of healthy and
diseased plant leaves from various settings and
circumstances. To guarantee that the model learns to identify
the illness in various situations, it is crucial to include a
variety of Fusarium wilt-affected plant species. The quality
and diversity of the images strongly impact the model's
capacity to generalize and correctly categorize novel, unseen
data.

Following collection, the dataset is prepared through
several procedures to improve image quality and prepare for
the deep learning model. This involves scaling every image
to the same size, usually 224 by 224 pixels, to comply with
the VGGI16 architecture's input specifications. To enable
quicker convergence during training, pixel values are
normalized to fall between [0, 1]. Furthermore, the training
dataset is artificially expanded via data augmentation
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methods, including rotation, flipping, zooming, and
brightness modifications. This lowers the possibility of
overfitting and increases the resilience of the model.

The VGGI16 architecture was chosen for this
classification job because of its efficacy in image
categorization. With 16 layers, including many convolutional
and max-pooling layers, VGG16 is a CNN renowned for its
depth. This design is especially well-suited for identifying
visual patterns linked to Fusarium wilt as it enables the
extraction of hierarchical characteristics from images. The
system can identify between healthy and sick plant leaves
with excellent accuracy using the potent feature extraction
capabilities of VGG16.

Transfer learning is used to improve the VGG16 model's
performance. A pre-trained version of the VGG16 model is
used for this, having previously been trained on the
ImageNet dataset, which has millions of images in various
categories. The system gains from the learned feature
representations, including edges and textures, that are
relevant to the current job by beginning with this pre-trained
model. New layers created especially for Fusarium wilt
classification—including fully linked layers and a softmax
output layer for final predictions—replace the network's top
layers initially intended for ImageNet classification.

The Fusarium wilt dataset is then used to train the
modified VGG16 model. The model must first learn to
correlate the retrieved characteristics with their respective
labels to determine whether an image shows a healthy or
diseased plant. A categorical cross-entropy loss function is
used in the training phase to measure the discrepancy
between the predicted and real labels. An optimizer, such as
Adam or Stochastic Gradient Descent (SGD), modifies the
model's weights based on the determined gradients. The
dataset is split into batches to guarantee effective learning
and training, which spans many epochs. If hyperparameters

need to be adjusted, continuous training and monitoring aid
in this process.

After training, a different validation dataset that wasn't
used for training is used to assess the model's performance.
Evaluation measures, including accuracy, precision, recall,
and F1 score, are calculated to evaluate the model's efficacy.
Precision shows the proportion of projected infected cases
that are true positives, while accuracy gauges the
classifications' overall correctness. The F1 score offers a
compromise between accuracy and recall, whereas recall
evaluates the model's capacity to detect every real instance of
infection. This comprehensive assessment guarantees the
model's dependability and deployment readiness.

After a successful assessment, the trained model is
implemented as a component of an application or web
service. Farmers and agronomists may submit images of
plant leaves for real-time categorization with this
deployment. By giving users immediate input on the plant's
health, the technology helps them combat Fusarium wilt
promptly. The technology is essential for crop protection and
increasing agricultural output since it provides a useful and
casily accessible disease-detection tool.

An application's user-friendly interface is created to
improve the user experience. Without requiring a great deal
of technical expertise, users may easily submit images and
get categorization results due to this interface. The system
may provide additional data on Fusarium wilt management
techniques and classification results, assisting users in
making well-informed decisions on crop health. The
automatic categorization system enables users to monitor and
control plant diseases efficiently by fusing advanced
machine-learning algorithms with an easy-to-use interface.
Figure 1 presents a block diagram outlining the system's flow
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Fig. 1. Fusarium Wilt Classification Workflow

Figure 2 shows the VGG16 architecture, which has 13
convolutional layers, and 5 max-pooling layers specifically
designed for image classification. It analyses input images by
feature extraction and then employs flattening and fully
linked layers. The terminal output layer employs softmax
activation to categorize images as healthy or diseased,

enabling precise plant disease identification. VGG16 acts as
an effective feature extractor, detecting complex patterns in
leaf images. Transfer learning facilitates precise
classification of Fusarium wilt by using existing knowledge
and adapting it for plant disease detection.
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Fig. 2. VGGI16 Architecture for Automated Fusarium Wilt Classification in Plants
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IV. RESULTS AND DISCUSSIONS

Significant insights and results were obtained from the
automated Fusarium wilt classification system using the
VGG16 architecture, proving the usefulness of deep learning
techniques in identifying agricultural diseases. This part
presents the main findings from the model assessment
together with their practical implications for plant health
monitoring applications.

A. Model Performance Metrics

The VGG16 model was evaluated using a validation
dataset, which includes images not included in the training
process after the training and assessment stages were
finished. To assess the model's effectiveness, several
performance measures were computed:

1) Accuracy: The model's remarkable 95.25% accuracy
rate was attained. This high degree of accuracy highlights
the promise of deep learning in agricultural applications by
demonstrating that the VGG16 architecture can successfully
differentiate between healthy and diseased plant leaves.

2) Precision and Recall: The model's reported
precision and recall were 94.04% and 96.45%, respectively.
These metrics imply that the model is effective in reducing
false positives and detecting diseased leaves. Strong recall
indicates that the model accurately identifies most real
infected instances in the validation set. However, high
accuracy suggests that when the model predicts an image as
infected, it is likely correct.

3) F1 Score: The F1 score, which balances recall and
accuracy, was 95.24%. This score further shows the model's
dependability, which qualifies it as a useful instrument for
real-world field applications.

B. Analysis of Confusion Matrix

A confusion matrix was created to analyse the model's
predictions more thoroughly. The number of false positives,
false negatives, true positives, and true negatives was shown
in the matrix. The vast majority of the healthy leaves (true
negatives) and sick leaves (true positives) were accurately
categorized by the algorithm. Both false negatives (infected
leaves mistakenly classed as healthy) and false positives
(healthy leaves mistakenly classified as infected) were rare.
The low number of misclassifications suggests that the
model's predictions are solid and trustworthy.

C. Analysis of the Findings

Fusarium wilt in plants may be effectively classified
using the VGG16 architecture, as shown by the findings
obtained. The model's favorable precision and recall rates,
along with its high accuracy, indicate that deep learning may
significantly enhance agriculture's ability to identify diseases.
This is particularly crucial given the growing danger that
plant diseases pose to the world's food security. The VGG16
model's deep architecture allows it to learn complex features
from the training images, which is a significant benefit.
Traditional image processing methods often struggle to
capture the subtle differences between healthy and sick
leaves, but the model can perform well due to hierarchical
feature extraction. Additionally, compared to building a
model from scratch, transfer learning, which involves fine-
tuning an existing model on a particular dataset, significantly
reduces training time and boosts performance.

Transfer learning using VGG16 was selected due to
limited data availability, expedited convergence, reduced
overfitting, and the capacity to use pre-trained robust
features, making it more efficient than developing a
complicated model from inception. The collection includes a
variety of plant species, different leaf development stages,
and several environmental circumstances. Images collected
in the field and data augmentation methods provide
substantial diversity, enhancing model generalization and
classification robustness.

The method addresses significant intra-class variability
and inter-class similarity by using VGG16 for deep feature
extraction to identify nuanced patterns. Data augmentation
increases variability, but fine-tuning enables the model to
discern small distinctions, enhancing class discrimination
and minimizing misclassification. The system uses
preprocessing, data augmentation, and VGG16 effective
feature extraction to address blur, light, shadows, and clutter,
ensuring dependable classification under field conditions.
VGGI16 is optimized for edge deployment via pruning,
quantization, model distillation, and TensorFlow Lite
translation to minimize size, enhance inference speed, and
provide efficient performance on resource-limited field
devices.

D. Practical Implications

For farmers, agronomists, and agricultural researchers,
the effective use of this automated categorization system has
important ramifications. The method facilitates prompt
interventions by offering a dependable instrument for early
Fusarium wilt diagnosis, which may lower crop losses and
increase productivity. Farmers may make educated
judgments about managing pests and diseases by using
online services or mobile apps to submit images of their
crops and get immediate feedback on plant health.
Furthermore, incorporating these deep learning models into
farming methods may result in the creation of precision
agriculture methods, which allocate resources more
effectively according to the particular health condition of
crops. Using fewer chemical treatments increases output and
encourages sustainable agricultural methods.

Table 1 presents the attributes of a subset of images from
the collection. This information is crucial for understanding
the dataset's structure and provenance.

TABLE L. MAGE DATA CHARACTERISTICS
Image ID | Image Size (px) | File Format Class
001 224 x 224 JPEG Healthy
002 224 x 224 JPEG Infected
003 224 x 224 JPEG Healthy
004 224 x 224 JPEG Infected
005 224 x 224 JPEG Healthy

Table 2 presents a comprehensive overview of the
model's classification outcomes on the validation dataset. It
counts true positives, true negatives, false positives, and false
negatives, enabling a comprehensive evaluation of the
model's efficacy in differentiating between healthy and sick
plant leaves.
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TABLE II. CONFUSION MATRIX
Actual / Predicted | Healthy | Infected
Healthy 193 7
Infected 12 188

Figure 3 shows a comparison of performance metrics for
healthy and infected classes, demonstrating balanced and
elevated performance across all metrics, hence confirming
dependable categorization of both healthy and Fusarium-
infected plant leaves.

Model Evaluation Metrics for Leaf Health
Classification

96.5

96

95.5

95

(%) 94.5 O Healthy
94 W Infected

93.5

93

92.5

Precision Recall F1 Score

Class

Fig. 3. Precision, Recall, and F1-Score Comparison: Healthy vs Infected
Leaves

Table 3 highlights the preprocessing settings used for the
images in the dataset before training the VGG16 model. The
specifications include the dimensions for image resizing,
normalization parameters, used data augmentation strategies,
training batch size, epoch count, learning rate, and the
chosen optimizer for model training.

TABLE III. IMAGE PREPROCESSING PARAMETERS
Parameter Value
Resize Dimensions 224 x 224 px
Normalization Range [0, 1]

Data Augmentation Rotation, Flipping, Zooming,
Techniques Brightness Adjustment
Batch Size 32

Number of Epochs 50

Learning Rate 0.001
Optimizer Adam

Figure 4 shows the VGG16 model's training and
validation accuracy across 50 epochs. The training accuracy
progressively rises, indicating effective learning. The
validation accuracy increases, indicating that the model
generalizes well to novel data, with both measures stabilizing
in the training stage.

Accuracies of VGG16 Model
100

. 801 /%g
B —
< 60 - —<— Training
E Accuracy
g 401 —=&— Validation
< Accuracy

20

0

0 10 20 30 40 50
Epochs (1 to 50)

Fig. 4. VGGI16 Model Accuracy Progression

Figure 5 depicts the training and validation loss
throughout 50 epochs. The training loss steadily declines,
indicating that the model is acquiring knowledge
proficiently. The validation loss decreases, indicating that the
model effectively generalizes to the validation dataset. A
reduced loss value is preferable since it indicates superior
model performance.

Evaluating Loss Performance of VGG16

Model
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Fig. 5. Loss in VGG16 Model Training

Figure 6 illustrates the distribution of classes within the
dataset using a pie chart. The dataset is balanced, including
an equal number of healthy and sick leaf samples. This
equilibrium is essential for efficient training, preventing the
model from exhibiting bias towards one class, hence
enhancing classification accuracy.

Class Distribution Overview

O Healthy Leaves
/B Infected Leaves

50%

Fig. 6. Class Proportions of Healthy and Infected Leaves

The system can be enhanced with the integration of IoT
sensors, real-time image acquisition, cloud computing,
smartphone notifications, and continuous model retraining
using new data. The dependability of the system can be
ensured by using high-quality datasets, doing frequent model
validation, employing cross-validation methods, calibrating
sensors, implementing robust preprocessing, and performing
consistent field testing across diverse situations. The
performance of the system can be enhanced via data
augmentation, hyperparameter optimization, advanced
architectures, ensemble methodologies, and continuous
training with varied, high-quality image datasets.

E. Future Work

Despite the encouraging outcomes, there is still room for
development and more study. To improve the robustness of
the model, future research should focus on expanding the
dataset to include other plant species and different climatic
circumstances. Furthermore, investigating other ensemble
techniques or deep learning architectures could provide even
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better results. Users in the field may get a quicker response if
real-time image processing features are included and the
system is integrated with IoT devices.

V. CONCLUSIONS

The VGG16 architecture-based automated Fusarium wilt
classification system has shown great promise for improving
plant disease diagnosis. The model demonstrated its efficacy
in differentiating between healthy and diseased plant leaves
with an amazing accuracy of 95.25% and high precision and
recall rates. Rapid feature extraction from the images was
made possible by the effective training and enhanced overall
performance of the transfer learning technique used with the
pre-trained VGG16 model. The findings highlight the
importance of using deep learning methods in agriculture,
giving agronomists and farmers a reliable instrument for
early disease diagnosis. This system encourages sustainable
farming practices through better resource management and
supports prompt actions to reduce crop losses. The balanced
dataset and efficient data augmentation techniques enhanced
the model's robustness, which guarantees that it generalizes
well to new data. Future research should focus on improving
the model, adding real-time analytic capabilities, and
growing the dataset. This method marks a substantial
breakthrough in precision agriculture, opening the door to
more intelligent agricultural practices and increased food
security.

REFERENCES

[1] Y. Salehin, A. Siddique, A.T. Nafisa, I. Jahan, M.M. Priyanka, R.U.
Islam, and M.R.A. Rashid, "A Comparative Analysis on Transfer
Learning Models to Classify Banana Diseases- Fusarium Wilt and
Black Sigatoka," 2nd International Conference on Advancement in
Computation & Computer Technologies, pp. 208-213, 2024.

[2] S.-T. Chen, Y. -C. Ouyang, M. -S. Shih, T. -S. Liu and C. -I. Chang,
"Fusarium Wilt Detection in Phalaenopsis Through Integrated
Hyperspectral Imaging and Deep Learning Techniques," International
Geoscience and Remote Sensing Symposium, Athens, Greece, 2024,
pp. 9446-9449, 2024.

[3] Sivaganesh, C. H, M. K. C. V. S. S., M. Kaushik, R. G.
Sharathchandra and R. Rao Nidamanuri, "Hyperspectral Detection of
Fusarium Wilt in Tomato Plants Using Machine Learning-Based
Approaches," IEEE International Geoscience and Remote Sensing
Symposium, pp. 7583-7585, 2024.

[4] A. Kaur, V. Kukreja, M. Aeri, S. Tanwar, and N. Mohd, "Nature's
Secrets Revealed: Unraveling Fusarium Wilt Diseases through CNN
and SVM," 4th IEEE Global Conference for Advancement in
Technology, pp. 1-7, 2023.

[5]1 J. Lenin, S. Muthumarilakshmi, and V. S. Prabhu, “Plantnet: A deep
learning model for early detection of plant diseases”, International
Journal of Advances in Signal and Image Sciences, vol. 10, no. 2, pp.
37-47,2024.

[6] A.Jiménez-Hernandez, R. G. Guevara-Gonzalez, E. Rico-Garcia, and
I. Torres-Pacheco, "Evaluation of chemical and biological fungicides
for the management of Fusarium Oxysporum,”" XVII International
Engineering Congress, pp. 1-6, 2021.

[71 E.G.T. Abigan, L. G. A. Cajucom, J. D. L. Ong, P. A. R. Abu, and
M. R. J. E. Estuar, "Detection of Microconidia in Microscopy Images
of Fusarium oxysporum f. sp. cubense Using Image Processing

Techniques and Neural Networks," IEEE 4th International
Conference on Image Processing, Applications, and Systems, pp. 40-
45,2020.

[8] B.H. Chen, Y.C. Ouyang, M. Ou-Yang, H.Y. Guo, T.S. Liu, HM.
Chen, and M.S. Shih, “Fusarium Wilt Inspection for Phalaenopsis
Using Uniform Interval Hyperspectral Band Selection Techniques,”
IEEE International Geoscience and Remote Sensing Symposium, pp.
2831-2834, 2020.

979-8-3315-1250-7/25/$31.00 ©2025 IEEE

9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

A AM.A. Riazulhameed, C.S. Ranganathan, P. Pandey, B.
Sakthisaravanan, K. Sasikala, and S. Murugan, “Smart Composting
Solutions for Organic Waste Management and Soil Enrichment in
Agriculture with IoT and Gradient Boosting,” 4th International
Conference on Sustainable Expert Systems, pp. 339-345, 2024.

K.C.Chang, S.A. Chou, M.S. Shih, T.S. Liu, Y.C. Ouyang, C.I.
Chang, and S.T. Chen, “Detection and Analysis of Phalaenopsis
Fusarium Wilt Using Machine Learning,” IEEE International
Geoscience and Remote Sensing Symposium, pp. 5305-5308, 2023.

E. G. T. Abigan, L. G. A. Cajucom, J. D. L. Ong, P. A. R. Abu, and
M. R. J. E. Estuar, "Analysis of the Effects of Microscopy Techniques
on the Performances of Convolutional Neural Network Architectures
in Microscopic Fusarium Microconidia Detection,”" International
Conference on Electrical, Computer, Communications and
Mechatronics Engineering, pp. 1-6, 2021.

Y. Hsu, Y.C. Ouyang, J.Y. Lu, M. Ou-Yang, H.Y. Guo, T.S. Liu, C.L
Chang, “Using Hyperspectral Imaging and Deep Neural Network to
Detect Fusarium Wilton Phalaenopsis,” IEEE International
Geoscience and Remote Sensing Symposium, IGARSS, Brussels,
Belgium, pp. 4416-4419, 2021.

V. Thirumeninathan, S. Vijayalakshmi and S. T. Palathara,
"Enhancing Banana Cultivation: Disease Identification through CNN
and SVM Analysis for Optimal Plant Health," International
Conference on Trends in Quantum Computing and Emerging
Business Technologies, pp. 1-6, 2024.

S. N. Sheela Evangelin Prasad, N. Rakesh, E. V. G, N. Mohankumar,
R. Vinodha, and S. Murugan, "VGG16-Based Deep Learning
Approach for Accurate Detection of Fruit Diseases in Precision
Agriculture," 3rd International Conference on Intelligent Data
Communication Technologies and Internet of Things, pp. 1935-1940,
2025.

A. A. Sarangdhar, and V. R. Pawar, "Machine leaming regression
technique for cotton leaf disease detection and controlling using IoT,"
International Conference of Electronics, Communication and
Aerospace Technology, pp. 449-454, 2017.

A. Kaur, V. Kukreja, M. Kumar, A. Choudhary, and R. Sharma, "A
Fine-tuned Deep Learning-based VGG16 Model for Cotton Leaf
Disease Classification," Sth International Conference for Emerging
Technology, pp. 1-4, 2024.

Y. S. K. Gudela, E. Jangam, and S. Mogili, "Cotton Crop Disease
Detection using MobileNet Snapshot Ensemble Technique and Vision
Transformers," 8th International Conference on Communication and
Electronics Systems, pp. 1601-1608, 2023.

A. K. Uttam, "Cotton Leaves Diseases Classification Using VGG16
Based Transfer Learning," Third International Conference on
Ubiquitous Computing and Intelligent Information Systems, pp. 296-
300, 2023.

S. Srinivasan, S. LK, T. Alavanthar, C. Srinivasan, S. Murugan and S.
Sujatha, "loT-Enabled Horticultural Lighting for Optimizing Plant
Growth and Agriculture Operations," 2nd International Conference on
Networking and Communications, pp. 1-7, 2024.

T. Hayit, A. Endes, and F. Hayit, “The severity level classification of
Fusarium wilt of chickpea by pre-trained deep learning models.
Joumnal of Plant Pathology, vol. 106, no. 1, pp. 93-105, 2024.

530



