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Abstract 

A k-total coloring of a graph G is an assignment of k colors to the elements (vertices and 

edges) of G such that adjacent or incident elements have different colors. The total 

chromatic number is the smallest integer k for which G has a k-total coloring. The well-

known Total Coloring Conjecture asserts that the total chromatic number of a graph is 

either ∆(G) + 1 or ∆(G) + 2, where ∆(G) is the maximum degree of G. In this paper, we 

consider the triple star graph, lobster graph and its line, middle, total graphs and also 

splitting graph of triple star.  We obtained the preceding graphs has total chromatic 

number equal to ∆(G) + 1. 

Keywords: Total coloring, total chromatic number, triple star graph, lobster graph, line, 

middle, total, splitting graph. 

AMS subject classification: 05C15. 

1. Introduction 

The graph described is finite, undirected, and has no loops or multiple edges.  A k -total coloring is an 

assignment of k colors to the elements (ie, vertices and edges) of G , for which two adjacent or incident 

elements have distinct colors. The total chromatic number
'' ( )G , is the least k , for which G  has a k

-total coloring.  Behzad [2] and vizing [17] independently, suggested the famous conjecture, known as 

TCC: for any graph ,G  
''( ) 1 ( ) ( ) 2.G G G +    +  This conjecture was authenticated by Rosenfeld 

[15] and Vijayadithya [16] for 3, =  and by kostochka [8, 9] for 5.   This result was firstly given 

in [3] for 14.   In [10], this result was protracted to 9.  A survey paper on total coloring would 

likely include a comprehensive collection of articles covering various aspects of total coloring [4].   

Jayaraman et al. [7, 11, 12, 13, 14] discussed the total coloring of line, middle, total and splitting graph 

of double star graph, snake graph families, splitting graph of path, cycle and star graph and certain 

convex polytope graphs 

Total coloring provides a powerful tool for modeling and solving various practical problems arising in 

scheduling, wireless networks, telecommunications.  In [1], the author has extended the concept of the 

double star graph to introduce the triple star graph.  In this paper, we obtained the total chromatic 

number of triple star, lobster graph and its line, middle, total graph and also splitting graph of triple 

star graph.  
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2. Preliminaries 

Definition 2.1 Triple star graph 1, , ,K    = [1] is constructed from the double star graph 1, ,K    by 

adding a new pendent edge to each existing pendant node, then it forms a tree structure. It has 3 1 +  

nodes and 3  edges. 

Definition 2.2. The lobster graph (2, )L r  =  [6] is constructed by the path on  nodes as a 

backbone. Each node in the backbone is attached to two distinct node hands, and each node hand is 

connected to r distinct node fingers, each of which has degree one, throughout this article, we take 

1.r =  

Definition 2.3. The line graph ( )L G [7] has nodes that are edges of ,G  and two nodes in  

( )L G  are adjacent, whenever their edges are adjacent in .G  

Definition 2.4. The middle graph ( )M G [5, 13] is formed by subdividing each edge exactly once and 

connecting these newly obtained nodes of adjacent edges of .G  

Definition 2.5. The total graph ( )T G [13] is a middle graph, adding an edge between the vertices 

whenever they are adjacent in G . 

Definition 2.6. The splitting graph ( )S G [12] is obtained by adding a new vertex 
'v  corresponding to 

each vertex v  of G  such that 
'( ) ( ).N v N v=  

Lemma 2.7. [18] For any simple graph ,G  ''( ) ( ) 1.G G   +  

Theorem 2.8. [18] Let nK  be the complete graph, then 
''

,          
( )

1,     
n

n if n is odd
K

n if n is even



= 

+
 

3. Results and Discussion 

Theorem 3.1. For any 4  , 
'' ( ) 1  = + . 

Proof: Let ( ) { } { :1 } { ;1 } { ;1 }V u u v w         =       , where u is the root  

vertex of the triple star graph. ( ) { , , :1 }E e uu f u v e v w          = = = =     

Define total coloring  , such that : ( ) ( ) {1,2,3,..., 1}V E    → +   

For  1     

( ) 1u = + ;   ( ) ( ) 1(mod  )u w    = = + ;    

( ) 4(mod  )v  = + ;   ( ) ( ) (mod  )e g    = = ;    

( ) 3(mod  )f  = +  

By this procedure, the graph   is attained with 1 +  total colorable. So, it is clear that '' ( ) 1.   +  

Since ( )  =  and by lemma 2.7, it follows that ''( ) ( ) 1     + 1. +   Therefore 

'' ( ) 1.  = +  Equivalently, this is true for all other values of 4.    Hence  
'' ( ) 1.  = +  
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  Fig 1: Total coloring of  triple star graph 7  

Theorem 3.2:  For any 4  , 
''( ( )) 1L   = + . 

Proof:  Let ( ( )) { , , :1 }V L u v w     =   and  

( ( )) { , :1 } { :1 , , 1 }E L u v v w u v               =      +     

Define  , such that : ( ( )) ( ( )) {1,2,3,..., 1}.V L E L    → +  

( ) ,  for all 1u   =   ;   
1,   1,

( )
1,        2 1

if
v

if


  


  

+ =
= 

−   −
;  

2 ,   1 1
( )

1,   

if
w

if


  


 

+   −
= 

=
  

2 ,   2 0 (mod 1)
( )

1,  otherwise 

if
u v 

  




 + 
= 

+
; 

( ) ,  for all 1v w    =   ;                 
,   ( ) 0 (mod 1)

( )
1,  otherwise  , 1  

if
u u 

    


     

+ +  + 
= 

+  +  
 

 

 

Fig 2: Total coloring of 7( )L   

By this procedure, the graph ( )L   is attained with 1 +  total colorable. So, it is clear that 

''( ( )) 1.L    +  Since ( ( ))L   =  and by lemma2.7, it follows that ''( ( )) ( ( )) 1L L     +

1. +   Therefore 
''( ( )) 1.L   = +  Equivalently,  this is true for all other values of 4.    Hence  

''( ( )) 1.L   = +  
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Theorem 3.3: For any 4  , 
''( ( )) 3.M   = +  

Proof:  ' ' '( ( )) { } { } { } { } { } { } { }:1V M v v v u u w w        =   and  

        
 

 

' ' ' ' ' ' ' ' ' '

' '

( ( )) ; ; ; ; ; ; ; :1

                           :1 1, 1

E M vv v v v u u u u w w w w u u v

v v t

               

 

  

   

=  

  − +  
 

The vertices , (1 )u u    induced a clique of order 3 +  in ( )M  .  Define  , such that 

: ( ( )) ( ( )) {1,2,3..., 3}V M E M    → + . Consider the following two cases 

Case (i): When   is even,  for 1     

( ) 3v = + ;   ( ) 2, ( )v u    = + = ;  
'( )v = ; 

'( ) 1u = + ;  
'( ) 3w = + ;  

( ) 2w = + ;  '
,       1

( )
1,  2

v v 

 


  

=
= 

−  
;  

'( )v u  = ;  '( ) 3u u  = + ;  

'( ) 2u w  = − ;  
'( ) 3w w  = − ; 

' '( ) 1w u  = − ;  
' '( ) 2u v  = +  

'( ) 2 ,   2 0 (mod 3) vv if   =  + ;
' '

,   ( ) 0 (mod 3)  1,2,..., 1
( )

3,    , 1  

if for
v v

otherwise
 

     


     

+ +  + − 
= 

+  +  
 

Case (ii): When   is odd, for 1     

 ( ) 3v = + ; ( ) 2, ( )v u    = + = ;
'( )v = ;

'( ) 1u = + ;
'( ) 3w = + ; 

 ( ) 2w = + ; '
3,       1

( )
1,  2

v v 

 


  

+ =
= 

−  
; 

'( )v u  = ; '( ) 2u u  = + ;  

'( ) 2u w  = − ;
'( ) 3w w  = − ;

' '( ) 1w u  = − ;
' '( ) 2u v  = + ; 

'( ) 2 ,   2 0 (mod 2) vv if   =  + ;
' '

,   ( ) 0 (mod 2)  1,2,..., 1
( )

2,  otherwise  , 1  

if for
v v 

     


     

+ +  + − 
= 

+  +  
 

 

 

Fig 3: Total coloring of 7( )M   
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By this procedure, the graph ( )M   is attained with 3 +  total colorable. So, it is clear that 

''( ( )) 3.M    +  Since ( ( ))M   =  and by lemma 2.7, it follows that ''( ( )) ( ( )) 1M M     +

3. +   Therefore 
''( ( )) 3.M   = +  Equivalently,  this is true for all other values of 4.    Hence  

''( ( )) 3.M   = +  

Theorem 3.4: For any 4  , 
''( ( )) 2 1.T   = +  

Proof: Let  ' ' '( ( )) { } { , , } { , , }:1V T v u v w u v w        =    and                      

 

 

' ' ' ' ' ' ' ' ' '

' '

( ( )) ; ; ; ; ; ; ; ; ; ; :1

                        :1 1, 1

E T vv v v v u u u u w w w w u u v u v vv w u

v v

                    

 

  

    

=  

  − +  
 

The vertices , (1 )u u    induced a clique of order 3 +  in ( )T  . Define  , such that 

: ( ( )) ( ( )) {1,2,3..., 2 1}V T E T    → + . 

 

 

Fig 4: Total coloring of 7( )T   

  For 1     

( ) 2 1v = + ;
'( )v = ; ( ) 2 ;  ( )v u    = = ; ( ) 2 1w = + ; 

'
2,   2 0 (mod 2)

( )
2,   

if
u

otherwise


  




+ +  + 
= 

+
;     

'
1,   1 0 (mod  1)

( )
1,   

if
w

otherwise


  




+ +  + 
= 

+
; 

'
2 ,   2 0 (mod 2 )

( )
2 ,   

if
vv

otherwise


  




 
= 


; 
'

1 ,   +1+ 0 (mod  2 1)
( )

2 1,   

if
v v

otherwise
 

    




+ +  + 
= 

+
 

' '
,   ( ) 0 (mod 2 1)  1 1

( )
2 1,    , 1  

if for
v v

otherwise
 

      


     

+ +  −   − 
= 

−  +  
; 
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'
3 ,   +3+ 0 (mod  2 1)

( )
2 1,   

if
v u

otherwise
 

    




+ +  + 
= 

+
; 

'
1,   1 0 (mod  1)

( )
1,   

if
u u

otherwise
 

  




+ +  + 
= 

+

'( ) 2 1u w  = + ; '( ) 1w w  = ; 
2 1,   2 1 0mod(2 1)

( )
2 1,   

if
vv

otherwise


  




− −  − 
= 

−
; 

' '
2 ,   2 0 mod(2 1)

( ) ( )
2 1,   

if
u v u v

otherwise
   

    
 



+ + + +  + 
= = 

+
; 

' '( ) 2w u  = + ; ( ) 2w u  = +  

By this procedure, the graph ( )T   is attained with 2 1 +  total colorable. So, it is clear that 

''( ( )) 2 1.T    +  Since ( ( ))T   =  and by lemma 2.7, it follows that ''( ( )) ( ( )) 1T T     +

3. +   Therefore 
''( ( )) 2 1.T   = +  Equivalently, this is true for all other values of 4.    Hence  

''( ( )) 2 1.T   = +  

Theorem 3.5:  For any 4  , 
''( ( )) 2 1.S   = +  

Proof: Let  ' ' '( ( )) { } { , , } { , , }:1V S v u v w u v w        =   and  

 ' ' ' ' ' '( ( )) ; ; ; ; ; ; ; ; :1E S uu u u uu u v u v u v v w v w v w                 =    

Define   , such that : ( ( )) ( ( )) {1,2,3...2 1}V S E S    → + .  

'( ) ( ) 2 1u u  = = + ; 
'

1,   ( 1) 0 (mod 1)
( ) ( )

1,   

if
u u

otherwise
 

  
 



+ +  + 
= = 

+
;  

'( ) ( ) 2v v   = = + ; '( ) ( ) 3w w   = = +  

,   0 (mod 2 )
( )

2 ,   

if
uu

otherwise


    




+ +  
= 


; 
' '

,   0 (mod )
( ) ( )

,   

if
uu u u

otherwise
 

  
 



 
= = 


;  

2 ,   1 1
( )

2,   

if
u v 

  


  

  −
= 

− =
; ( )v w  = ; ' '( ) ( ) 2 1u v u v     = = + ;  

'( ) 1v w  = ; '( ) 2v w  =  
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Fig 5: Total coloring of 7( )S   

Based on the above procedure, the graph ( )S   is attained with 2 1 +  total colorable. So, it is clear 

that ''( ( )) 2 1.S    +  Since ( ( ))S   =  and by lemma 2.7, it follows that 

''( ( )) ( ( )) 1S S     + 3. +   Therefore 
''( ( )) 2 1.S   = +  Similarly, this result is true for all 

values of 4.    Hence  
''( ( )) 2 1.S   = +  

Theorem 3.6: let (2,1)L  =  be the lobster, then 
'' ( ) 5.t  =  

Proof: let ' '( ) { , , , , :1 }V v u w w u       =    and 

' '( ) { , , , :1 }E v u u u v w w w          =   1 { :1 1}v v   +   −  

Define : ( ) ( ) {1,2,3,4,5}V E    → as follows.  

The assigning of colors is given below: 

For 1     

( ) ( ) 2,1;   1,0 (mod 2)u v w if    = =  ; ( ) 1, 2;   1,0 (mod 2)v if =  ; 

( ) 3,4;   1,0 (mod 2)w if =  ;  ( ) 5v u  = ;  '( ) 5w w  = ;  '( ) 3u = ;  

'( ) 2w = ; '( ) 4u u  =  

For 1 1   −  

1( ) 3,4;   1,0 (mod 2)v v if  + =   
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Fig 6: Total coloring of lobster graph 5  

Based on the above coloring approach, the graph   is total colored with 5 colors.  Thus ''( ) 5.    

Since ( ) 4 =  and by lemma 2.7, '' ( ) ( ) 1 4 1 5     + = +   and hence 
''( ) 5.  =   

Theorem 3.7: let ( )L   be the line graph of lobster graph, then 
'' ( ( )) 5.L   =  

Proof: let ' '( ( )) { , , , :1 } { :1 1}V L u w w u v         =     −  and 

' '( ( )) { , , :1 }E L u w u u w w        =   1 1{ , , , :1 1}.v u u v w v v w         + +   −   

Define : ( ( )) ( ( )) {1,2,3,4,5}V L E L    → as follows. The assigning of colors is given below: 

 

Fig 7: Total coloring of 5( )L   

 

For 1     

( ) 1, 2;   1,0 (mod 2)u if =  ; '( ) 2,1;   1,0 (mod 2)u u if  =  ; ( ) 3w = ; 

'( ) 3u = ;      '( ) 5w = ;       '( ) 4w w  =  

For 1 1   −  

( ) 5v = ; ( ) 3u v  = ; 1( ) 4v u  + = ; ( ) 1w v  = ; 1( ) 2v w  + =  

Hence   is a total coloring of ( )L  and therefore '' ( ( )) 5L    . Since ( ( ))L   =  and by lemma 

2.7, ''( ( )) ( ( )) 1 4 1 5L L     + = +  and 
'' ( ( )) 5.L   =   

Theorem 3.8: let ( )M   be the middle graph of lobster graph, then 
'' ( ( )) 9.M   =  

Proof: let ' '' ''' ' '' '''( ( )) { , , , , , , , , :1 } { :1 1}V M v u u u u w w w w x              =     −  and 

' ' '' '' ''' ' ' '' '' ''' '' ''( ( )) { , , , , , , , , , , :1 }E M v u u u u u u u v w w w w w w w u u u w w w                        =  

1 1 1{ , , , , , :1 1}w x x w v x x v u x x y             + + +   −  1{ :1 2}x x   +   − .  

Define : ( ( )) ( ( )) {1,2,...9}V M E M    → as follows. The assigning of colors as noted below: 
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Fig 8: Total coloring of 5( )M   

For 1     

( ) 1,2,3;   1, 2,0 (mod3)v if =  ; '( ) 1,2;   1,0 (mod 2)w if =  ; '''( ) 2w =

''( ) 5,6;   1,0 (mod 2)w if =  ; '''( ) 1u = ; ''( ) 9u = ; ( ) 6u = ; '( ) 8u = ; ( ) 9w = ; 

( ) 7v u  = ; '( ) 4u u  = ; ' ''( ) 7u u  = ; '' '''( ) 5u u  = ; ( ) 6v w  = ; '( ) 5w w  = ; ' ''( ) 8w w  =  

'' '''( ) 4w w  = ; ''( ) 3u u  = ; ( ) 2u w  = ; ''( ) 3w w  =  

For 1 1   −  

( ) 2,1,3;   1, 2,0 (mod3)x if =  ; ( ) 3,2,4;   1, 2,0 (mod 3)v x if  =  ; 

1( ) 1,3,2;   1,2,0 (mod3)x v if  + =  ; ( ) 4w x  = ; 1( ) 7x w  + = ;  

( ) 5u x  = ; 1( ) 6x u  + =  

For 1 2   − , 1( ) 8,9;   1,0 (mod 2)x x if  + =   

Hence   is a total coloring of ( )M  and therefore '' ( ( )) 9M    . Since ( ( ))M   =  and by lemma 

2.7, ''( ( )) ( ( )) 1 8 1 9M M     + = +  and 
'' ( ( )) 9.tM  =   

Theorem 3.9: let ( )T   be the middle graph of lobster graph, then 
'' ( ( )) 9.T   =  

Proof: let ' '' ''' ' '' '''( ( )) { , , , , , , , , :1 } { :1 1}V T v u u u u w w w w x              =     −  and  

' ' '' '' ''' ' ' '' '' ''' '' ''' ' ' ' ' '''

''

1 1 1 1

( ( )) { , , , , , , , , , , , , ,

, :1 } { , , , , , , :1 1}

E T v u u u u u u u v w w w w w w w u u u u u v v w w w

u w w w u x v v x u w x x w v x x v

                          

                 



   + + + +

=

    −
  

1{ :1 2}x x   +   − .  

Define : ( ( )) ( ( )) {1,2,...9}V T E T    → as follows. The assigning of colors as noted below: 
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Fig 9: Total coloring of 5( )T   

For 1     

( ) 1,2,3;   1, 2,0 (mod3)v if =  ; ( ) 6u = ; '( ) 5u = ; ''( ) 7u = ; '''( ) 1u = ; ( ) 9w = ;  

'( ) 4w = ; ''( ) 2w = ; '''( ) 1w = ; ( ) 7v u  = ; '( ) 8u u  = ; ' ''( ) 9u u  = ; '' '''( ) 8u u  = ;  

( ) 5v w  = ; '( ) 1w w  = ; ' ''( ) 5w w  = ; '' '''( ) 7w w  = ; ''( ) 3u u  = ; ''' '( ) 2u u  = ;  

'( ) 4u v  = ; '( ) 6v w  = ; ' '''( ) 3w w  = ; ( ) 2u w  = ; ''( ) 3w w  =  

For 1 1   −  

( ) 3,1,2;   1, 2,0 (mod3)x if =  ; ( ) 2,1,3;   1, 2,0 (mod 3)v x if  =  ; 

1( ) 1,2,3;   1,2,0 (mod3)x v if  + =  ; ( ) 6w x  = ; 1( ) 7x w  + = ;  

( ) 5u x  = ; 1( ) 4x u  + = ; 1( ) 8,9;   1,0 (mod 2)v v if  + =   

For 1 2   −  

1( ) 8,9;   1,0 (mod 2)x x if  + =   

Based on the above procedure, the graph ( )T   is attained with 9  total colourable.  Thus 

'' ( ( )) 9T    . Since ( ( )) 8T  =  and by lemma 2.7, ''( ( )) ( ( )) 1 8 1 9T T     + = +  and Hence

'' ( ( )) 9.T   =   

 

Conclusion 

In this paper, the total chromatic number of triple star graph and its line, middle, total , splitting graph 

and lobster graph are obtained, the proofs provides an optimal solution to the total chromatic number 

for these graphs. Overall, delving into the total chromatic number of different graph classes and 

exploring the determination of total coloring in allocation across various families of graphs can 

contribute significantly to graph theory and related fields. 
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