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Abstract— Autonomous vehicles (AVs) must navigate
challenging and unexpected circumstances while guaranteeing
security and competence. Prescribed rule-based classifications
strive to handle the large unpredictability of virtual driving
situations. In the proposed work, a novel hybrid architecture
enables autonomous vehicles to make human-like choices in
unexpected scenarios by using a combination of deep learning
and data-driven planning techniques. The framework combines
VOLOv7-based perception, multimodal transformers for fusing
LiDAR, radar, and camera data, and a dual-policy approach
using DAgger and Decision Transformer to obtain both sensitive
and deliberate decision-making behaviors. An ensemble voting
mechanism combines policy outputs to improve reliability. The
proposed work is trained and evaluated using the Waymo Open
Dataset and CARLA simulator. The proposed work attains a
collision rate of 3.4%, route completion of 97.2%, and an
average intervention frequency of 0.4.

Keywords— Autonomous Vehicles, Deep Learning, Decision-
Making, Reinforcement Learning, Imitation Learning, Human-
like Reasoning

I. INTRODUCTION

Autonomous vehicles (AVs) have the potential to
modernize transit by refining security, effectiveness, and user-
friendliness. However, one of the most important challenges
in attaining complete independence lies in allowing vehicles
to make difficult, concurrent decisions in unexpected
situations [1]. Current progressions in artificial intelligence,
mainly deep learning, give auspicious solutions by letting
AVs acquire massive amounts of driving data. By studying
ideas in human behaviour, neural networks can foresee
suitable answers to unique circumstances, imitating the
perception of skilled drivers [2].

Techniques such as deep reinforcement learning (DRL)
[3] and imitation learning (IL) [4] allow AVs to refine their
decision-making policies through constant interaction with
virtual and real-world surroundings. The proposed paper
evaluates how deep learning can improve AV decision-
making by merging understanding, forecasting, and analysis
into a combined framework. A hybrid model is proposed that

influences both imitation learning and reinforcement. The
experiments indicate that this approach outdoes conventional
methods in managing difficult situations while retaining
safety and competence.

II. RELATED WORK

Study of autonomous driving has grown considerably over
the former period, with various prototypes proposed to
discourse the concerns of understanding, development, and
management [5]. Traditional approaches depend on
architectures that distinguish understanding, translation,
forecasting, and decision-making. These systems normally
use handmade rules and required reasoning for development
and management, such as finite state mechanisms and
behaviour trees [6]. While these approaches provide high
clarity and consistency in comprehensible situations, they are
unstable when subject to sudden or exceptional circumstances
that drop excepting predefined rules.

However, end-to-end learning methods have gained
traction for their potential to directly map sensor inputs to
driving movements using deep neural networks.
Revolutionary work introduced a convolutional neural
network (CNN) [7] trained to forecast navigation angles from
camera images using supervised learning. Regardless of
auspicious results in precise conditions, such models often
suffer from poor generality, a deficit of clarity, and
incompetence to purpose about long-term moments.
Furthermore, they struggle in situations where labelled data is
uncommon or unclear, such as close-shave instances or
uncommon road behaviours.

Addressing these contests, recent research has gradually
looked at learning-based decision-making structures [8] that
integrate imitation learning (IL) with reinforcement learning
(RL) [9]. Imitation learning [10], mainly behaviour cloning
and inverse reinforcement learning [11], allows models to
study strategies by sensible expert evidence, apprehending
human-like driving patterns. However, these models are
subject to covariate shift, where small errors meld over time,
forcing the agent into unfamiliar states. Reinforcement
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learning permits agents to analyze and learn optimum
behaviours through trial-and-error connections with an
environment. Techniques such as Deep Q-Networks (DQN)
[12], Proximal Policy Optimization (PPO) [13], and Soft
Actor-Critic (SAC) [14] have shown achievement in virtual
driving tasks. However, pure RL methods need wide-ranging
surveys and often struggle with sample efficiency and safety
in real-world distribution.

Hybrid methods have recently developed as a robust plan
for attaining both effective learning and potent decision-
making. Methods such as DAgger (Dataset Aggregation) [15]
address covariate shifts in imitation learning by iteratively
gathering remedial expert data. Others modify policies using
IL and improve them with RL in the model, allowing safe
examination of precarious situations. In spite of this
development, many existing methods still drop the ball in
recreating the adaptable, environment-conscious decision-
making demonstrated by human drivers. The proposed work
is developed on these basics by proposing a deep learning-
based framework to model human-like reasoning more
efficiently. Using large-scale real-world datasets and high-
integrity models, the outline aims to improve decision-making
in unexpected situations pushing AV competences closer to
human-level understanding.

III. METHODOLOGY

This section summarizes the proposed framework aimed
at representing man-like perception in autonomous vehicles
by incorporating deep neural networks (DNNs), imitation
learning (IL), and reinforcement learning (RL). The
methodology consists of four key stages: (1) perception
through YOLOV7, (2) sensor fusion and scene appreciative is
using a multimodal transformer, (3) policy learning through a
combination of imitation learning and Decision Transformers,
and (4) robustness improvement using ensemble methods.
This architecture is intended to simplify across diverse,
unforeseen situations by learning both spatial and temporal
patterns from expert exhibits and simulated connections. Fig.1
shows the architecture of the proposed method.

Sensor Inputs » LiDAR, Radar, Forward Camera

+ Align multimodal data temporally & spatially

_ » Depth filtering, S tati
Preprocessing epth filtering, Segmentation

YOLOV7 » Visual Object Detection

» Combine Camera, LIDAR, Radar, Scene Encoding

Policy Learning » Dagger, Decision Transformer, Imitation Learning

» Combine policy outputs, Select safest/best action

Control Command * Steering, Brake, Gas

Output

Fig.1. Multimodal Deep Learning Architecture

A. Data Collection and Preprocessing

The Waymo Open Dataset [16] serves as a real-world
resource, contributing corresponding multi-sensor data
(cameras, LiDAR, Radar), useful observations, and skilled
driving routes across various civic environments. For creating
hazardous driving circumstances that are durable to detain in

real life, the CARLA simulator allows full control over
conservational variables, traffic representatives, and sensor
formations, making it perfect for collecting cooperating data
using algorithms like Dagger [17] and for training Decision
Transformers in long-horizon tasks. Proficient policies are
resultant either from human drivers in the Waymo dataset or
scripted agents in CARLA [18], providing ground truth
actions for imitation learning. Observations, including object
detection labels, routes, and control signals, are produced
automatically in replication and used directly or improved
through manual labelling tools in real-world data. This hybrid
data collection approach guarantees complete attention both
routine and rare situations, allowing vigorous training of
observation, development, and decision modules.

Preprocessing LiDAR data starts with sensor calibration
and synchronization, where basic and outermost parameters
are used to align data from multiple sensors into one frame.
This process confirms spatial and temporal reliability across
diverse modalities. Depth filtering comprises removing noise
and outliers from the raw LiDAR point clouds using methods
like statistical outlier removal, voxel grid down sampling, and
range-based filtering to retain only significant spatial
information. Data segmentation is applied to separate relevant
structures from the scene, such as roads, vehicles, pedestrians,
and buildings. These preprocessing steps convert raw,
unstructured sensor data into structured inputs appropriate for
combination in multimodal transformers, object detection
networks like YOLOv7 [19], and decision-making
frameworks such as DAgger and Decision Transformers.

B. Perception Module

The first phase of the pipeline is a real-time perception
module based on YOLOv7, an advanced object detection
network. It processes the frontal camera to identify both
dynamic and static entities such as automobiles, walkers,
bicycles, traffic signs, and lane marks. The output is a set of
bounding boxes B = {b;}\,, each with a class label ci, and
confidence score si. The detections are transformed into a
structured representation:

Or = {(ci, 51, %, Yo Wi, RO YLy (1)
Where (x;,y;) is the center, and (w;, h;) are the height and
weight of the bounding box respectively. This data helps as a
visual input for the fusion module and acts as the basis for
situational consciousness.

C. Multimodal Transformer

Autonomous vehicles depend on various sensory inputs,
including visualization, LiDAR, radar, and GPS. A
multimodal transformer is used to combine these diverse
signals into an incorporated, high-dimensional scene
demonstration. Let It is the image features extracted from
YOLOVT7; Lt is the LiDAR point cloud features; Mt is the HD
map and lane topology; and St is the ego vehicle’s state vector
(velocity, acceleration, heading). The inputs are determined
into embedding vectors:

E; = TransformerEncoder (concat(l, Ly, My, S;)) 2)

The transformer utilizes self-attention to evaluate the
significance of each modality vigorously.
T
Attention(Q,K,V) = softmax (%) V3
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The result provides the model to acquire a rich spatial and
semantic framework crucial for downstream decision-
making.
D. Policy Learning
Imitation Learning Initialization

The behaviour cloning is used to bootstrap the policy,

where a policy I10 is trained using supervised learning on
proficient routes

mo(acls) ~ a7 (@)
Minimizing the loss:
Lpc(8) = Espa,)~Dexpert Mg (se) — acll?] ®)
DAgger for Expert Correction
To address covariate shift, the DAgger (Dataset

Aggregation) algorithm is employed. In DAgger, the policy
relates to the situation, and the proficient offer correct labels
for visited states, which are combined into the dataset.

Dﬁpuu%gwmn;r (6)

The policy is iteratively restructured on the combined dataset
to enhance generalization under the distribution persuaded by

its movements.
Decision Transformer

To improve decision-making over prolonged sequences,
the Decision Transformer (DT) is used, which frames
reinforcement learning as a sequence modeling problem. The
input is a sequence of Rt as returns-to-go, s; as observed
states, a,_, as Past actions. The Decision Transformer
calculates the next act using an autoregressive transformer:

a; = fDT(Ry, 51, @y, e St—1, A1, St) (7

The above expression (7) permits the model to focus on
chosen outcomes and reason about the multi-step effects of
actions, allowing high-level strategic decisions even in
innovative circumstances.

Decision-Making Process

L

Behavior Cloning (BC)

L

DAgger

v

Decision Transformer (DT)
Handling rol long-term depenien

L

Policy Ensembling

Fig 2. Decision pipeline

The decision-making process begins with Behavior
Cloning to initialize the policy using supervised learning.
Once the policy is trained, DAgger is employed, which
iteratively collects new data where the model updates. This
allows a transient shift and improves robustness. To handle

longer-term dependencies the Decision Transformer is used
which takes decision-making as a sequence modeling task
using a transformer architecture. Finally, multiple policies
from BC, DAgger, and DT are combined to form a robust
output, reducing variance and improving safety in ambiguous
or edge-case scenarios. The ensemble votes or averages
predictions based on uncertainty estimates to choose the final
action. The overall Process is visually represented in Fig. 2.

E. Ensemble Models

To further enhance reliability, model ensembling is used,
where multiple autonomously trained policy networks vote or
average their predictions:

~_ 1
e = ;211;1 Tor (S¢) (®)
Instead, ambiguity can be captured using the

inconsistency of outputs:
1 ~
of = ;Zfﬂ(”ek(st) —@)? )]

In confusing situations, the vehicle can choose traditional
emergency behaviors such as stopping or complying with
rule-based control.

IV. EXPERIMENTAL SETUP

The experimental validation of the proposed autonomous
vehicle decision-making system was shown through a
complete, multi-stage testing protocol that is considered to
calculate performance through both simulated and real-world
surroundings. For real-world data, the Waymo Open Dataset
is used, which offers extensive multi-modal sensor data,
including high-resolution LiDAR, radar, and multiple camera
views. The proposed work used 5000 hours of data. This
dataset is analytical for preparing the perception models and
understanding expert routes in real driving situations. The
experimental  framework incorporates several key
components, comprising simulation environments, hardware
configurations, software employments, training methods, and
evaluation metrics, each cautiously considered to validate the
system's proficiencies. For virtual reality testing, CARLA
0.9.14 [20] is an open-source autonomous driving simulator
that offers high-fidelity built-up surroundings with active
weather and lighting situations. The robust simulator's sensor
models enable the creation of various testing situations,
starting from routine driving circumstances to complex edge
cases. The simulation surroundings were further enriched
with variable weather patterns, including rain, fog, and
nighttime conditions, to calculate the system's performance
under hostile conditions.

The hardware configuration was selected to support both
training and real-world deployment requirements. For
training, workplaces enlightened with four NVIDIA A100
80GB GPUs, AMD EPYC 7763 processors with 64 cores,
512GB of DDR4 RAM, and a 20TB NVMe SSD array is used
for effective data management. The software pile was created
to incorporate the various mechanisms of the autonomous
driving system. The perception module exploited VOLOvV7
implemented in PyTorch 2.1 for object detection, together

979-8-3315-1250-7/25/$31.00 ©2025 IEEE

ed licensed use limited to: Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology. Downloaded on September 25,2025 at 04:27:23 UTC from IEEE Xplore. Restrictions



Proceedings of the 3rd International Conference on Sustainable Computing and Data Communication Systems (ICSCDS-2025)

IEEE Xplore Part Number: CFP25AZ5-ART; ISBN: 979-8-3315-1250-7

with a Multi-Modal Transformer enhanced through
TensorRT 8.6 for efficient sensor fusion. The decision-
making subsystem used a Decision Transformer structure
made on JAX 0.4.13, while DAgger used a custom Python
hybrid architecture for optimum execution.

The dataset is divided into three subsets: training (70%),
validation (15%), and testing (15%). The training set contains
a combination of standard driving scenarios, highway
scenarios, and initial edge cases created through scripted
agents. The validation set is used for hyperparameter tuning
and to prevent overfitting during training, while the test set
includes unobserved and more difficult edge-case situations
to assess the ability of the proposed framework. To increase
diversity, each split sustains stability across diverse driving
situations, movement densities, and weather circumstances.
The experimental results showed the system's performance in
managing difficult driving situations compared to standard
approaches, mainly in edge cases involving unexpected
walker behavior and unfavorable weather conditions. The
testing procedure verified the effectiveness of the distinct
technical components and established their unified
incorporation into an autonomous driving system capable of
making human-made decisions in complex situations.

V. RESULTS AND DISCUSSIONS

Comparative analysis is a vital factor of our experimental
endorsement. The proposed system is estimated against three
baseline architectures: a rule-based FSM [21], a CNN
approach based on NVIDIA's PilotNet architecture [22], and
a modular pipeline, Apollo 7.0 [23] for decision-making
models. These comparisons are used to measure performance
enhancements. Fig. 3 shows the performance metrics in terms
of success rate, intervention rate, and planning accuracy.
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Fig.3. Performance Metrics for decision making

The comparative analysis graph of collision rate, route
completion, and average intervention frequency for the FSM,
PilotNet, Apollo 7.0, for driving performance and the
proposed system is shown in Fig. 4. The Collision Rate
calculates the amount of test incidents in which the
autonomous vehicle accounts for a collision. The Route
Completion metric signifies the percentage of the scheduled
route that the autonomous vehicle effectively finishes,
deprived of major letdowns. Average Intervention Frequency
calculates how often a human proficient must intrude or take
control during an incident due to security or performance
matters.
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Fig.4 Performance Metrics for driving performance

The comparative analysis graph, Fig. 5, shows normalized
scores for data efficiency, edge case handling, and compute
cost across Pure Imitation, Pure RL, and the proposed work.
Data Efficiency mentions how efficiently a learning
algorithm can excerpt valuable patterns or behaviors from the
training data. Edge Case Handling assesses how well a model
can manage unusual, risky situations. Compute Cost
represents the computational resources needed to train and
use the model.
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Fig.6. Training and validation performance: (a)Accuracy vs. Epochs,
(b)Loss vs. Epochs.

As shown in Fig. 6, the training loss steadily decreased,
converging after around 25 epochs with minimal overfitting.
The validation accuracy spiked at 91%, while training
accuracy reached 95%, indicating good generalization. The
use of DAgger corrections helped reduce validation loss
spikes, which are typically caused by covariate shifts.

VI. CONCLUSION

The proposed work presents a robust and adaptive
decision-making framework for autonomous vehicles that
incorporates VOLOv7-based perception, multimodal
transformers for context fusion, and a hybrid policy
architecture combining DAgger, Decision Transformer, and
ensemble learning. Complete wide sets of experiments are
done using both the Waymo Open Dataset and CARLA
simulations. The proposed system proves higher performance
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across key metrics such as collision rate, route completion,

and

intervention frequency,

considerably outclassing

conventional rule-based and deep learning baselines. By
imitating human-like perception and enabling an overview of
unseen situations, the proposed approach provides an
auspicious step toward safety, consistency, and smart
independence in difficult real-world situations.
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