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Abstract: Lung cancer, the second most common type of cancer worldwide, presents significant health
challenges. Detecting this disease early is essential for improving patient outcomes and simplifying
treatment. In this study, we propose a hybrid framework that combines deep learning (DL) with
quantum computing to enhance the accuracy of lung cancer detection using chest radiographs (CXR)
and computerized tomography (CT) images. Our system utilizes pre-trained models for feature
extraction and quantum circuits for classification, achieving state-of-the-art performance in various
metrics. Not only does our system achieve an overall accuracy of 92.12%, it also excels in other crucial
performance measures, such as sensitivity (94%), specificity (90%), F1-score (93%), and precision
(92%). These results demonstrate that our hybrid approach can more accurately identify lung cancer
signatures compared to traditional methods. Moreover, the incorporation of quantum computing
enhances processing speed and scalability, making our system a promising tool for early lung cancer
screening and diagnosis. By leveraging the strengths of quantum computing, our approach surpasses
traditional methods in terms of speed, accuracy, and efficiency. This study highlights the potential of
hybrid computational technologies to transform early cancer detection, paving the way for wider
clinical applications and improved patient care outcomes.

Keywords: lung tumor classification; deep learning models; quantum layers; transfer learning
models; hybrid quantum layer

1. Introduction

The lung is a vital organ for human health, and lung tumors, whether benign or
malignant, pose a significant threat by affecting its function and structure. Various causes
and symptoms of lung tumors have been identified and reported in the standard research
materials. Conducting research on lung tumors is crucial to understanding their mecha-
nisms, diagnosis, treatment, and prevention. The early detection and diagnosis of lung
tumors are essential, as they can benefit patients, healthcare systems, and society by mini-
mizing healthcare costs and the complications associated with advanced lung cancer and
palliative care. Early intervention can enhance patients” quality of life, reduce morbidity
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and mortality, and improve survival chances before the tumor spreads or becomes resistant
to treatment.

Computerized tomography (CT) scans are valuable tools for detecting lung cancer, es-
pecially in high-risk populations, such as smokers. CT scans provide detailed cross-sectional
images of the lungs, allowing for better visualization and assessment of abnormalities com-
pared to chest X-rays (CXR). However, lung tumors can sometimes be visible on CXR but
are not clearly detectable on CT scans. This discrepancy may be due to several factors:
(1) smaller tumors may be more visible on CXR than on CT scans; (2) the tumor’s location in
the lung might affect its visibility, with CXR potentially showing tumors obscured or over-
lapping with normal lung tissue on CT scans more clearly; (3) each imaging technique has
its strengths and weaknesses. Therefore, using both CXR and CT scans is complementary
and influential in clinical diagnosis, particularly in lung cancer detection [1,2].

The process of manually identifying tumors is challenging, error-prone, and inconsis-
tent [3]. Depending on the expertise of the radiologist and the prominence of the imaging
technique, the response of the radiologist in identifying the tumor will vary. It is possible
to identify tumors from various images more quickly, objectively, and precisely by using
automated methods, especially deep learning (DL) models [3-5]. DL is an advanced tool in
artificial intelligence (Al) that uses neural networks to learn from input data and perform
tasks such as detection/classification/prediction. In medical imaging, such as CT and
CXR, DL techniques have been used to classify lung tumors [6]. The classification of lung
tumors is a challenging task that requires the accurate and reliable diagnosis of different
types and subtypes of lung cancer, such as medium cell lung cancer and small cell lung
cancer. In addition, classifying lung tumors requires a distinction to be made between
benign nodules and other lung diseases. Through DL techniques, lung tumor classification
can be improved by mining significant features from the input images (CT/CXR), devel-
oping robust and efficient DL models, improving performance and interpretability, and
providing clinicians with decision support and guidance. By providing complementary
information and perspectives about lung anatomy and pathology, CT and CXR images
can enhance the accuracy of lung tumor classification. CT images can reveal small lumps
not visible on CXRs, providing detailed cross-sectional views of the lungs. While CXRs
offer a broader overview of the lungs’ overall geometry, their resolution and projection can
sometimes make abnormalities distinctly visible. By combining these imaging modalities,
DL techniques can leverage the strengths of both to enhance the reliability of lung tumor
classification [6,7].

In general, DL networks require substantial computing power and extended compu-
tation times to process data, with performance closely tied to the size of the data and the
precision of network hyperparameters. Misconfigured hyperparameters can significantly
diminish a model’s accuracy, reliability, robustness, and efficiency. Recent advances in
quantum computing offer solutions to these challenges, enhancing the speed, accuracy, and
scalability of DL models. By efficiently allocating computation resources, these methods
not only accelerate processing speeds but also bolster the robustness and diagnostic ac-
curacy of DL systems. Quantum computing leverages principles, such as superposition,
entanglement, and interference to refine classification accuracy. The integration of quantum
layers—such as parameterized quantum circuits (PQCs), which can be trained via classical
or quantum optimization algorithms—introduces a novel component to traditional net-
works. These layers have been shown to outperform classical counterparts in various tasks
across different datasets, including digital recognition on the Modified National Institute of
Standards and Technology (MNIST) database, breast cancer diagnosis, and phase transition
detection [8,9]. With ongoing advancements, quantum layers are poised to play a crucial
role in the evolution of quantum machine learning and artificial intelligence [10].

In this study, we aim to overcome the shortcomings of existing methods for differen-
tiating benign from malignant lung tumors. CT scans or CXR radiographs are currently
used to diagnose lung tumors, but neither provides a comprehensive understanding of
the complexity and diversity of these tumors. Additionally, existing methods use DL
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models that require extensive feature engineering and parameter tuning. Our framework
leverages pre-trained transfer learning (TL) models that are fine-tuned for lung tumor
classification based on CXR and CT images. In addition, we incorporate a hybrid quantum
layer that enhances classification performance by combining CT and CXR features. We
evaluate our framework using two standard open-source datasets: ChestX-ray8 and the
Lung Image Database Consortium image collection (LIDC-IDRI), which are extensively
used in research. The proposed RepVGG model with the hybrid quantum layer achieves a
noticeable classification accuracy of over 92%, which is more than 3% higher than other
standard methods.

This research work includes the following contributions to the design of the pro-
posed system:

e  There is a new framework proposed for lung tumor classification. It leverages pre-
trained TL models that have been fine-tuned for lung tumor classification and uses
both CXR and CT images as inputs.

e  Hybrid quantum layers that combine CT and CXR data and enhance the TL model to
improve classification are introduced.

e  The proposed system has been evaluated on two standard datasets and has achieved
state-of-the-art performance for lung tumor classification.

e  The framework performs better than other methods which rely on either CXR or CT
images alone or conventional machine learning methods.

This article is organized as follows: Section 1 introduces the research topic, reviews
the existing methods for lung cancer detection and classification, and states the research
questions. Section 2 presents a literature review related to the aims and objectives of the
proposed system. The methodology of the proposed system is described in Section 3,
including pre-processing steps, model architecture, training process, evaluation metrics,
and experimental setups. The results of the experiments are presented and analyzed in
Section 4, along with comparisons with other state-of-the-art systems and a discussion
of the capabilities of the proposed system. Lastly, in Section 5, the article summarizes
the major points, presents the novelty and significance of the research, and makes some
recommendations for future research.

2. State-of-the-Art Research

Many studies have used TL to classify lung nodules or cancers from CT images [11-20].
TL is a technique that transfers the knowledge acquired from a source domain to a tar-
get domain. It can be used to overcome challenges involving limited data in medical
image analysis. Different studies have used different convolutional neural network (CNN)
architectures and classifiers based on TL, such as VGG16, ResNet50-V2, DenseNet201, SVM,
and RF [15-20]. The experimental results have demonstrated that TL can enhance the accu-
racy and performance of lung cancer detection compared to conventional methods [16-18].
Wang et al. [16] reported an accuracy improvement of up to 83% for classifying lung can-
cer, highlighting the effectiveness of TL. Nishio et al. [17] achieved a sensitivity of 82%
and specificity of 79%, demonstrating the impact of image size on TL performance. Da
Nobrega et al. [18] also showed that TL could bring the classification accuracy of lung
nodules to 85%. Some studies have also investigated the impacts of data augmentation,
image size, and ensemble learning on TL [15,17-20]. The literature review shows that TL
is a relevant and effective strategy for lung cancer detection. While most studies focus on
applying TL to CT images for lung cancer detection, CXRs are equally important. They are
more widely used and accessible, but they pose challenges for TL due to their low quality.
However, CT images also have drawbacks [6,7]. Exploring TL for CXR images may require
different techniques.

Several studies have used DL techniques for lung disease classification using both CXR
and CT images, which can improve the detection of lung abnormalities, such as pneumonia,
cancer, and COVID-19. Refs. [21-23] utilized different pre-trained CNN models to classify
both types of images (CXR and CT scans), achieving high accuracy and reporting better
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results than other related works in their literature. In addition, the researchers have used
a tuned VGG-19 model to detect COVID-19 using features extracted from both types of
images, which achieved high accuracy of 81%, 83% sensitivity, and 82% specificity [24].
The review by Shyni et al. [25] further supports the combination of CT and CXR images to
provide faster and more accurate results along with data scarcity challenges. Their study
reported a notable increase in diagnostic accuracy, where the combined approach achieved
an accuracy of approximately 84%. This was a significant improvement over models trained
solely on CXR or CT images, which generally achieved accuracies of around 74% and 70%,
respectively. Moreover, the sensitivity and specificity of the combined models reached as
high as 83% and 85%, respectively, compared to 75% sensitivity and 77% specificity for
models using only CXR images, and 69% sensitivity and 70% specificity for those using
only CT images.

Quantum computing has been shown to enhance the performance of DL network
systems in various applications. QCNN is a novel DL technique that combines quantum
and classical computing to process image data. In [26,27], the researchers demonstrated
the advantages of QCNN over classic CNN in terms of accuracy and speed on different
image classification tasks. In [26], a reported 7% improvement in accuracy was noted, and
in [27], accuracy was improved by 10% over traditional CNNs. Both articles also explored
the correlation between the chaotic nature of the image and the QCNN performance and
found that quantum entanglement plays a key role in improving classification scores.
Recently, researchers have proposed a variational quantum deep neural network (VQDNN)
model that uses parametrized quantum circuits to achieve greater accuracy improvement
of approximately 8% than classical neural networks on two datasets with limited qubits
in image recognition [28]. In addition, the authors in [29,30] explore the use of hybrid TL
techniques that combine a classical pre-trained network with a variational quantum circuit
as the final layer (classifier) on small datasets. They evaluate different classical feature
extractors with a quantum circuit as a classifier on three image datasets: trash (recycling
material), tuberculosis (TB) from CXR images, and cracks in concrete images. They show
that the hybrid models outperform the classical models by demonstrating an improvement
in accuracy rate of over 12% on all datasets, even with qubit constraints. In [31], the
researchers introduce a new kind of transformational layer for image recognition, called a
quantum convolution or quanvolution layer. Quanvolution layers use random quantum
circuits to locally transform the input data, similar to classical convolution layers. They
compare classical convolutional neural networks (CNNs), quantum convolutional neural
networks (QCNNSs), and CNNs with extra non-linearities on the MNIST dataset. They show
that QCNNSs have faster training and higher accuracy improvement of 9% over traditional
CNN s, suggesting the potential of quanvolution layers for near-term quantum computing.

A review of the existing literature found that DL techniques can help with the challeng-
ing and important task of classifying lung diseases using medical images. Many studies
have used TL to achieve better results than conventional methods for classifying lung
nodules or cancers from CT/CXR images with different CNN architectures and classifiers.
Many studies have also shown that QCNNs can outperform classic CNNs in accuracy for
different image classification tasks by increasing the speed of computation, and scalability,
and reducing the computation power. Quantum computing can boost the performance of
DL network systems in various applications. Some studies have used variational quantum
circuits to enhance the performance of QCNNSs. Based on these findings, we propose a new
system that combines TL and QCNN:Ss for classifying lung diseases using both CXR and CT
images. We aim to use quantum computing to improve the performance of TL models for
medical image analysis. Table 1 provides the summary of the literature review conducted.
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Table 1. Literature review summary.

Reference Approach Key Findings Identified Gaps
TL enhances accuracy and performance for
lung cancer detection. Different CNN Limited data availability in medical
[11-20] TL architectures and classifiers used, such as image analysis. Need for techniques
VGG16, ResNet50-V2, DenseNet201, SVM, for CXR.
and RF.
Accurgc.y improvement for lung cancer Tmpact of image size on TL
[16] TL classification. Reported accuracy up
to 83%. performance not fully explored.
Demonstrated the impact (.)f.1r.nage ilze O Need for optimization of TL models for
[17] TL TL performance. Sensitivity 82%, : . .
specificity 79%. different image sizes.
Enhanced classification accuracy of lun, Requires further validation on
[18] TL Y & !
nodules. Accuracy up to 85%. larger datasets.
I?I¥gh aceuracy for lung chse?se Integration of pre-processing and
[21-23] DL classification from CXR and CT images. augmentation techniques needs
) Achieved higher accuracy than other .
related works, further exploration.
COVID—19 detectlonof rom CXR a nd (;,T Limited by data scarcity and need for
[24] DL images. Accuracy 81%, sensitivity 83%, .
specificity 82%. larger, diverse datasets.
Combined CT and CXR approach for Challenges in combining different
[25] DL COVID-19 diagnosis: accuracy 84%, image modalities for
sensitivity 83%, specificity 85%. consistent performance.
Correlation between image chaos and Understanding the role of quantum
[27] QCNN QCNN performance. Reported a 10% entanglement in
accuracy improvement. performance improvement.
Better accuracy improvement on limited e .
[28] VQDNN qubit datasets. Reported 8% Q'u bit hmltathns and practical
accuracy improvement. implementation challenges.
. Improved accuracy with small datasets. Need for more extensive testing across
[29,30] Hybrid TL Over 12% accuracy improvement. different types of datasets.
Faster training and higher accuracy on . . .
[31] Quanvolution Layer MNIST. Reported 9% Integration with classical CNNs and

. practical deployment issues.
accuracy improvement.

3. Methodology

This section outlines a proposed system that integrates TL and QCNNS5 to enhance
lung disease classification using chest X-ray (CXR) and computed tomography (CT) images.
The process begins with acquiring and pre-processing extensive medical image datasets to
ensure high quality and uniformity. Pre-trained CNN models, such as VGG16, ResNet50-
V2, and DenseNet201, are fine-tuned for specific lung disease classification tasks. QCNNs
are developed and integrated with these TL models to create a hybrid system that lever-
ages both classical and quantum computing advantages. The hybrid models are trained,
optimized, and evaluated to maximize performance metrics like accuracy, sensitivity, and
specificity. Finally, the optimized model is prepared for deployment in clinical settings,
ensuring scalability and seamless integration with existing medical systems. This approach
aims to overcome data limitations and improve the accuracy and efficiency of lung disease
detection. Figure 1 illustrates the overall working steps of the proposed system. This
approach aims to overcome data limitations and improve the accuracy and efficiency of
lung disease detection.
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Figure 1. Proposed system’s architecture.

The proposed system, as depicted in Figure 1, has three main modules that work
together: (1) image acquisition, (2) tuning of the TL model, and (3) quantum learning and
classification. The following subsections describe each module in detail.

3.1. Input Image Description

Images are collected from both CXR and CT scans during the image acquisition process.
CXR and CT scans are used as the source of the images. The classification task is challenging
since CT scans and CXR belong to two different types of images. As a result, we train the
network separately for CXR and CT scans, which improves the accuracy and efficiency of
feature extraction. Images are converted to grayscale, with a range between 1 and 255. A
mathematical formula for the image retrieval process is shown in Equations (1) and (2).

Li(x,y) ¢ dataset(CXR) 1)

It(x,y) < dataset(CT) (2)

Here, I (x, y) is the image taken from a dataset of CXR by means of pixels. Similarly,
I.1(x, y) stands for the images from the CT dataset. The values (x, y) are generic to represent
the width and height of a single image, respectively. It is necessary to resize all images, since
neural networks require them to have a fixed size. Nevertheless, resizing has its trade-offs:
reducing the size of an image reduces its quality, whereas making it larger increases training
time and complexity. To find a balance between computational cost and accuracy, based on
experimental investigation, we use 1024 x 1024 pixels as the resized image size [32]. The
relevant evidence for this is presented in the experimental trials conducted in Table 2.

3.2. Tuning of Transfer Learning Model

The purpose of this process is to categorize CXR and CT images into benign, normal,
and malignant groups. Malignant tumors can spread beyond the body and pose a threat to
other organs. Benign tumors are harmless growths that do not invade nearby tissues. An
organ classified as normal works well and has no tumors. As explained in more detail in
the following sections, we use a hybrid quantum model in this paper to classify the images.
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3.2.1. Feature Extraction

Feature extraction is a crucial step in the field of DL. It employs notable structures that
enable the system to assess the structures according to their corresponding classes. TL is a
quick training approach that hastens the extraction of features and avoids overfitting by
manually training the system. TL involves using pre-trained models that are used for other
classification jobs. Using the knowledge gained, we can extrapolate it to suit our needs
within a minimum training time. Figure 2 shows the architecture describing the internal
structure of the TL model adopted for training.

LD

Training
Pretrained Weights
l v v \4 ) \ 4 ) v
VGG16 VGG19 InceptionV3 Xception Resnet50 RepVGG
Fine tuned Weights
\ 4 \4 A4 A4 A4 A4
VGG16 VGG12 InceptionV3 Xception Resnet50 RepVGG

X Ray Features
extracted

Figure 2. Leveraging transfer learning for feature extraction from CT and CXR images.

CT features extracted

As shown in Figure 2; first, we used pretrained TL models like VGG16, VGG19,
Inception-v3, Xception, ResNet50, and RepVGG to extract features [33-35]. We chose
these models based on their variation in convolutional filter usage and the fact that they
were developed for different classification problems. Furthermore, we replaced the top
classification layer with our own classification rule. Table 2 presents an overview of
various pre-trained CNN models used for feature extraction in our study. Each model was
evaluated based on its size, the number of hyperparameters, the specific layer used for
feature extraction, the initial feature dimension, and the dimension after fusion.

Table 2. Summary of pre-trained models used for feature extraction in our research.

. 11s Feature Feature Dimension

Model Name Size (MB)  Hyperparameters (Million) Extraction Layer Dimension after Fusion
VGG16 528 138.35 Block5_conv3 512 1024
VGG19 549 143.66 Block5_conv4 512 1024
InceptionV3 92 23.85 mixed10 2048 4096
Xception 88 2291 block14_sepconv2_act 2048 4096
ResNet50 99 25.636 conv5_block3_out 2048 4096
RepVGG 558 11.68 repvgg_block5 2048 4096
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These pre-trained classifiers are fine-tuned on the CXR and CT datasets separately to
obtain optimal models serving to extract features from CXR and CT scans. Equations (3)—(5)
explain the structure of how features are extracted and finetuned for our classification purpose.

2 = FWD x x1=1) 4 D) 3)
ReLU(x) = max(0, x) @)

Here, x('=1) is the input to the layer I (for the first layer, x° is the input image). W® and b
are the weights and biases of the layer I, respectively. f is the activation functions which are
either ReLU or sigmoid. a" is the output of layer ! after applying the activation function.
L is the last pre-trained layer, W) and b)) are the weights and biases of the final fully
connected layer, and z is the logits vector representing the raw model predictions. It is
necessary to discard the last layer of each model in order to classify the model into our
necessary classes. Finally, the CXR and CT datasets are stored separately because they have
distinct feature sets. The following sections elaborate on some sample layers for image
classification that incorporate these features. Figure 3 illustrates how features are accessed
from selected layers of a proposed TL framework.

Top Conv layer of VGG16 ReLU layer of VGG19 Normalization layer of ResNet50

Max pooling layer of InceptionV3 Activation map from RepVGG

Figure 3. Visual analysis of different layers of TL framework.

The visualization in Figure 3 showcases how various neural network layers process
X-ray and CT scan images, highlighting distinct feature extraction methods for each type of
imaging data.

For X-rays, the sequence begins with the top convolutional layer of VGG16, which
identifies low-level features, such as edges and textures, essential for delineating anatomical
structures. This is followed by the ReLU layer of VGG19, which enhances these features by
removing negative values, thus improving the visibility of critical details like lesions or
masses. The normalization layer of ResNet50 then adjusts the feature maps to a consistent
scale, aiding in uniform feature interpretation across different X-ray images.

In CT scans, the max pooling layer of InceptionV3 reduces spatial resolution but retains
significant features within each region, focusing the analysis on relevant aspects, such as
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tumors. The activation map from RepVGG synthesizes higher-level features, revealing
complex tissue textures and enhancing the model’s ability to detect abnormalities.

3.2.2. Merging of Features

In this study, we utilize both computed tomography (CT) and chest X-ray (CXR)
imaging modalities for each scan to maximize the diagnostic potential of the imaging data.
Features are independently extracted from both the CT and CXR images to harness the
unique diagnostic information each modality provides. The detailed set of procedures is
explained as follows:

e  Feature Extraction Process:

In this process, the set of features from the CT images uses a dedicated TL model
optimized for CT data. These features typically capture detailed anatomical structures
and potential abnormalities specific to CT imaging. Equation (6) depicts the mathematical
formulation of this process,

F < f o fls o fE > TL(L) ©)

Similarly, a different set of features is extracted from the corresponding CXR images
using another TL model that is specifically tuned to exploit the diagnostic strengths of
CXR, such as overall lung geometry and certain types of lesions more visible in CXR. The
extraction process is explained in Equation (7)

Ftem< ot st £t L, fSE > TL(Iy) )

e  Feature Merging Strategy:

The features extracted from both CT and CXR images are then merged to form a com-
bined feature vector. This merging process involves concatenating the feature vectors from
each modality. The process of feature merging is depicted in Equation (8) mathematically.

Fol & F*+ FU (< . 5.0, - fa >[|< AL 605 0 fi >} ®)

In Equations (6)—(8), f{ represents the single feature obtained from an CXR image.
Similarly, f{' represents a single feature obtained from a CT image. Also, F* and F“
represents the feature vector of CXR and CT scans, respectively. F;,, stands for a simple
concatenation of the features of both F* and F*'.

3.2.3. Dimensionality Reduction

This step reduces the dimensionality of the data by applying a layer that transforms
many input features into fewer output features. As part of our process, we use a singu-
lar value decomposition (SVD) layer to compress the merged input features extracted
from the TL models into five quantum features. The main reason for selecting SVD is
due to its ability to optimally represent and denoise high-dimensional medical imaging
data [36]. The number of features we chose is fixed because it is appropriate for our needs.
In Equations (9)—(12), we see the transformation function for singular value decomposi-
tion (SVD).

U,Y , V = SVD(originalgimensions) 9)
U= M[entries><5] (10)

Y= M (11)

5 X5 = Msxdimensions] (12)

Here, U represents the complex unitary matrix having a column size of the reduced number
of dimensions. ) represents a natural number nonnegative diagonal matrix of 5 x 5. V stands
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for a complex unitary matrix of five rows having original dimensional columns. Note that
for SVD, we will not be using V but V! which is its transpose.

3.2.4. Quantum Layer

Circuits with variable parameters, known as variational circuits, play an important
role in quantum computing. They are analogous to neural networks in classical computing,
which are powerful machine learning models [37-39]. In this study, we implemented a
quantum variational circuit with five qubits, each representing a classical binary bit (0 or 1).
Quantum states of electron spin can be determined by qubits in a magnetic field, leading
to spin-up (1) or spin-down (0) states. This spin state represents the fundamental binary
information in quantum computing, similar to classical bits but with the added advantage
of quantum superposition and entanglement.

Our quantum variational circuit is composed of three key states: initial, parameterized,
and measurement. In the initial state, all qubits are initialized to 0. This initialization
ensures a known starting point for subsequent quantum operations.

In the parameterized state, the quantum circuit receives two types of input parameters:
input data and variational parameters. The input data represent the classical information
to be processed, while the variational parameters are tunable parameters optimized during
the training process to minimize the cost function. The classical data are inserted into
these quantum circuits using quantum embeddings, which map classical data into high-
dimensional Hilbert space, enabling the quantum circuit to process it. The final state is the
measurement state, where the quantum system is measured, and the resulting quantum
states are collapsed into classical binary outcomes (0 or 1). The measurement results
are used to evaluate the performance of the quantum circuit and adjust the variational
parameters accordingly.

Our quantum variational circuit architecture, as illustrated in Figure 4, integrates these
three states into a cohesive framework. The figure provides a visual representation of the
quantum circuit, detailing the flow of information from initialization through parameteri-
zation to measurement. This architecture leverages the principles of quantum mechanics
to perform complex computations, offering the potential for significant advancements
in computational power and efficiency compared to classical methods. Classical data
integration into quantum circuits is facilitated by quantum embeddings, which utilize
Hilbert spaces for feature mapping. This approach allows the quantum variational circuit
to process classical data within the quantum domain, harnessing the unique computational
capabilities of quantum mechanics.

2.0*x[0]
=M= = — o
% 4 H-'_znzm 2-0’{1!—)([05‘{!(—)([2]] —v VT Z”*{""l“gt{“lm i |
g3 = “.'—M.le . _Z.D*{IL-J(IO]]P*{J(—)([SII —v
qi-H=F

2.0°x[4]

Figure 4. The architecture of the quantum variational circuit with five qubits.

Figure 4 illustrates the architecture of our proposed quantum circuit, detailing the
initialization of qubits, the parameterization process, and the measurement outcomes. This
comprehensive illustration underscores the intricate design and operational flow of the
quantum variational circuit implemented in this study.



Bioengineering 2024, 11, 799

11 of 20

In Figure 4, H represents a Hadamard gate. P, also known as the phase gate or phase
shift gate or S gate, is also a single-qubit operation. It changes the phase of a spin along a
specific axis. The Hadamard gate is a single-qubit operation that maps the basis state ||-0)
to(IFO)+ I F1))/y/2and | 1) to (I F0) — | F1))/,/2. The equations concerning the
Hadamard gate and the P gate are shown in Equations (13) and (14), respectively [40].

52

s= (1) ”

A fully connected layer is one in which each neuron in one layer connects to every
neuron in another layer. Most often, it is the last layer in a network that produces output.
In hybrid quantum networks, a fully connected layer can be achieved by using quantum
operations, such as controlled-NOT gates, Hadamard gates, and measurements [41,42].
Quantum operations are unitary matrices that transform the quantum state of neurons. The
measurement of a quantum state on a specific basis can provide the output of a quantum
operation. It is a network architecture that allows any two users to share entanglement
resources and perform quantum distribution without trusting any nodes [43]. In a fully
connected quantum network, multiple users can communicate in a highly secure and
efficient manner. With QCNN, we leverage quantum advantages, such as superposition
and entanglement, to extend the capabilities of classical CNNs. In QCNN:s, three layers are
present: quantum convolutional layers, pooling layers, and fully connected layers [44—46].
In the quantum convolutional layer, data are filtered using a quantum filter mask, and a
new quantum state is generated. A coarse-graining operation is performed on the pooling
layer to reduce the dimensionality of the data. In the fully connected layer, quantum
operations and measurements are used to calculate the final output. Figure 5 graphically
illustrates our proposed architecture as it relates to measured qubits. Four layers, each
made up of hundred, fifty, twenty, and three neurons, are used in our fully connected layer
to aid image classification.

3.2.5. Fully Connected Layer

/ ——» Normal
M red f — .
! — A B
FC Layer 4
FC Layer 3 :
‘——» Malignant
FC Layer 2
FC Layer 1

Figure 5. The QCNN architecture with quantum operations and measurements.

4. Experimental Results and Discussion

In this section, we conduct various analyses to evaluate the performance of our hybrid
quantum model. In each subsection, we present the results of different analyses.



Bioengineering 2024, 11, 799

12 of 20

4.1. Dataset Description

Two primary datasets are used in this study: ChestX-ray8 and LIDC-IDRI [47]. There
are fifteen classes of chest CXR in ChestX-ray8, some of which are benign, others malignant,
and some are normal. The images are 1024 x 1024 pixels and there are 112,120 images
in total. There is a variety of different sizes of nodules in the LIDC-IDRI dataset, which
was acquired from clinically acquired CT images of the lungs. A total of 1018 slices were
obtained from 1010 lung CT scans. This study used a subset of 5000 lung scans that
covered nodules and regions without nodules to ensure comprehensive coverage and
representativeness. This subset includes malignant (1000 images), benign (500 images),
and normal (500 images). Preprocessing steps included normalization, resizing all images
to a consistent resolution, and data augmentation techniques, such as rotation, flipping,
and scaling, to increase diversity and prevent overfitting. Poor-quality images or those
with artifacts were removed. Inclusion criteria were clear labeling for ChestX-ray8 images
and clear annotations for LIDC-IDRI scans. Exclusion criteria included ambiguous labels
and low-quality scans. Table 3 presents a brief overview of the datasets after filtering out
elements suited to our study.

Table 3. A summary of the ChestX-ray8 and LIDC-IDRI datasets used in this study.

Dataset Name Class Number of Images Total
Normal 1000

ChestX-ray8 Pneumonia (benign) 1000 3000
Nodule (malignant) 1000
Malignant 1000

LIDC-IDRI Benign 500 2000
Normal 500

Visual Presentation of the Dataset Images

In this section, we show examples from each of the three classes that we used in our
study in order to illustrate the variety of images in the dataset. Figure 6 shows a selection
of images from both datasets, representing different classes. The first column shows images
from the normal class; the second column shows images from the benign class; and the
third column shows images from the malignant class. Similarly, the first row represents
CXR images corresponding to each class, while the second row represents CT images
corresponding to each class.

Figure 6. Sample images from the adopted datasets. (a) Normal, (b) benign, (c) malignant.
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Based on the analysis of Figure 6, we can visually observe a slight similarity be-
tween the images indicating a particular pattern. Hence, merging features can improve a
machine’s classification accuracy.

4.2. Analysis Concerning Image Size vs. Computational Cost

In this section under Table 4, we describe the resource requirements for classifying lung
samples based on image size. A set of three sizes is used, such as 1024 x 1024, 448 x 448,
and 224 x 224. The smaller the image size, the fewer resources are needed. In addition, the
third row (224 x 224) of the table has a large variance, resulting in less training time but a
lower accuracy rate. The first two variants, however, have a reasonable amount of accuracy
with a difference of —2%, which is acceptable given the difference in training time.

Table 4. Resource requirements for different image sizes. The upward arrow indicates that the larger
the number the better.

Image Size Resources Duration of Accuracy (%) 1
8 Consumed (GB) Training (Hours) y e

1024 x 1024 423 3.24 92.80

448 x 448 3.16 2.32 92.00

224 x 224 245 1.45 85.00

4.3. Per Epoch Accuracy Analysis

We ran our proposed architecture on a DL server on a dual Intel Xeon E5-2609V5 Tesla
NVIDIA P100 GPU with a total of 3585 cores clocked at a maximum speed of 18.9 Teraflops
and listed its different epochs. The system has a RAM capability of 128 GB running Ubuntu
18.04 LTS. We used Keras as our framework, which runs on TensorFlow 2.10. Since the
system ran on 550 epochs, Table 5 shows brief accuracy and loss values during specific
epoch intervals of a certain hybrid quantum model containing RepVGG. The parameters
chosen were training accuracy and training loss.

Table 5. Accuracy and loss values for different epochs of a hybrid quantum model. The upward
arrow indicates that the larger the number the better. The downward arrow indicates that the smaller
the number the better.

Epochs Accuracy (%) 1 Loss (%) |
50 10.52 89.48
100 25.32 74.68
150 50.78 49.22
200 65.41 34.59
250 81.45 18.55
300 85.32 14.68
350 86.87 13.13
400 87.74 12.26
450 89.25 10.75
500 92.12 7.88
550 90.15 7.89

According to Table 5, a maximum accuracy of 92.12% was reached at epochs 500
with a loss percentage of 7.88%. A certain hybrid quantum model containing RepVGG
showed brief accuracy and loss values during specific epoch intervals. Training accuracy
and training loss were chosen as parameters. The plot in Figure 7 shows that the data are
neither over-fitted nor under-fitted, as the training accuracy curve in Figure 7 follows a
typical learning pattern. Likewise, the loss curve in Figure 7 shows a normal decrease as
the epochs increased.
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Training Accuracy and Loss Percentage over Epochs
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Figure 7. Training and loss accuracy for different epochs of the system.

4.4. Analysis Concerning Accuracy with and without Quantum Models

Comparing the performance of the system with and without a quantum classifier
was conducted to demonstrate the effectiveness of the proposed architecture. A compara-
tive analysis of the system without quantum classifier (traditional) versus with quantum
classifier (hybrid) is presented in Table 6 [48-50].

Table 6. Comparison of performance metrics between the system with and without the quantum clas-

sifier.
Model Name A Overallo Sensitivity (%)  Specificity (%)  F1-Score (%)  Precision (%) MCC (%)
ccuracy (%)

VGG16 85.21 84 86 85 84 0.7

_ VGG19 87.54 86 88 87 87 0.74
£ InceptionV3 76.52 77 76 76 75 053
% Xception 74.25 75 74 74 73 0.48
= ResNet50 65.25 66 65 65 64 0.3
RepVGG 89.21 89 90 89 89 0.78

VGG16 89.21 89 90 89 89 0.78

VGG19 89.16 89 90 89 88 0.78

- InceptionV3 89.78 90 89 90 90 0.79
é Xception 85.23 85 86 85 84 0.7
T ResNet50 83.12 83 84 83 82 0.66
RepVGG 79.45 80 79 79 78 0.58
92.12 93 93 96 94 0.84

Based on the data in Table 6, our hybrid quantum system improves the overall accuracy
of the system, with RepVGG leading the way with an overall rate of 92.12%. The results
of this study indicate that quantum systems have an added benefit over traditional DL
systems. In addition, the marginal split of all the models’” misclassifications with and
without the quantum system is shown in Table 7 [21].

We also plotted the performance of each hybrid model used in our study through
receiver operating characteristic (ROC) curves and confusion matrices. These visualizations
provide a deeper insight into the effectiveness of each model used. The ROC plot is
presented in Figure 8 and the confusion matrix is presented in Figure 9.
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Table 7. Comparative analysis of misclassified cases.

System Type Model Name TP TN FP FN
VGG16 4050 200 450 300
VGG19 4100 150 350 300
Traditi 1 InceptionV3 3500 200 1000 300
raditiona Xception 3000 700 1000 300
ResNet50 3000 200 1500 300
RepVGG 4000 500 200 300
VGG16 4300 150 200 350
VGG19 4200 250 200 300
. InceptionV3 4050 200 425 325
Hybrid Xception 4000 175 500 325
ResNet50 3500 500 650 350
RepVGG 4400 200 300 100
ROC Curve
1.0 e
0.8} ’,/
g
o6l e
[ 27
= -
[0} /,
= -
F o4t g e
Bk /'/ VGG16 (AUC = 0.11)
’ et —e— VGG19 (AUC = 0.24)
/’ —e— InceptionV3 (AUC = 0.14)
,/ —e— Xception (AUC = 0.14)
el —e— ResNet50 (AUC = 0.29)
g —e— RepVGG (AUC = 0.30)

0‘%.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

Figure 8. Performance evaluation of hybrid models using ROC curves.

The ROC curves illustrate the true positive rate (sensitivity) against the false positive
rate (1-specificity) for various threshold settings. A higher area under the curve (AUC)
indicates better performance in distinguishing between classes. The ROC curves for
our hybrid models demonstrate their superior ability to accurately classify lung tumor
images, showcasing the benefits of integrating quantum computing with traditional deep
learning methods.

Figure 9’s confusion matrices highlight the superior performance of our hybrid models,
showing high true positives (TP) and true negatives (TN) while minimizing false positives
(FP) and false negatives (FN). This indicates improved accuracy, precision, and recall
compared to traditional models. The hybrid models, especially RepVGG with quantum
layers, demonstrate significant diagnostic improvements.
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Figure 9. Performance evaluation of hybrid models using confusion matrices.

4.5. Comparision between Merging and Not Merging of Features

Table 8 summarizes the classification accuracy achieved by using features from indi-
vidual models without merging and the improved accuracy obtained by merging features
from different models. It also includes the feature dimensions before and after fusion.

Table 8 demonstrates that merging features from different TL models significantly im-
proves classification accuracy. This improvement across all models validates that merging
features captures more detailed patterns, enhancing data representation and classifica-
tion performance.
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Table 8. Performance analysis of models with feature merging.
Model Name Feature Dimension Accuracy without Dimension Accuracy with
(Without Merging) Merging (%) after Fusion Merging (%)

VGGl6 512 84.5 1024 89.16
VGG19 512 85 1024 89.78
InceptionV3 2048 80.75 4096 85.23
Xception 2048 78.5 4096 83.12
ResNet50 2048 75 4096 79.45
RepVGG 2048 87.5 4096 92.12

4.6. State-of-the-Art Comparison

We have also evaluated the classification performance and strength of our hybrid
quantum system against other existing state-of-the-art systems. A comprehensive compari-
son of our system with classification systems and traditional quantum systems is presented
in this paper. The Table 9 shows the overall performance of the system.

Table 9. Comparison of our hybrid quantum system with other state-of-the-art systems. The upward
arrow indicates that the larger the number the better. The downward arrow indicates that the smaller
the number the better.

Computational Training Time

Technique Accuracy (%) T (Hours) |
QCNN [27] 89.50 2.8
VQDNN [28] 90.00 2.52
Hybrid TL [29] 91.32 3.23
Quanvolution [31] 88.24 2.45
Proposed system 92.12 2.32

Based on the data presented in Table 9, our hybrid quantum system appears to perform
better in terms of accuracy level and training time. As a result, our system performed better
across the board, proving the strength of our proposed architecture in all areas.

5. Conclusions

In this paper, we propose a new framework for lung tumor classification that uses
both CT and CXR images as inputs and pre-trained TL models that are tailored to this task.
The TL model has been improved by combining features learned from CT and CXR images
with a hybrid quantum layer. On two standard datasets, ChestX-ray8 and LIDC-IDRI, we
successfully classified lung tumors using our framework. In addition to our framework,
other techniques relying on CXR or CT images alone or on conventional machine learning
models do not achieve the same results. We demonstrate that lung tumor classification can
be improved using both imaging modalities and quantum computing. As a result, early
detection, treatment, and outcome of lung cancer patients can be greatly improved.

It is important to note that the following are some possible limitations of the work in
relation to the conclusion of the paper:

e  There may be some types of lung cancer that are not suitable for the framework
because of their distinct morphological or molecular characteristics.

e It should be noted that the framework may not capture the diversity and intricacy of
lung tumor staging, which may have a substantial impact on the patient’s outcome
and management.

e In settings with limited resources, the framework may be inaccessible or expensive,
especially in situations where resources are limited.

o  We tested the proposed model with a small number of images taken from two different
datasets. Nevertheless, the proposed framework needs to be standardized by testing
it against a larger number of unknown or new data sets.
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e  This study focuses solely on non-invasive imaging techniques and excludes biopsy, the
definitive method for lung cancer diagnosis. While this approach reduces patient risk, it
may not capture the comprehensive accuracy provided by biopsy. Future research could
integrate these methods to enhance both early detection and diagnostic confirmation.

We are planning on applying our model to other types of lung diseases as well as
other imaging methods in the future. Furthermore, to further improve our framework’s
performance, we can experiment with other quantum layers and optimization methods in
order to further improve the performance of our framework.
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