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ABSTRACT
The disease of malaria, transmitted by female Anopheles mosquitoes, is highly contagious, resulting in numerous deaths across 
various regions. Microscopic examination of blood cells remains one of the most accurate methods for malaria diagnosis, but 
it is time-consuming and can produce inaccurate results occasionally. Due to machine learning and deep learning advances in 
medical diagnosis, improved diagnostic accuracy can now be achieved while costs can be reduced compared to conventional 
microscopy methods. This work utilizes an open-source dataset with 26 161 blood smear images in RGB for malaria detection. 
Our preprocessing resized the original dimensions of the images into 64 × 64 due to the limitations in computational complexity 
in developing embedded systems-based malaria detection. We present a novel embedded system approach using 119 154 traina-
ble parameters in a lightweight 17-layer SqueezeNet model for the automatic detection of malaria. Incredibly, the model is only 
1.72 MB in size. An evaluation of the model's performance on the original NIH malaria dataset shows that it has exceptional 
accuracy, precision, recall, and F1 scores of 96.37%, 95.67%, 97.21%, and 96.44%, respectively. Based on a modified dataset, the 
results improved further to 99.71% across all metrics. Compared to current deep learning models, our model significantly out-
performs them for malaria detection, making it ideal for embedded systems. This model has also been rigorously tested on the 
Jetson Nano B01 edge device, demonstrating a rapid single image prediction time of only 0.24 s. The fusion of deep learning with 
embedded systems makes this research a crucial step toward improving malaria diagnosis. In resource-constrained settings, the 
model's lightweight architecture and accuracy enhancements hold great promise for addressing the critical challenge of malaria 
detection.

1   |   Introduction and Related Works

Malaria is among the most dangerous diseases facing human-
ity [1]. Globally, approximately half of the population faces ma-
laria risks, according to the World Health Organization (WHO). 
A staggering 619 000 lives were lost to malaria in 2021 alone, 

resulting in an estimated 247 million cases documented world-
wide. This deadly disease disproportionately affects the African 
region [2]. Figure 1 summarizes malaria deaths by age group. 
Malaria claims the lives of a child under the age of five almost 
every minute, and many of these deaths are not only preventable 
but also treatable [3]. Around a thousand children die every day 

© 2024 Wiley Periodicals LLC.

https://doi.org/10.1002/ima.23205
https://orcid.org/0009-0006-4226-3652
mailto:
https://orcid.org/0000-0003-0744-8206
mailto:
https://orcid.org/0000-0002-5839-4589
mailto:mchowdhury@qu.edu.qa
mailto:m.murugappan@kcst.edu.kw


2 of 16 International Journal of Imaging Systems and Technology, 2024

because of these tragic accidents under the age of five, constitut-
ing a startling 77% of all these tragic deaths.

Plasmodium, a parasitic agent, is the root cause of malaria. 
Humans can be infected by multiple Plasmodium species, 
including Plasmodium falciparum, Plasmodium vivax, 
Plasmodium malaria, and Plasmodium ovale [5]. These par-
asites usually enter the human body through bites from fe-
male Anopheles mosquitoes [6]. Humans contract malaria 
when an infected mosquito bites them and introduces spo-
rozoites. Sporozoites migrate to the liver, where they target 
hepatocytes and undergo schizogony. As merozoites enter the 
bloodstream, they infect erythrocytes and initiate asexual re-
production. Figure 2 shows the blood cells of a normal indi-
vidual and those with malaria. As a result of mating, a zygote 
is formed, which then matures into an ookinete. The ookinete 
of a mosquito develops into an oocyst after passing through its 
midgut epithelium. Due to the remarkable and intricate life 
cycle of the malaria parasite, the disease is transmitted to hu-
mans by mosquitoes.

Malaria's devastating impact on human lives, especially the 
youngest and most vulnerable, demonstrates the need for in-
creased research, public health interventions, and innovative 
strategies. Malaria parasites include P. falciparum and P. vivax, 
which are the most pernicious [7]. Those bitten by mosqui-
toes carrying these parasites can lie dormant for 10–15 days or 
even longer after being bitten [8]. The impact of malaria on our 
youngest population should not be overlooked. A study by the 
Institute for Health Metrics and Evaluation (IHME) found most 
malaria-related deaths occurred in children under five [9].

There are three types of malaria: asymptomatic (simple), com-
plicated (severe), and asymptomatic (complicated). There are 
early symptoms such as fever, chills, muscle aches, and gastro-
intestinal issues in children. Symptoms include excessive sweat-
ing, high fever, and fatigue, and can occur suddenly. Malaria is 
commonly diagnosed using microscopic examination of stained 
blood films and rapid diagnostic tests (RDTs). The gold stan-
dard for malaria diagnosis is microscopically examining thick 
and thin blood films. Due to their strong diagnostic capabili-
ties, wide availability, and affordability, RDTs are widely used. 
Compared with thin blood cell microscopy, antigen-based rapid 
diagnostic procedures are more expensive and less accurate in 
resource-constrained settings. A cost-effective, efficient, and ac-
curate malaria diagnostic system is urgently needed. Machine 
learning (ML) and deep learning (DL) techniques have been 
explored to detect life-threatening diseases in the past decade. 
Due to its severity, automated malaria detection has received 
considerable attention. The effectiveness and accuracy of dis-
ease classification has improved significantly since DL models 
were introduced [10, 11]. Convolutional operations allow DL ap-
proaches to extract specific patterns from malaria-infected red 
blood cells. This section discusses several recent studies focused 
on malaria disease detection:

Sumagna et al. [12] proposed a model of deep convolutional neu-
ral networks (CNNs) based on the ResNet152 architecture. Their 
Deep Greedy Network model was trained on 27 558 images of 
malarial cells with balanced infected and uninfected classes. 
The model detected malaria with 98.25% accuracy. AOCT-NET 
is a lightweight CNN model that leverages transfer learning to 
classify malaria-infected cells developed by Alqudah et al. [13]. 

FIGURE 1    |    Malaria death rates by age [4].
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Their dataset contained approximately 27 558 segmented images 
of RBCs. This model achieved an astounding accuracy of 98.90% 
with a learning rate of 0.001. Jain et al. [14] proposed a low-cost 
CNN that did not require preprocessing or GPU processing. 
In tests with 27 558 balanced classes, ResNet outperformed K-
nearest neighbors (KNN) and support vector machines (SVM) 
as well as genetic algorithms-based models. Using stacked con-
volutional neural networks, Muhammad Umer et  al. [15] de-
veloped an autonomous malaria detection system. The dataset 
included 27 558 parasitized and uninfected cells, resulting in 
100% precision, 99.9% recall, and 99% F1-measure. Zhaohui 
Liang et al. [16] proposed a CNN model with 16 layers for the 
detection of malarial parasites. Models trained on around 27 000 
images exhibited 97.0% accuracy, exceeding transfer learning 
methods. The method proposed by Gopakumar et al. [17] used a 
CNN based on a focus stacking algorithm. By focusing on sus-
pected parasite positions, the computational cost was reduced. 
Using nine layers and a soft-max log-loss layer, this CNN ar-
chitecture achieved 98.50% specificity, 97.06% sensitivity, and 
0.7305 Matthew Correlation Coefficient (MCC), outperforming 
SVM and other patched approaches.

Transfer learning has demonstrated its value in these specific sit-
uations, improving classification performance. The use of deep 
networks has been demonstrated to be effective in the detection 
of malaria, with notable accuracy and precision [13, 18–30]. 
Omaer et al. [8] proposed the extreme learning machine (ELM) 

for the diagnosis of malaria. Their deep ELM network, which 
consists of two layers of 500 nodes each, achieved 97.79% ac-
curacy. They did not achieve the same accuracy with CNN or 
CNN combined with ELM. Sumagna et  al. [12] achieved im-
pressive accuracy (98.25%), as well as high precision and recall 
(98.40% and 98.11%, respectively). It has been demonstrated that 
ResNet-152 and Deep Greedy Networks enhance learning and 
performance. A falcon architecture proposed by Banerjee et al. 
[14] consists of nine layers and 984 961 parameters. Alassaf and 
Sikkandar presented an intelligent deep transfer learning model 
(IDTL-MPDC) for detecting malaria parasites in blood smear 
images [18]. A residual neural network and the differential evo-
lution (DE) approach were used to optimize model hyperparam-
eters, resulting in good accuracy (95.86%), sensitivity (95.82%), 
specificity (95.98%), F1 score (95.69%), and precision (95.86%).

Vijayalakshmi et al. [19] combined VGG-19 with an SVM clas-
sifier to detect malaria in microscopic blood cell images. They 
detected malaria with a maximum accuracy of 93.13%. An accu-
racy of 89.21% is achieved with VGG16 and SVM. Using 10-fold 
cross-validation, a CNN, and a fine-tuned version of the CNN 
architecture helped Gautham et al. [20] detect malaria automat-
ically with 94% and 96% accuracy. Amal H. Alharbi et al. [21] ex-
plored CNN, SVM, and XGBoost for malaria detection. XGBoost 
achieved 90% accuracy, while SVM achieved 94%. However, 
CNN that was specifically designed outperformed both, achiev-
ing 97% accuracy. Bibin et al. presented a novel model using a 

FIGURE 2    |    Infected and healthy blood cells.
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deep belief network (DBN) pre-trained using the contrastive di-
vergence technique [22]. Their 484-600-600-600-600-2 architec-
ture outperformed other models, achieving an F-score of 89.66%. 
In comparison with state-of-the-art CNN models, this model 
achieved 95.2% accuracy without overfitting. According to Ibrar 
Amin et al. [23], a semi-supervised GAN-based architecture was 
developed for malaria classification. The model achieved 96.6% 
accuracy with good precision (95.53%) with less training data 
than standard deep learning models. Detecting malaria para-
sites using a multiheaded attention transformer was proposed 
by Robiul et  al. [24]. This study used 27 588 RBC images and 
achieved a maximum accuracy of 99.25% using the SGD opti-
mizer. Krishnadas et al. [25] applied YOLOv5 and YOLOv4 to 
malaria parasite classification and stage progression. The first 
dataset had an accuracy rate of 78.5% and the second had an 
accuracy rate of 83%.

A comparative analysis involving Naive Bayes, KNN, SVM, 
Artificial Neural Networks (ANN), and a hybrid model was 
conducted by Shuleenda et al. [26]. The authors analyzed 1302 
microscopic erythrocyte images from 400 blood smears, equally 
distributed across seven classes. Combining these techniques 
resulted in the best accuracy of 96.54%. Using genetic algo-
rithms with Principal Component Analysis (PCA) and indepen-
dent component analysis (ICA) for gene sample classification, 
Arowolo et al. proposed an innovative approach [28]. Anopheles 
gambiae mosquito data with seven features and 2457 samples 
were used in this study. PCA with KNN achieved 90% accuracy 
over ICA with KNN.

Several imperative reasons make deep learning (DL) particu-
larly effective in the health sector. A big advantage of this tech-
nique is its ability to handle and evaluate extensive, intricate 
biomedical datasets more efficiently than any conventional ma-
chine learning (ML) technique [29]. Rajaraman et al. [30] eval-
uate several pre-trained CNN models for classifying parasitized 
and uninfected cells, showing promising results for automated 
malaria screening. DL eliminates the need for labor-intensive 
and biased manual feature engineering by extracting features 
autonomously from unprocessed data [30, 31]. A notable appli-
cation of DL algorithms is in medical imaging, where they have 
demonstrated exceptional performance in diagnosing ailments 
based on X-rays, MRIs, and CT scans. In some cases, DL models 
surpass or are equivalent to the diagnostic accuracy of seasoned 
radiologists [31, 32]. Furthermore, DL's ability to analyze un-
structured data, such as free-text clinical notes from electronic 
health records (EHRs), enables it to identify crucial clinical in-
formation and predict patient outcomes more accurately than 
conventional approaches. The DL platform demonstrates excep-
tional proficiency in genomics and drug discovery by analyzing 
large volumes of clinical and genomic data and revealing new 
insights. In addition, this enhances the development of precision 
medicine by expediting the identification of pharmaceutical 
candidates and individualized treatment strategies. Moreover, 
its adaptability and ongoing learning enhance its predictive pre-
cision and applicability, which makes it an essential tool for de-
veloping resilient healthcare solutions.

Based on our review of recent state-of-the-art (SOTA) research, 
we have identified and discussed the following challenges in the 
detection of automated malaria-infected blood cells:

•	 Challenge 1: One of the key challenges in our research is the 
high-performance CPUs and GPUs needed for most image 
classification models. However, our research focuses on em-
bedded systems, which often have limited computational 
capabilities and memory.

•	 Challenge 2: Although reducing model parameters saves 
time, it often reduces output accuracy. As a result, one of our 
major challenges is reducing the parameters of our model 
without compromising its accuracy.

•	 Challenge 3: Because the model will be used in pathology 
detection in clinical practice, precision, and recall measures 
are of the utmost importance in achieving the most accu-
rate performance. Embedded software must be bug-free and 
lightweight so that the system runs smoothly.

Health care is becoming increasingly dependent on the Internet 
of Things (IoT). Traditional disease detection, health monitor-
ing, and tracking methods are time-consuming, outdated, and 
offer suboptimal results. As a result, researchers are developing 
intelligent classification systems using IoT technology. The ob-
jective of this study is to develop a lightweight embedded sys-
tem framework to detect malaria. This framework can be used 
to determine whether a cell is infected with malaria or not. 
With the technique, thin blood smear samples can be classi-
fied quickly and easily, reducing the time and effort involved in 
malaria pathology diagnosis. This study develops a lightweight 
CNN model for malaria detection using microscopic blood cell 
images. The lightweight model is then deployed on a Jetson 
Nano IoT device. The model was selected based on its size and 
IoT compatibility. Our model's compactness and exceptional 
accuracy in detecting malaria in microscopic blood images are 
noteworthy features.

The following contributions are noteworthy in this paper:

•	 We developed lightweight SqueezeNet models tailored to 
embedded systems for malaria detection from blood smear 
images.

•	 A real-world application of the proposed model has been 
successfully implemented on the Jetson Nano platform, 
demonstrating its practicality.

•	 Upon deployment in the embedded system, our proposed 
model demonstrated superior performance. Although the 
model size is small (1.72 MB), it is remarkably fast at compil-
ing and testing, achieving impressive classification results.

2   |   Materials and Methods

2.1   |   Proposed Approach

During the last few decades, deep learning technologies have 
revolutionized the field of medicine. The purpose of this study 
is to address these challenges by developing a lightweight 
CNN model tailored especially for resource-constrained envi-
ronments. In this work, we aim to build a model that reduces 
computational complexity and uses the least amount of mem-
ory possible. The lightweight model has been successfully im-
plemented on the Jetson Nano IoT device, demonstrating its 
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practicality for deployment in compact embedded systems with 
limited resources. To facilitate disease detection, small, autono-
mous embedded systems are becoming increasingly popular as 
technology advances. In medical diagnosis, embedded systems 
are well-suited for building efficient mobile devices. Hardware 
limitations are the primary challenge for embedded systems, 
which are often compact and power efficient. Because of this 
constraint, there is a limited amount of storage space and com-
putational power available. A lightweight model with reduced 
computational requirements is essential for seamless embedded 
system operation. Figure 3 illustrates the workflow of our com-
prehensive methodology.

A workflow can be described as follows: the process begins 
with the loading of the dataset from the directory. Upon ini-
tial inspection of the dataset, inaccuracies were discovered, 
including misclassified images. Subsequently, modifications 
were made to the dataset, and the refined dataset was used for 
subsequent training. The pre-processing of images involved 
resizing them to 64 × 64 × 3 dimensions and scaling them. 
Following this, the dataset was randomly split into training, 
testing, and validation sets, at 80%, 10%, and 10%, respec-
tively. Next, the lightweight SqueezeNet model was used in 
the training process. The best model was saved, and compre-
hensive classification reports and accuracy percentages were 
calculated.

2.2   |   Dataset Description

A thin blood smear dataset was extracted from the National 
Library of Medicine archives and was derived from 148 indi-
viduals infected with Falciparum and 45 from uninfected in-
dividuals [29]. Segmentation of this dataset was performed by 
Rajaraman et al. [30]. Thereafter, we acquired a larger dataset 
comprising approximately 27 558 RBC images with an even dis-
tribution between malaria-parasitized and uninfected patients. 
According to the research conducted by Fuhad et al. [31], some 
inaccuracies in labeling were identified in this extensive data 
set. There were 1397 falsely labeled images, including 647 falsely 
labeled infected images and 750 mislabeled uninfected images. 
To ensure dataset integrity, erroneously labeled images were 
systematically removed from the original dataset. In Table  1, 
both the original and modified datasets are described according 
to their class distributions. In this study, the modified dataset by 
Fuhad et al. [31] is used for training and testing.

2.3   |   Image Pre-Processing

An image-based classification system is highly dependent on 
the quality and dimensions of the images in the dataset. As a 
fixed image size is typically required for consistent training 
and prediction, variations in image sizes within a dataset can 

FIGURE 3    |    Overall workflow diagram with embedded system.
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present challenges when used as inputs for deep learning mod-
els. Several image processing steps are streamlined in this re-
search to optimize these images for embedded systems. Due to 
their limited storage and computational resources, embedded 
systems can use less storage and process power. To achieve this, 
each image is cropped to a standardized 64-pixel width and 
height during preprocessing. To simplify the classification pro-
cess for embedded systems, all other preprocessing techniques 
have been omitted.

2.3.1   |   Image Resizing

To ensure uniformity in the input data and to optimize the com-
putational efficiency for embedded systems, all images in the 
dataset were resized to dimensions of 64 × 64 pixels. The choice 
of this size reflects a balance between preserving the critical de-
tails necessary for accurate malaria detection and reducing the 
computational load on the model. By downscaling the images to 
this fixed resolution, the model can more efficiently process the 
data, which is particularly important in resource-constrained 
environments such as embedded systems. This resizing also en-
sures that the model can generalize better by focusing on the 
most relevant features while maintaining a consistent input for-
mat across the entire dataset.

2.3.2   |   Normalization

The images were normalized by scaling the pixel values 
to a range of [0,1], achieved by dividing each pixel value by 
255, which is the maximum value in the RGB color space. 
Normalization is a crucial preprocessing step as it standard-
izes the input data, leading to improved convergence during 
the model's training phase. By bringing all pixel values into 
a common range, normalization helps in stabilizing the gra-
dient descent process, thereby speeding up the training and 
enhancing the model's performance. It also reduces the likeli-
hood of the model getting stuck in local minima, resulting in 
a more robust and accurate prediction.

2.3.3   |   Color Space

The images were retained in the RGB color space instead of con-
verting them to grayscale or another color space. This decision 
was based on the hypothesis that color information could play 
a significant role in distinguishing between healthy and in-
fected cells in blood smears. Malaria parasites can cause subtle 
changes in the color properties of infected cells, which might 
be lost if the images were converted to grayscale. By preserving 
the original RGB color space, the model is provided with richer 

information, potentially leading to more accurate detection of 
malaria-infected cells.

2.3.4   |   Batch Preparation

For efficient processing during the training phase, the images 
were grouped into batches of 64. Batch processing is a widely 
used technique in deep learning that allows the model to pro-
cess multiple images simultaneously, which not only speeds up 
the training process but also ensures that the model's gradients 
are updated more smoothly.

2.4   |   Experimental Setup

Implementation of the architecture, as well as all associated pre-
processing, training, and evaluation, was carried out using the 
TensorFlow framework and Keras library. The model was trained 
on Kaggle and used an NVIDIA Tesla P100 16 GB GPU supported 
by an Intel Xeon E5-2690 v4 CPU and 13 GB of RAM. After the 
evaluation phase, the best-trained model was obtained and loaded 
onto the NVIDIA Jetson Nano Developer Kit-B01. This develop-
ment kit boasts a Quad-core ARM Cortex-A57 CPU, an NVIDIA 
Maxwell GPU featuring 128 CUDA cores, 4 GB of 64-bit LPDDR4 
RAM, and operates under Ubuntu 18.04 operating system.

2.5   |   SqueezeNet Model

2.5.1   |   Fire Module

A fundamental component of the SqueezeNet framework is the 
fire module. A key function of this module is to strike a balance 
between precise feature extraction and minimal computational 
complexity. As shown in Figure 4, it consists of two layers: the 
squeeze layer and the expand layer. Squeeze serves as a bottle-
neck layer, effectively reducing input channels with a 1 × 1 fil-
ter. A minimal parameter footprint allows for the extraction of 
spatial information using this process. The expanded layer then 
follows the squeeze layer and incorporates both 1 × 1 and 3 × 3 
filters. In the 1 × 1 filter, more channels are added to the input, 
while in the 3 × 3 filter, more information is captured through a 
deeper dive into the data.

2.5.2   |   SqueezeNet Architecture

Compared to AlexNet, SqueezeNet has a 50-fold reduction in 
parameters and is composed of convolution layers, max-pooling 
layers, fire modules, global average layers, and an output 
SoftMax layer. A suggested SqueezeNet architecture consists of 

TABLE 1    |    Label-wise image count.

Dataset
Infected 
images

Uninfected 
images Total Training (80%) Testing (10%)

Validation 
(10%)

Original [30] 13 779 13 779 27 558 22 045 2755 2756

Modified [31] 13 132 13 029 26 161 20 928 2616 2615
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12 layers, including a convolution layer, four max-pooling lay-
ers, five fire modules, a global average layer, and a single output 
SoftMax layer. Starting with an input layer with 64 × 64 RGB 
channels, the architecture employs a convolution layer with 32 
filters of 3 × 3 size to extract features. The Rectified Linear Unit 
(ReLU) is an activation function in each convolutional layer that 
enhances the convolutional features. An essential part of the 
SqueezeNet model is the fire module, which consists of two ex-
pansion layers and a squeeze layer. By applying a 1 × 1 filter, the 
squeeze layer reduces the channel depth by C ∕4. As a result, the 
expand layer employs both 1 × 1 and 3 × 3 filters to increase the 
channel depth by C ∕2. ReLU activation occurs in both squeeze 
and expand layers. Max-pooling reduces feature map size and 
promotes spatial invariance by de-emphasizing less critical val-
ues and concatenating feature values from each fire module.

Each fire layer is followed by four max-pooling layers, each with 
a pool size of two, resulting in an 8× reduction in the original 

image. There is a consistent ratio between the output tensor size 
and the input tensor size of a fire unit. If a tensor with dimen-
sions H ×W × C is introduced into the fire module, it will go 
through a squeeze layer and then an expand layer. Squeeze lay-
ers employ 1 × 1 filters to reduce channel depth by C ∕4, while 
expand layers employ 1 × 1 and 3 × 3 filters to increase the depth 
by C ∕2. The ReLU activation function is incorporated both in 
the squeeze and in the expand layers. Through concatenation, 
the desired features extracted from these layers are combined, 
thus restoring the original depth dimension. In terms of the out-
put layer, the squeeze operation can be expressed as:

where {xc
fm} ∈ ℝN (fm = 1, 2, 3, … F , c = 1, 2, 3, … , ch) is the 

input for the squeeze operation. F is the feature maps and ch is 
the channels of length N. yf 1 ∈ ℝN (f 1 = 1, 2, 3, … F1) is the out-
put of the squeeze operation of the kernel w ∈ ℝch×1×F1.

There are 119 154 trainable parameters out of 120 466 total pa-
rameters. This is much less than the other familiar CNN archi-
tectures such as ResNet50 has 24 120 962 parameters; VGG16 
has 14 848 578 parameters; DenseNet121 has 7 304 514 param-
eters; MobileNetV2 has 2 591 554 parameters; EfficientNetB3 
has 11 183 665 parameters, despite its higher accuracy as shown 
in Table  6. As a result, training and prediction are less com-
putationally intensive. In this way, embedded systems can 
meet the basic requirements. The proposed model consists 
of 1.2 million parameters, 0.042 billion FLOPs, and 1.2 MB of 
memory (Figure 5). The test time for the proposed model is 10 
milliseconds.

(1)yf 1 =
∑F

fm=1

∑Ch

c=1
wf
cx

fm
c

FIGURE 4    |    Fire Module.

FIGURE 5    |    Model Architecture.
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3   |   Numerical Results

3.1   |   Evaluation Matrices

Several matrices were used to evaluate the model's performance. 
Based on the Confusion Matrix (CM), precision, accuracy, recall, 
and F1-score [32–35], the proposed embedded system model was 
evaluated. Accuracy, precision, sensitivity, and F1-score are cru-
cial metrics employed to assess the performance of classification 
models in tasks related to machine learning and data mining. 
These measures are essential for evaluating the efficiency of 
classification algorithms, especially in fields where the expenses 
associated with incorrect positive and negative results differ, 
such as medical diagnosis, fraud detection, and spam filtering. 
In terms of accuracy, it represents the level of accuracy with 
which the model can predict the class. In evaluating a model, 
this matrix is of importance.

Accuracy: Accuracy is a metric that quantifies the ratio of ac-
curate predictions made by the model to the total number of 
forecasts.

Here, TP, TN, FN, and FP refer to true positive, true negative, 
false negative, and false positive respectively.

Precision: Precision is a measure that calculates the ratio of cor-
rect positive predictions to all positive predictions generated by 
the model. The rate of incorrectly classifying patients in medical 
diagnosis can lead to unnecessary treatments. It is important to 
evaluate a model precisely in this regard. Furthermore, if a data-
set is imbalanced, the precision of a class can be reduced even if 
the accuracy of a particular class can be high.

Recall: Sensitivity, or recall, quantifies the ratio of accurately 
detected actual positive events by the model. In the case of 
malaria-infected patients, a false negative can have serious 
health implications.

F1-Score: The F1-score is a mathematical average that combines 
precision and recall, offering a well-balanced measure of both 
parameters. In F1-score, recall and precision are combined into 
a single value. F1-score evaluation is essential when precision 
and recall are both crucial to a model's performance.

As a result, the proposed model demonstrates outstanding per-
formance across all performance metrics, including training, 
testing, and validation accuracies. The model's overall accuracy 
is 99.76%, marking a significant advancement in the medical 
field. In addition, training accuracy is 99.57%, and validation ac-
curacy is 99.175%, demonstrating the model's robustness with-
out overfitting.

3.2   |   Batchwise Performance Analysis

A study was conducted to examine how different batch sizes im-
pacted the model's performance, focusing on different perfor-
mance metrics. Tables 2 and 3 provide a detailed overview of the 
results of this investigation.

3.2.1   |   Adam Optimizer for Original Dataset

A high degree of overall correctness is evidenced by accuracy 
values ranging from 95.82% to 96.37%. The precision values span 

(2)Accuracy (ACC) =
(TP + TN)

(TP + TN + FP + FN)

(3)Precision (Pre) =
TP

(TP + FP)

(4)Recall (Spe) =
TP

(TP + FN)

(5)F1 − score (F1S) =
2∗ (Precision∗Recall)

(Precision + Recall)

TABLE 2    |    Performance for different batch sizes with ADAM optimizer and original dataset.

Batch Size Accuracy (%) Precision (%) Recall (%) F1-Score (%) Model Size (MB)

8 95.82 95.62 96.14 95.88 1.72

16 96.37 95.67 97.21 96.44 1.72

32 96.05 95.00 97.30 96.14 1.72

64 96.28 95.50 97.21 96.35 1.72

Note: The bold values represent the highest performance achieved in the present work.

TABLE 3    |    Performance for different batch sizes with ADAM optimizer and modified dataset.

Batch Size Accuracy (%) Precision (%) Recall (%) F1-Score (%) Model Size (MB)

8 99.61 99.33 99.90 99.62 1.72

16 99.62 99.34 99.90 99.62 1.72

32 99.66 99.62 99.71 99.66 1.72

64 99.71 99.71 99.71 99.71 1.72

Note: The bold values represent the highest performance achieved in the present work.
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from 95% to 95.67%, indicating a notably low false positive rate 
while the batch size varied from 8 to 64 (Table  2). The recall 
value of the model ranges from 96.14% to 97.30%, indicating 
its effectiveness in minimizing false negatives. There is a good 
balance between precision and recall in the F1 scores, which 
range from 95.88% to 96.44%. The model with a batch size of 16 
shows promising results in malaria detection compared to other 
batch sizes.

3.2.2   |   Adam Optimizer for Modified Dataset

A high level of accuracy was consistently demonstrated by the 
model across all batch sizes, ranging from 99.61% to 99.71% 
(Table 3). Based on these results, the model can effectively clas-
sify most of the samples submitted. Additionally, the precision 
values, ranging from 99.33% to 99.71%, were consistently high. 
The model's exceptional accuracy in predicting positive samples 
is underscored by this consistency. Additionally, the recall val-
ues remained consistently above 99.6%, illustrating the model's 
remarkable ability to identify positive samples.

The F1-score, which combines precision and recall, consistently 
exceeded 99.6% across all batch sizes. Thus, the model ensures 
both high accuracy and effective detection of positive samples 
by maintaining an equilibrium between precision and recall. 
Across all batch sizes, the model size remained constant at 
1.72 MB. As a result, the batch size had a minimal impact on the 
model's size, allowing efficient use of computational resources. 
Based on these results, it is clear that the model consistently 
performs exceptionally well regardless of batch size. The infor-
mation provided here will assist scientists and professionals in 
selecting the most appropriate batch size based on their compu-
tational capabilities and training needs.

3.3   |   Evaluation of Original Dataset Versus 
Modified Dataset

Most of the recent research has been conducted using the orig-
inal dataset. The evaluation matrices of the proposed model 
using the original dataset can be found in Table 4. The presence 
of mislabeled data in the original dataset inevitably adversely 
affected model performance. In most recent studies of malaria, 
the original dataset was used, which could have contained inac-
curacies. Unlike the original dataset, the modified version was 
carefully curated to eliminate mislabeled images and therefore 
produced significantly higher accuracy. A 99.71% accuracy, pre-
cision, recall, and F1-score were obtained when using the mod-
ified dataset. In comparison, when working with the original 
dataset, these metrics were at 96.28% accuracy, 95.50% preci-
sion, 97.21% recall, and 96.35% F1-score. Figure 6a,b illustrates 
the effectiveness of the model with the ADAM optimizer and a 

batch size of 64. The confusion matrix shown in Figure 6c illus-
trates the number of predicted infected and uninfected samples 
in the test split of the dataset.

3.4   |   Comparison of Performance With 
State-Of-The-Art Models

Table  5 shows the performance comparison of the proposed 
work with the state-of-the-art methods reported in the literature 
in malaria detection from blood smear images. Based on the 
results, the proposed model outperformed all the other models 
reported in the literature and achieved a maximum accuracy 
and F1-score of 99.71%. We conducted experiments on various 
architectures, including VGG16, DenseNet121, MobileNetV2, 
MvitV2_small, Xception and the proposed SqueezeNet model, 
to identify the best-performing model. We used a modified 
dataset consisting of 64 × 64 resized images, a batch size of 
64, and the ADAM optimizer for these experiments. Several 
critical factors were weighed before selecting the proposed 
model, including the number of parameters and the size of the 
model. Based on the comparative results presented in Table 6, 
the proposed SqueezeNet architecture outperforms the others. 
It is noteworthy that the proposed model has fewer parame-
ters, while being more efficient than VGG16, DenseNet121, 
MobileNet_V2, and MViTv2_small, SqueezeNet_0, Xception 
respectively. Additionally, the proposed CNN model has a foot-
print of only 1.72 MB, which is much smaller than that of other 
CNN models.

Table 6 shows how different deep learning models perform for 
malaria detection. Five performance measures are considered in 
this work: Accuracy (Acc), Precision (Pre), Sensitivity (Recall) 
(Sen), F1-score (F1S), and Specificity (Spe). Classification tasks 
typically use these performance measures to evaluate model 
performance. All evaluation measures show that the proposed 
model scored 99.71%, 99.71%, 99.71%, 99.71%, and 99.71%, re-
spectively, for Accuracy, Precision, Sensitivity, F1-score, and 
Specificity. It is evident from these findings that the proposed 
model can accurately identify instances, maintain a high true 
positive rate (Sensitivity/Recall), limit false positives (Precision), 
and strike a good balance between Precision and Recall (high 
F1-score). The model's ability to recognize negative events is 
demonstrated by its high Specificity. VGG16 is the second-best 
model, with somewhat lower scores than the suggested model. 
In comparison to our proposed model and the VGG16, Xception, 
MobileNet_V2, DenseNet121, Multiscale Vision Transformer 
(MViTv2_small), and SqueezeNet1_0 perform differently. The 
proposed model only requires 0.042 billion FLOPs, significantly 
fewer than most other pre-trained models. Due to its low com-
putational complexity, the proposed model has a faster inference 
time than other pre-trained models. The proposed model sac-
rifices some accuracy and representational power in exchange 

TABLE 4    |    Evaluation metrics between uses of original and modified dataset.

Dataset Accuracy (%) Precision (%) Recall (%) F1-score (%)

Original 96.28 95.50 97.21 96.35

Modified 99.71 99.71 99.71 99.71

Note: The bold values represent the highest performance achieved in the present work.
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for efficiency and a smaller memory footprint when compared 
to larger and more complex models like VGG16 (138.4 billion 
FLOPs, 528 MB size).

However, the proposed model is on par with or even outperforms 
the highly efficient MobileNet_V2 (0.22 billion FLOPs, 14 MB size) 
in terms of model size and computational complexity, so it is a com-
pelling choice for applications that prioritize speed and resource 
utilization over maximizing accuracy. Although DenseNet-121 
(8 billion FLOPs, 33 MB size) has a larger model size and higher 
computational complexity than our proposed model, it still main-
tains a relatively compact footprint in comparison to models like 
VGG16 and DenseNet121. In the end, the choice of model depends 
on your application's specific requirements, such as the desired 
balance between accuracy, speed, and resource constraints. With 
its exceptional efficiency, our model is a strong contender for sce-
narios where computational resources are limited, while larger 
models such as VGG16 and DenseNet121 may be more suitable 
for applications requiring accuracy over efficiency. Based on the 
investigation results, the proposed model captured key traits and 
patterns better than other models. The performance of a model 
should be evaluated concerning its computational complexity, 
resource requirements, and interpretability, depending on the 
application and limitations. To confirm performance differences 
and ensure results robustness, statistical significance testing, and 
cross-validation may be required. A clear and useful comparison 
of model performance is provided in the table (Table 6), demon-
strating the proposed model's potential for further development 
and practical application.

3.5   |   Model Visualization

The study of Explainable AI (XAI) techniques is considered a 
crucial area of study in the field of machine learning, especially 

FIGURE 6    |    Training and validation accuracy curve (a), loss curve (b), Confusion Matrix (c), and (d) ROC-AUC curve.

TABLE 5    |    Comparative Analysis of previous models with the 
proposed model.

Authors Model
Accuracy 

(%)
F1-score 

(%)

Liang et al. [16] 16-layer 
CNN

97.37 97.36

Alqudah et al. 
[13]

23-layer 
CNN

98.85 98.85

Bibin et al. [22] Deep Belief 
Network

96.30 —

Rajaraman et al. 
[30]

Ensemble 
CNN

99.50 99.08

Yuhang et al. 
[36]

CNN pre-
trained 
model

98.13 —

Kumar et al. 
[37]

CapsNet 
model

99.08 97.44

Devi et al. [27] ANN 96.32 85.32

Proposed 
model

SqueezeNet 99.71 99.71

Note: The bold values represent the highest performance achieved in the present 
work.
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for applications requiring transparency and interpretabil-
ity. Researchers and practitioners can use XAI to understand 
decision-making processes, detect biases or errors, and build 
trust and accountability through visual representations and ex-
planations of intricate model behavior. By using methods like 
Grad-Cam [33], Grad-Cam++ [34], activation visualization 
[38, 39] saliency maps [40, 41], and architectural visualization 
[42], XAI provides insight into the internal processes of deep 
neural networks and other complex models, which facilitates 
model debugging, regulatory compliance, and collaboration be-
tween humans and machines. Finally, XAI and model visual-
ization are important because they enable AI systems to unleash 

their full potential, promoting trust, accountability, and respon-
sible implementation.

Deep learning methods such as saliency maps, Grad-CAM 
(Gradient-weighted Class Activation Mapping), and Guided Grad-
CAM are widely used to visualize and interpret models, specifi-
cally convolutional neural networks (CNNs). Figure 7 illustrates 
the region of the image that affects more in the proposed model's 
prediction by using these methods. Their purpose is to highlight 
the areas or characteristics of the input image that are most signif-
icant for the prediction of the model. From the figure, the model 
is predicted based on red pixels. The illustration of healthy cells in 

TABLE 6    |    Performance comparison (in %) of the proposed model with different pre-trained model.

Model Acc Pre Sen F1S Spe param
mSize 
(MB)

Training 
time (s)

Testing 
time (s)

Xception 99.12 99.12 99.12 99.12 99.11 22.9 M 90.2 24 min 0.20/img

MobileNet_V2 99.12 99.12 99.12 99.12 99.11 3.5 M 14.0 39 min 0.40/img

DenseNet121 99.07 99.07 99.07 99.07 99.07 8.0 M 33.0 48 min 0.31/img

MViTv2_small 99.02 99.02 99.02 99.02 99.02 19.5 M 77.0 27 min 0.23/img

VGG16 99.31 99.31 99.31 99.31 99.3 138.4 M 528.0 45 min 0.19/img

SqueezeNet1_0 99.16 99.26 99.19 99.12 99.11 1.2 M 4.8 24 min 0.21/img

Proposed model 99.71 99.71 99.71 99.71 99.71 1.2 M 1.72 20 min 0.09/img

Note: The bold values represent the highest performance achieved in the present work.
Abbreviations: img—image; Acc—accuracy; Pre—precision; Sen—sensitivity; F1S—F1-score; Spe—specificity; param—parameter count; mSize—model size.

FIGURE 7    |    Original image and their corresponding Grad-Cam, Guided-Grad-Cam, and Saliency Mapping result for malaria-affected cells.



12 of 16 International Journal of Imaging Systems and Technology, 2024

Figure 8 makes this clearer. In the absence of reddish pixels, the 
reddish pixels model predicts them as healthy images. As a funda-
mental method, saliency maps utilize pixels or features to visually 
represent the significance of each input pixel or feature based on 
a specific output. It is necessary to determine the gradient of the 
output in relation to the input to perform the computation. The 
saliency map prioritizes the input pixels or features that have the 
greatest impact on the output. Saliency maps may be difficult to 
interpret for sophisticated models due to their chaotic nature.

Grad-CAM is a convolutional layer-specific extension of sa-
liency maps that is implemented in CNNs. Gradients of the 
target output are calculated using the feature maps of the last 
convolutional layer. These gradients are then used to compute 
importance weights for each feature map; these weights are then 
combined to produce a coarse localization map. By using the 
map, the critical areas within the input image that contribute 
the most to the desired result are highlighted.

3.5.1   |   Guided Grad-CAM

Guided Grad-CAM combines guided backpropagation's high-
resolution details with Grad-CAM's localization information. 
Guided backpropagation applies positive gradients to the back-
propagation process to emphasize the areas of the input image 
that are positively impacted by the target image. Combining the 
Grad-CAM localization map and the guided backpropagation 
saliency map is achieved through element-wise multiplication. 
By integrating the high-resolution details obtained from guided 
backpropagation with the coarse localization information ob-
tained from Grad-CAM, Guided Grad-CAM offers a more de-
tailed visualization than Grad-CAM.

4   |   Hardware Implementation and Embedded 
System

The hardware setup includes the Jetson Nano B01, a single-
board computer designed for edge computing applications. This 
compact device is equipped with a quad-core ARM Cortex-A57 
processor, a powerful 128-core NVIDIA Maxwell GPU, and 
4 GB of LPDDR4 RAM. The Jetson Nano B01 provides the nec-
essary computational capabilities for deep learning models. 
The Cortex-A57 cores in the Jetson nano have a clock speed of 
1.43Ghz which can be increased to 2 GHz by overclocking. With 
four cores and four threads, the CPU can compute floating-point 
math at 2471 MOps/Sec. Figure 9 shows the graphical user inter-
face (GUI) application developed using the Python programming 
language, to deliver a user-friendly interface for interacting with 
the malaria prediction system designed for microscopic images.

Here are the steps involved in the operation of the embedded 
system:

•	 Training: A lightweight SqueezeNet model is trained for ma-
laria detection.

•	 Deployment: The trained model is deployed on an EDGE de-
vice known as Jetson Nano.

•	 GUI Application: A specialized Python GUI applica-
tion is developed, utilizing libraries such as PYQT5, CV2, 
Tensorflow, Keras, Numpy, Matplotlib [43], and os.

•	 Model Loading: The GUI application loads the pre-trained 
model into memory using the Keras Model library.

•	 User Choice: Users are presented with two forecasting 
options.

FIGURE 8    |    Original image and their corresponding Grad-Cam, Guided-Grad-Cam, and Saliency Mapping result for healthy cells.
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○	 Option 1: Manual selection of a picture for malaria infec-
tion assessment.
•	 Image Processing: The chosen image is read and 

resized.
•	 Prediction: The preprocessed image is used for model 

prediction.
•	 GUI Output: The results, including class indices, are 

displayed on the GUI.
○	 Option 2: Selection of a folder containing unclassified cell 

photos.
•	 Image Cycling: The GUI application lists and cycles 

through each image in the selected folder.
•	 Processing and Prediction: Each image is processed and 

predicted using the trained model.
•	 Infection Statistics: The application keeps a record of 

infected and uninfected cell photos.
•	 Statistical Information: After analyzing all the photos, 

the application provides statistical insights, including 
the total image count, the tally of infected and unin-
fected images, and their respective percentages.

•	 Integration: This step combines the training of the 
SqueezeNet model, deployment on Jetson Nano, and the 
development of a user-friendly GUI application.

•	 Malaria Detection: Users are equipped to accurately 
predict the presence of malaria infection in individual 
photos or batches of unclassified cell images.

The application encompasses two primary functionalities:

a.	 Single Image Prediction: This feature empowers users, 
especially professionals, to select an image from their 
local storage or capture an image using an integrated 
camera. The chosen image undergoes processing by a 
pre-trained deep-learning model on the Jetson Nano B01. 
Based on the model‘s training classes or labels, the image 

is analyzed, and a prediction is made. The GUI then pres-
ents the predicted class along with a confidence score, 
offering real-time insights into individual photos.

b.	 Batch Prediction: Batch prediction comes into play when 
multiple images need to be processed simultaneously. 
Users can designate a directory containing the images to 
be analyzed. The GUI application processes photos from 
the specified directory, running them through the deep 
learning model in parallel. Users can evaluate the results of 
the entire batch by reviewing the projected classes and con-
fidence scores for each image. These scores are presented 
in tabular format.

4.1   |   Embedded system's Performance Analysis

The work leveraged the capabilities of the Nvidia Jetson Nano 
to deploy a lightweight malaria diagnostic model. As a result 
of this model's excellent performance in real-time, malaria 
infections were detected swiftly and accurately. The average 
prediction time for each image was only 0.24 s, indicating 
its capability to accurately categorize images as healthy or 
malaria-infected. Additionally, the model consistently deliv-
ered 99.71% confidence scores, indicating its dependability in 
accurately and quickly classifying images. As demonstrated 
by the model's outstanding real-time performance on Nvidia 
Jetson Nano, the model delivers highly efficient image pro-
cessing and prompt results. Its high confidence level of 99.71% 
inspires trust among healthcare professionals and stakehold-
ers, making it suitable for deployment in resource-constrained 
environments without access to experienced medical ex-
perts. Combining these attributes demonstrates the light-
weight model's remarkable ability to provide accurate and 
rapid predictions. A real-time detection model for malaria is 

FIGURE 9    |    Proposed hardware implementation with Jetson Nano and GUI app support.
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implemented on the Nvidia Jetson Nano platform, which facil-
itates early diagnosis and treatment initiation. Based on these 
results, lightweight models may be useful for disease detection 
applications on edge devices. Point-of-care diagnostics are set 
to advance further thanks to the Nvidia Jetson Nano's process-
ing capabilities. It has been demonstrated that the lightweight 
model can be implemented in edge computing environments, 
providing accurate and swift malaria diagnosis.

4.2   |   Cost Analysis

The model's development and deployment were driven by the 
need for cost-effectiveness. During the development phase, 
we utilized free cloud-based platforms like Kaggle and Google 
Colab, which provided access to high-performance GPUs (A100 
and T4). This allowed us to train and optimize our model with-
out significant financial investment.

For deployment, we focused on using the NVIDIA Jetson Nano 
B01, a budget-friendly edge computing device priced at $99. The 
Jetson Nano was chosen for its affordability and suitability for 
resource-constrained environments. The successful deployment 
of our lightweight model on this device demonstrates that effec-
tive malaria detection can be achieved without expensive hard-
ware. This makes the solution both accessible and practical for 
real-world applications, particularly in low-resource settings.

5   |   Discussion and Future Work

This study sheds light on the vast possibilities that can arise 
from the use of lightweight models on edge devices for disease 
detection applications. Taking advantage of the generous pro-
cessing capabilities provided by the Nvidia Jetson Nano, we not 
only achieved remarkable performance but also ensured a high 
degree of precision. A significant step has been taken towards 
the future of point-of-care diagnostics with these achievements.

As a result of our research, a real-time malaria detection model 
can be deployed on the Nvidia Jetson Nano with notable success. 
An average prediction time of 0.24 s per image was achieved, 
and an average confidence level of 99.71% was consistently 
achieved. A combination of these results confirms that the 
model can provide rapid and accurate malaria diagnoses, mak-
ing it an invaluable tool in the detection of infectious diseases. 
Despite the impressive achievements of this study, it is import-
ant to acknowledge some limitations and opportunities for im-
provement. Despite a limited storage capacity, edge devices can 
often handle large volumes of images at once, and our research 
recommends caution. As a result of our study, predicting 1000 
images took approximately 4 min, indicating that practical con-
siderations need to be taken when working with edge devices.

In addition, the lightweight nature of the model provides an op-
portunity for enhancement. Training the model exclusively on 
malaria-related data allows it to gain a deeper understanding of 
the nuanced traits and patterns associated with malaria infec-
tion. As a result of this specialized approach, the model's detec-
tion accuracy can be significantly improved, making it even more 
efficient for deployment on edge devices. Expanding the dataset 

with a focus on optimizing storage in edge devices will enhance 
the model's generalizability and suitability for edge computing.

Based on the findings of this study, lightweight models can 
be deployed on edge devices to detect diseases. In the future, 
point-of-care diagnostics are likely to benefit from Nvidia Jetson 
Nano's exceptional performance and precision. In medical diag-
nostics, edge computing has demonstrated significant potential, 
but it will require further refinement and adaptation to reach its 
full potential. This research paves the way for the detection of 
diseases early and efficiently using lightweight models on edge 
devices in the future. There are limitations and a need for fur-
ther development of the proposed approach, but it has shown 
promise. The computing power of edge devices limits their abil-
ity to handle large image volumes. Although the model could 
predict individual images very quickly, it may be slow to process 
many images at once in real-time.

In addition, using a handpicked dataset as a training dataset has 
several drawbacks. A variety of malaria-infected and healthy 
cell images could improve the model's generalization and ro-
bustness to imaging circumstances. A future study should in-
vestigate parallelization or memory management strategies to 
improve the model's performance on edge devices. To improve 
the malaria detection system's flexibility, continuous learning 
or transfer learning could be used to utilize the model's knowl-
edge as it relates to new data distributions or imaging modali-
ties. In this study, we proposed a comprehensive framework for 
the Squeeze net model and conducted extensive validation using 
retrospective data. Although the framework has been rigorously 
tested and validated in a controlled environment, clinical trials 
were not within the scope of this work. To bridge the gap be-
tween research and clinical application, we have developed a 
user-friendly software tool designed for healthcare profession-
als. This tool enables doctors to test the model on their datasets, 
thereby facilitating its practical evaluation in a clinical setting. 
Clinical trials are a critical next step, and we intend to pursue 
this as part of our future work.

6   |   Conclusion

This study showed a new method for detecting malaria in 
blood smear images by using a lightweight SqueezeNet model 
designed for embedded computers. The proposed solution 
included dataset preprocessing, a SqueezeNet architecture 
implementation with a unique fire module, performance eval-
uation using several metrics, and hardware deployment on the 
NVIDIA Jetson Nano edge device. We carefully designed the 
SqueezeNet model to balance computational efficiency and 
malaria detection accuracy. A key design component, the fire 
module, extracted discriminative characteristics while reduc-
ing parameter footprints. A lightweight model with 119 154 
trainable parameters and a size of 1.72 MB was proposed for 
resource-constrained embedded systems. In addition to test-
ing the model on the original NIH malaria dataset, the model 
was also tested on a modified dataset addressing label in-
consistencies. Based on the adjusted dataset, the model had 
99.71% accuracy, precision, recall, and F1-score. In real-time, 
the model predicted single images in 0.24 s with a 99.71% con-
fidence level. With minimal computational resources, the 
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model can accurately and efficiently diagnose malaria in re-
mote or resource-constrained areas. The proposed approach 
outperformed top deep learning models such as ResNet50, 
VGG16, DenseNet121, MobileNetV2, and EfficientNetB3. 
Compared to these architectures, the proposed SqueezeNet 
was more accurate and had fewer parameters, while its model 
size was more efficient, making it an effective embedded de-
vice architecture. The use of explainable AI (XAI) methods 
like Grad-CAM and Guided Grad-CAM improved model inter-
pretation and trust. These visualization techniques revealed 
the model's decision-making process by emphasizing areas of 
the input image that predicted malaria. AI-driven diagnostic 
solutions require this trait of interpretability to be trusted by 
healthcare practitioners.
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