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Abstract
White blood cells (WBCs) are useful for diagnosing infectious diseases and infections. Machine
learning and deep learning have been used to classify WBCs from blood smear images. Despite
advances in machine learning, there has been little research on applying medical domain
knowledge to convolutional neural networks (CNNs) to improve WBC classification. The existing
models are often inaccurate, rely on manual input, and fail to incorporate external medical
knowledge into decision-making. This study used the blood cell count and detection dataset which
contains images of monocytes, lymphocytes, neutrophils, and eosinophils for WBC classification.
In this paper, we propose a CNN model for WBC classification called WBC-KICNet
(knowledge-infused convolutional neural network). The present work uses two CNN models: the
first model generates the knowledge vector from input images and the domain expert
(hematologist); the second model extracts deep features from the input image. A feature fusion
mechanism is then used to combine these two features to classify the WBCs. Several metrics have
been used to evaluate the performance of the WBC-KICNet model. These measures yielded
impressive results. Accuracy, precision, recall, specificity, and F1-score were rated 99.22%, 99.25%,
99%, 99.77%, and 99.25%, respectively. In each of the WBC classes, accuracy rates are: 98.7% for
eosinophils, 99.83% for lymphocytes, 100% for monocytes, and 98.32% for neutrophils. As a
result, the proposed WBC-KICNet classifies WBCs accurately and without much misclassification,
and the results have been confirmed by a statistical hypothesis test (t-test).

1. Introduction

White blood cells (WBCs), also known as leukocytes play a fundamental role in the human immune system,
protecting the body against several infections and diseases. The WBCs are instrumental in detecting
microbes in the body, providing information about specific health conditions. These cells are versatile and
come in various types, each with a unique functionality. Their versatility lies in their ability to adapt and
respond to a wide range of pathogens and immune challenges. The different types of WBCs are neutrophils,
lymphocytes, monocytes, eosinophils, and basophils [1]. Each WBC has a unique function and
characteristic. The five types of WBCs in the blood are each designed to attack a specific type of
microorganism, so their composition and nature are different. The classification and quantification of WBCs
from blood samples obtained through blood tests provide crucial insights into a patient’s health status and
immune response. Consequently, physicians emphasize analyzing WBCs to understand a person’s health.
Manual examination under a microscope in the clinical laboratory is traditionally used to identify and
classify WBCs. In this context, the development of automated systems, particularly those based on advanced
technologies like image processing and deep learning, has become a necessity for accurate and efficient WBC

© 2024 The Author(s). Published by IOP Publishing Ltd

https://doi.org/10.1088/2632-2153/ad7a4e
https://crossmark.crossref.org/dialog/?doi=10.1088/2632-2153/ad7a4e&domain=pdf&date_stamp=2024-10-1
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0001-8522-0480
https://orcid.org/0000-0001-8564-5120
https://orcid.org/0000-0002-5839-4589
mailto:jen.it@psgtech.ac.in


Mach. Learn.: Sci. Technol. 5 (2024) 035086 Jeneessha P et al

classification, contributing to improved patient care and early disease detection. The use of deep learning
models to classify WBCs has been widely discussed which focuses on convolutional neural network (CNN),
pre-trained models, hybrid models, feature extraction, and attention mechanisms. Hybrid models have been
used for WBC classification but they require large datasets and have high complexity potentially leading to
the overfitting problem (Tiwari et al in 2018 [1], Cheuque et al [2], Cinar and Tuncer [3], Chen et al [4],
Firat et al in 2024 [5]). Feature Extraction and Feature Fusion Methods help in extracting morphological
features and deep features and produce more useful features for learning still these methods pose risks of
dimensionality incompatibility, data loss, and integration challenges (Togacar et al [6], Banik et al [7], Dong
et al [8]). Furthermore, Attention Mechanisms that help in considering the features from the Region of
Interest show enhanced prediction but rely heavily on the availability of large datasets for optimal
performance, yet medical data often suffer from limited availability (Wang Zee et al in 2022 [9], Li et al in
2021 [10]).

Object recognition algorithms have been used for WBC classification since blood smear images are
simple and contain few objects. However, these algorithms require large datasets to generalize well and are
computationally intensive (Ha et al in 2022 [11]). WBC classification using CNN is a widely explored one
since CNNs were specially developed for image classification. WBC classification using CNN and customized
CNN have less complexity but performance can be enhanced through hyperparameter optimization part
(Chen et al in 2012 [12], Lei and Chen in 2012 [13], Wang et al in 2022 [14], Girdhar et al in 2022 [15]). In
2022, Ramya et al [16] proposed a CNN with hyperparameter optimization for WBC classification, yet the
study did not adequately address the requirement for high data volume.

Pre-trained models perform classification more easily since they are already trained. Sharma et al
proposed an optimized pre-trained model based on DenseNet 121 for automatic WBC classification
(Sharma et al [17]). However, customizing the fixed architecture of the pre-trained model for WBC
classification still poses a challenge. Additionally, pre-trained models tend to learn a lot of irrelevant data,
resulting in degraded performance compared to models trained from scratch.

Deep learning models are chosen greatly for their self-learning capability but require huge data for
learning but in the medical domain obtaining huge data is a challenge. Hence, medical applications suffer
from unavailability or less availability of datasets. This leads to overfitting issues in deep learning models
(Shin et al in 2016 [18]). Feature extraction and feature fusion in deep learning help in creating effective deep
learning models but the morphological characteristics of the WBC types are quite similar, potentially leading
to misclassification. The major challenges in WBC classification can be overcome through techniques such
as: reducing the model’s complexity [17], regularization [18], and data enhancement [20]; however, these
techniques do not add additional data rather, only concentrate on enhancing the already available data.

Whereas, the problem can be effectively addressed by adding knowledge to the deep learning model
(Xie et al in 2021 [21], Tian et al in 2024 [22]). Xie et al [21] discuss the various methods for incorporating
domain knowledge into deep learning models for medical image analysis where the author says that most
domain knowledge incorporation methods use feature extraction through transfer learning and feature
fusion through CNNs or SVMs (Xie et al in 2019 [23], Liu et al in 2019 [24]). The transfer learning process
though easily executable, the model becomes more complex when multiple feature extraction techniques are
included. So, domain knowledge incorporation into a CNN through feature fusion will give a light and
effective model for WBC classification. Hence, to the best of our knowledge, a CNN is proposed which
incorporates domain knowledge about WBC based on vector generation and vector concatenation for WBC
classification. The aim is to present an improved model for WBC classification based on domain knowledge
infusion through feature fusion techniques.

The contribution of the proposed work is multi-fold:

1. The hematologist designs four domain expert knowledge vectors for each class of WBC based on its
significant features from the input blood smear images.

2. Input images can be processed using CNN to generate expertise vectors similar to those generated by
domain experts for each image of the class, eliminating the need to use domain experts for every image.

3. Fusion of the knowledge vector with CNN-extracted features leads to better and more accurate
classification of WBC.

4. The model has been extensively tested on the blood cell count and detection (BCCD) dataset for WBC
classification and compared with earlier works in the literature.

5. The proposed model achieved higher accuracy in WBC classification (99.22%) compared to the
state-of-the-art methods reported in the literature.
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Figure 1.Workflow of the proposed model.

Table 1. Distribution of images between train and test datasets for each WBC type.

Dataset Description Classes Split up Class name No. of images

BCCD 12,444 images 4 Train set (9957) Monocytes 2478
Lymphocytes 2483
Eosinophils 2497
Neutrophils 2499

Test set (2487) Monocytes 620
Lymphocytes 620
Eosinophils 623
Neutrophils 624

2. Materials andmethods

The overview of the proposed WBC-KICNet (knowledge-infused convolutional neural network) is shown in
figure 1.

2.1. Dataset description
Kaggle’s BCCD (blood cell count and detection) dataset is used in this work [25]. The dataset consists of
about 12,000 blood smear images of size 320× 240, with WBC in each image. There are images for four types
of WBCs in the dataset, namely monocytes (3098 images), lymphocytes (3103 images), eosinophils (3120
images), and neutrophils (3123 images). There are no images of the basophil type in the dataset due to its low
presence in human blood. Therefore, it is not considered in the work. To ensure robust model evaluation, an
80/20 train-test split was adopted on the dataset. This yielded 9957 images for training and 2487 images for
testing, guaranteeing a representative distribution of the four WBC classes across both subsets in table 1.

2.2. Domain knowledge base
As a result of an explicit discussion with a domain expert (hematologist), knowledge was gained about the
identification and classification of WBCs. A conventional method of classifying WBCs involves staining,
smearing, and microscopic examination. The blood cells become visible after smearing and staining blood
onto a glass slide. In this work, a microscope is used to examine stained blood under a microscope to
determine the color, size, shape, and type of WBCs. Therefore, WBCs are characterized by their
morphological characteristics.

In this way, ten morphological features (characteristics) were identified and listed by the hematologist
who has significant expertise in this domain. Those features include: 1—granules, 2—dense pink granules,
3—dense blue granules, 4—thin cytoplasm rim, 5—abundant cytoplasm, 6—multilobed nucleus (3–5),
7—bilobed nucleus, 8—kidney bean nucleus, 9—large and eccentric Nucleus, 10—dense, round, small
nucleus. To develop the domain knowledge vectors, these ten features were framed as Boolean feature vectors
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Figure 2. Visual features and domain knowledge vectors for the four types of WBCs.

for each class of WBC (eosinophils, neutrophils, lymphocytes, and monocytes). There will be 10 Boolean
values in the domain knowledge vector for each class related to the 10 features. If it is a characteristic of that
WBC class, the value will be 1, otherwise it will be 0. Figure 2 shows the visual characteristics, feature vector
attributes, and domain knowledge vectors.

2.3. Data preprocessing
In contrast to other networks, CNNs can detect visual patterns in unprocessed pixel data without much
preprocessing [26]. In the proposed work, image segmentation is performed on the image before it is fed to
CNN. Image segmentation removes unnecessary parts of an image and provides the necessary regions where
the required object can be found. Therefore, it increases the chance of identifying the required object for
classification more quickly.

WBCs are included in the dataset images along with other blood elements, so segmenting the WBCs
would provide well-preprocessed images to the deep learning model. Segmentation can be performed using
deep neural networks [26], but it is time-consuming. In traditional segmentation models, significant
parameters are used to reduce time [27]; however, Image Contouring has significant parameters and is faster
[28]. A copy of the original input image is created and the colour channel arrangement is changed from BGR
to RGB. In the output image, pixel borders are drawn by choosing pixel values that contribute significantly to
creating edges. A light grey border is formed with pixels that fall within a range of BGR values. In the
following step, thresholding is applied to change all pixels that will contribute to WBC segmentation to a
value of 1 (white) and the background pixels to a value of 0 (black). Using the OpenCV library, image
contouring [29] is performed on the input image. Image contouring involves two processes: edge detection
and contour extraction [30]. First, Gaussian blurring is applied to the image to reduce noise and enhance
edge visibility. Next, the Canny edge detection algorithm is used to identify edges based on pixel values that
fall within specified threshold ranges.

To exclude edges created by noise, threshold values have been set such that edges caused by noise are not
considered. By applying morphological erosion and dilation, the detected edges are refined and enhanced.
The contours are extracted from the edged binary image by considering joining edges, and then they are
sorted based on their area values ascending. In the sorted contours list, a minimum area rectangle with the
actual corner points of the rectangle is identified and converted into a NumPy array. To draw bounding
boxes, the Euclidean distance between the top-left corner and the bottom-left corner is calculated. To remove
invalid boxes, all other non-zero areas in the bounding box will be filtered out using Euclidean distance.
Afterward, the bounding box’s center point is determined. Lastly, to draw the contours, a mask image in the
black color is created and placed on the input image to draw the contours with the maximum and minimum
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Figure 3. Output of segmentation.

Figure 4. Baseline CNN workflow.

x, and y coordinates and the bounding box’s center coordinates. In this case, the contour that is the region of
interest will be filled in white and the rest in black. Afterward, the segmented WBCs are obtained by cropping
the masked area of interest. By contouring, the cell can be clearly defined from the background, and its edges
are clearly defined. Figure 3 shows the output of contouring. Upon segmenting the WBC images, they are
resized to [64× 64] to fit the model, and their pixels are normalized from 0–255 to 0–1. In the model, this
segmentation technique provides a properly delineated WBC image for the CNN.

2.4. Baseline CNNmodel
This paper aims to classify WBCs from blood smear images with the ‘Baseline CNN’, which is used as the first
step in the work. Figures 4 and 5 show the workflow and architecture of the Baseline CNN. The baseline
CNN requires input images of 64× 64 pixels and in RGB color channel. The algorithm includes three
convolutional layers with varying numbers of filters (64, 128, 256), followed by maximum pooling and
dropouts. Each convolutional layer is followed by an activation function called a rectified linear unit (ReLU).
A max pooling layer with a pool size of (2, 2) is used to downsample feature maps. Dropout regularization
with a dropout rate of 0.25 is implemented after each max pooling layer to prevent overfitting. A flattened
layer converts the output feature maps from the final convolutional layer into a one-dimensional (1D) array.
Flattened features are passed through a dense layer with 1024 units and a ReLU activation function. We apply
a dropout layer after this dense layer with a 0.25 dropout rate.

The proposed CNN model includes two additional dense layers with 64 units and ReLU activation
functions. The final dense layer consists of 4 units and applies the SoftMax activation function. This layer
produces the output probabilities for each class in the classification problem. Since the problem involves
multi-class classification, SoftMax activation is implemented to ensure that the output values are normalized
to represent probabilities. The loss function used is sparse categorical cross-entropy, which works well for
multi-class classification jobs where the labels are integers. Compilation of the model is performed using
Adam optimizer. The metrics used for evaluation are accuracy, precision, recall, F1-score, and specificity.
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Figure 5. Baseline CNN architecture.

Figure 6. Architecture of the proposed WBC-KICNet.

2.5. ProposedWBC-KICNet
WBC-KICNet uses a CNN model that is less complex than other deep-learning models for WBC
classification. In this model, a framework is called a ‘knowledge generator (KG)—knowledge infused
classifier (KC)”. Based on CNN, the KG model and the KC models are developed. In the KG model, domain
knowledge features are extracted from the pre-processed image and converted to a 1× 10 knowledge feature
vector. A KC model combines knowledge features and features extracted from an input image to produce
fused features. The fused features are then used to classify the image. Infusing domain knowledge into the
classifier model is the function of the KG model, which provides the knowledge vector that is needed by the
KC model. Figure 6 illustrates the detailed WBC-KICNet architecture.

2.5.1. KG model
Knowledge generator (KG)is a custom CNNmodel used for feature extraction. A CNN is trained to generate
domain knowledge feature vectors from pre-processed BCCD dataset images. The four domain knowledge
vectors provided by the hematologist have significant features that help identify the type of WBC which is
subjective of the WBC image. The elements in the vector represent the features characteristic of the WBC
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Figure 7.Workflow of knowledge generator model.

class with a ‘1’ and ‘0’ otherwise. The feature number and its characteristic is mentioned in section 2.2 of the
manuscript. All features characteristic of the particular class need not be present in every WBC image, but
they are important for classifying the WBC. The fixed domain knowledge vectors encapsulate the essential
characteristics of each WBC class. Hence, we have trained a CNN model to extract those features by
providing them as target vectors. The CNN’s multi-layer design extracts hierarchical features that capture
both low-level and high-level details, attention mechanisms within the CNN dynamically focus on the most
relevant parts of the images, and multi-scale feature extraction ensures that features at different levels of
granularity are recognized. These strategies collectively ensure that the domain knowledge vectors contribute
effectively to generating reliable knowledge vector predictions that accurately reflect the specific content of
each WBC image, accounting for variability and incompleteness in the image, thereby improving the KG
model’s overall performance and robustness. The sigmoid activation function in the final layer squashes
feature values between 0 and 1, generating knowledge vectors that represent each image within a class. By
allowing for continuous values rather than strict binary outputs, these vectors capture varying degrees of
feature presence, effectively accounting for variations within the class. Figure 7 illustrates the workflow of the
KG model. The model uses pre-processed images as input and gives domain knowledge vectors as output. In
this model, there are three convolutional layers with increasing numbers of filters (64, 128, 256) and a ReLU
activation function. A max pooling layer with a pool size of 2 and a dropout layer with a dropout rate of 0.25
are added after each convolutional layer.

Using a flattened layer, the last convolutional layer’s feature map is converted into a 1D array. A dense
layer with 1024 units and ReLU activation is used. Before passing the feature map to the final layer with 10
output units and a sigmoid activation function, a dropout layer with a dropout rate of 0.25 is also added. In
CNN, ReLU is a non-linear activation function that helps resolve the vanishing gradient issue. ReLU will
round up all x values less than and equal to 0–0. For values greater than 0, it will return the value as such. It is
given by the formula in equation (1),

F(x) = 0, for x⩽ 0 and x for x> 0. (1)

KG is a standalone model that can be integrated with any neural network model to generate knowledge
feature vectors. The final dense layer has 10 units, which equals the Domain Knowledge Vector length. As a
result, the model output is a vector with the same dimension as the target vectors. The output is considered a
‘Generated Knowledge vector’ in this case. In this model, sigmoid activation is used, which is compatible
with Boolean outputs. The sigmoid function will normalize all the values of x between 0 and 1. It is given by
the formula in equation (2). Typically, the Adam optimizer and mean squared error (MSE) loss function are
combined in model compilation. It is typical for regression tasks to minimize the disparity between predicted
continuous values and actual targets,

σ (x) =
1

1+ e−x
. (2)
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2.5.2. KC model
The knowledge-infused classifier (KC) model uses CNN with knowledge incorporated in it. The architecture
diagram of the KC model is shown in figure 6. Using the baseline CNN model architecture, the KG model
and feature fusion parts are merged. In the KC model, the preprocessed image is used to extract features from
the image. The main advantage of CNN is its ability to automatically extract feature information from an
image using deep learning methods. Using the flattened layer, the extracted features are converted to a 1D
array. This is then given to a dense layer of 1024 neurons activated with ReLu. Following this, the knowledge
vectors produced by the KG model are concatenated and fed into two additional dense layers before applying
the SoftMax function. Each dense layer consists of 64 nodes activated by ReLU and includes dropout layers
with a 25% dropout rate. This setup helps reduce the dimensionality of the combined features and enhances
the model’s learning capability. There are four nodes in the output layer, one for each of the four classes of
WBCs present in the dataset. As part of the output layer, SoftMax activation is used to normalize the output
values to represent probability values. Softmax converts a vector of values into a probability distribution. In
the output vector, the elements will range from 0 to 1 and sum to 1. The mathematical representation of the
SoftMax activation function is given in equation (3). A sparse categorical cross-entropy loss function is
selected in the Adam optimizer, which is suitable for multiclass classification with integer labels. Zi

Softmax(z)or σ(z)i =
ezi∑k
j=1e

zj
(3)

where,
i—set of real numbers
zi—ith element of the input vector z.
zj- jth element of the output vector z.
e—base of the natural logarithm (approximately 2.718).

2.6. Performance evaluation
To ensure reproducibility, the hardware and software environment is detailed. The model was developed and
tested on Google Colab using NVIDIA Tesla G4 GPU. Version control was maintained with Git. The system
comprised an AMD Ryzen 5 4600H processor, 12 GB RAM, and 512 GB storage. The Ubuntu 22.04
Operating System served as the base, while Python along with Pandas (2.1.1), Numpy (1.26.0), Tensorflow
(2.14.0), and OpenCV-Python (4.8.1) provided the necessary frameworks and libraries. The model was
evaluated using the BCCD dataset which is balanced and has four classes namely, eosinophil, lymphocyte,
monocyte, and neutrophil. To enhance clarity and reliability in the evaluation methodology, a unified
approach was adopted where the train-test split of 80–20 followed by ten-fold cross validation within the
training set. The best-performing model was chosen to ensure consistency in the performance metrics. The
metrics used to evaluate the model are accuracy, precision, recall, specificity, F1-score, area under the receiver
operating characteristic (ROC) curve, and confidence scores [9]. Training was conducted using the Adam
optimizer with a learning rate of 0.001, over 30 epochs, with a batch size of 32.

2.6.1. Description of evaluation metrics
To quantify evaluation measures analytically, it is essential to define true positives (TPs), false positives (FPs),
true negatives (TNs), and false negatives (FNs). Understanding the terms is essential when evaluating the
performance of a classification model. The WBC-KICNet model is assessed using these values to determine
its accuracy, precision, recall, and specificity. These metrics are expressed mathematically by the formulas in
equations (4)–(8). In WBC classification, TP, TN, FP, and FN describe different results of the model, which
indicate how well it distinguishes between different types of WBCs: a TP occurs when the model correctly
identifies a cell belonging to that specific type. An FP occurs when the model incorrectly identifies a cell as
belonging to a specific type. A TN occurs when the model correctly identifies a cell that does not belong to a
specific type as something else. FN occurs when a cell belonging to a specific type is incorrectly identified as
something else,

Accuracy=
TP+TN

TP+TN+ FP+ FN
∗ 100 (4)

Precision=
TP

TP+ FP
∗ 100 (5)

Recall=
TP

TP+ FN
∗ 100 (6)

Specificity=
TN

TN+ FP
∗ 100 (7)
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Figure 8. Confusion matrix of knowledge generator model for (a) eosinophil, (b) lymphocyte, (c) monocyte, and (d) neutrophil.

F1− Score= 2 ∗ Precision ∗Recall
Precision+Recall

. (8)

3. Numerical results and discussion

3.1. Performance of KGmodel
The KG CNN was trained and tested on the BCCD dataset. The KG model automates the process of
generating domain knowledge vectors as manually visualizing images and generating knowledge vectors is
time-consuming for hematologists. Therefore, CNN has been used to automate the process. The KG model is
a key component in the framework as it can impact the classifier’s performance. The quality of the domain
knowledge given to the KC model depends on the correctness of the vector generated by the KG model. The
KG model performs with an accuracy of 98.1%. In addition, the precision value is 97.4%, the recall is
97.79%, the specificity is 99.8%, and the F1 value is 97.64%. Figure 8 shows the confusion matrix for each
class of WBC. The confusion matrix for neutrophils has a 0 for both TP and TN, which means it does not
have any incorrect vectors for this class. The figure 8 shows that there are 8 incorrect vectors for the
Eosinophil class, 17 for the Lymphocyte class, and 21 for the Monocyte class. Since the model is a vector
generator and not a classifier, the MSE is used which can quantify the average squared error between the
ground truth and predicted values.

3.2. Performance comparison between baseline CNN andWBC-KICNet
To better understand the work of incorporating domain knowledge into a regular CNN, the performance of
the proposed WBC-KICNet was compared to that of a baseline CNN by training and testing them on the

9
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Table 2. Performance evaluation between the baseline CNN and WBC-KICNet.

WBC class

Accuracy (%) Precision (%) Recall (%) Specificity (%) F1-score (%)

Baseline
CNN

WBC-
KICNet

Baseline
CNN

WBC-
KICNet

Baseline
CNN

WBC-
KICNet

Baseline
CNN

WBC-
KICNet

Baseline
CNN

WBC-
KICNet

Eosinophil 81.7 98.7 89 99 82 99 96 99.6 85 99
Lymphocyte 96.6 99.83 99 100 97 100 99 100 98 100
Monocyte 96.7 100 87 100 97 99 95 99.9 91 100
Neutrophil 87.3 98.32 87 98 87 98 95 99.6 87 98
Average 90.5 99.22 90.5 99.25 90.75 99 96.25 99.77 90.25 99.25

BCCD dataset. We have tabulated the average scores of the five metrics for both models in table 2. In the
baseline CNN, accuracy, precision, recall, specificity, and F1-scores are 90.5%, 90.5%, 90.75%, 96.5%, and
90.25%, respectively. Other than specificity, the rest of the values are around 90%. As a result of the
WBC-KICNet’s high accuracy of 99.2%, it predicts 99.22% of all samples correctly, indicating a strong overall
performance. The model has an impressively high TP rate of 99.25%, so it accurately classifies true samples
as positive. Based on the recall score of 99%, it appears that the model correctly identifies relevant samples in
a large majority of cases. It is particularly important to have a high specificity in medical diagnostics to avoid
misdiagnosing healthy people as ill. With an exact specificity score of 99.77%, the model has a very low FP
rate, meaning it rarely misclassifies positive samples as negative. Despite a high F1-score of 99.25%, the
WBC-KICNet achieves a high balance between precision and recall. In a medical diagnosis application such
as WBC classification, where precision and specificity are crucial metrics, the proposed WBC-KICNet
outperforms the Baseline with challenging scores of 99.25% and 99.77%. The effort of knowledge infusion
has helped CNN learn the dataset better and produce reliable results.

3.3. Class-wise performance evaluation
Table 2 shows the class-wise accuracy, precision, recall, F1-score, and specificity values for the baseline CNN
model and the proposed WBC-KICNet model. 1. Considering the results of both the proposed and baseline
models, the accuracy for monocytes and lymphocytes is higher than that for eosinophils and neutrophils due
to their agranular cytoplasm. Furthermore, the proposed WBC-KICNet model has been able to achieve
higher accuracy scores for all four classes. The accuracy scores for the four classes are 98.7%, 99.83%, 100%,
and 98.32% for WBC-KICNet, compared to 81%, 87%, 96.6%, and 96.7% for the baseline CNN. Based on
our best judgment, both models have been trained and tested equally, and the results prove that the CNN
prediction in the proposed model across all four WBC classes is at a higher level, thanks to the knowledge
given to it. This suggests that the model does not overfit any WBC class and could be used in a routine
clinical setting.

3.4. Visualization results of baseline CNN andWBC-KICNet
The confusion matrices in figure 9 show the classification results of the baseline CNN and the WBC-KICNet.
A major improvement in the WBC-KICNet is the tapered misclassification of eosinophils and neutrophils.
According to the Baseline CNN, 52/622 Eosinophil images were misclassified as neutrophils, whereas the
WBC-KICNet misclassified 7/622 actual Eosinophil images as neutrophils. Based on the baseline CNN,
69/599 neutrophils are misclassified as eosinophils, while 8/599 are misclassified as eosinophils based on the
WBC-KICNet.

By identifying the confidence level with which it classified those images that were misclassified by the
baseline CNN, we have visualized the classification power of the WBC-KICNet. In a Deep Learning model, a
confidence score is a value between 0 and 1 that indicates the model’s prediction strength. The model’s
prediction is highly desirable if the confidence score is between 0.7 and 9, but less desirable when it is below
0.7. The confidence scores of baseline CNN and WBC-KICNet on the misclassified images are shown in
figure 10. The domain knowledge has helped the model overcome the confusion of misclassifying
neutrophils and eosinophils. A second improvement is the improved classification of monocytes. Monocytes
and neutrophils can be misclassified because they share immune receptors, including T cell receptors, with T
cells. According to the baseline, 47, 22, and 16 monocyte images were misclassified as neutrophils,
eosinophils, and lymphocytes, respectively. Similarly, the baseline model shows poor classification
performance for monocytes. As a result of the addition of feature-based domain knowledge, the
WBC-KICNet has increased the monocyte classification by a bare minimum of 2/597 images misclassified as
neutrophils. Third, classification performance of lymphocytes have shown an appreciable improvement.
With the proposed model, 621/622 images of the lymphocyte class are correctly identified, while the baseline
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Figure 9. Confusion matrix of baseline CNN (a) and WBC-KICNet (b).

Figure 10. Confidence scores of baseline CNN and WBC-KICNet.

CNN could only classify 601/606 test samples correctly. The fourth improvement is the aggregated high
classification performance across all four categories. According to the classification results the correct
classifications are 590/592 for monocytes, 612/622 for eosinophils, 621/622 for lymphocytes, and 588/597 for
neutrophils. As a result, to the best of our knowledge and genuineness, the sincere effort of adding domain
knowledge to improve WBC classification performance has been successful.

Figure 11’s ROC curves demonstrate the diagnostic capabilities of the Baseline CNN and WBC-KICNet
models as the discrimination thresholds are adjusted. The X-axis represents the FP rate or specificity, which
represents the number of real positive classes misclassified as negatives, and the Y-axis represents the TP rate
or sensitivity, formula in (6). In figure 11, the ROC curves for the WBC-KICNet model reach the top-left
corner of the plot for all four classes, indicating an ideal scenario with a high TP rate and a low FP rate across
various threshold values. In contrast, only the ROC curve for the lymphocyte class in the baseline CNN
model touches the top-left corner, while the other classes do not. Additionally, in figure 11 the AUC values
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Figure 11. AUC-ROC curves of (a) baseline CNN and (b) WBC-KICNet.

for both the WBC-KICNet and the Baseline CNN models are depicted in order to quantitatively evaluate the
performance of the classifiers. For all four classes, the AUC values are above 0.5, indicating good overall
performance for both models. The Baseline CNN model demonstrates strong performance, particularly for
Lymphocyte and Monocyte classifications, with AUC values of 0.98 and 0.96, respectively. However, the
Eosinophil classification shows a lower AUC of 0.89. On the other hand, the WBC KIC-Net model exhibits
markedly superior performance across all classes, with AUC values approaching or reaching 1.00. This
suggests near-perfect classification performance for all WBC types. As a result, the WBC-KICNet faces
reduced overfitting problems.

3.5. Accuracy comparison
The graphs in figure 12 demonstrate the ability of both the Baseline CNN and the proposed WBC-KICNet
models to generalize effectively across different folds and epochs. The first graph on the left depicts the
training and validation accuracies over 30 epochs. Initially, the training accuracy starts around 0.5 and
rapidly increases, while the validation accuracy starts higher, around 0.7, and follows a similar upward trend.
Both accuracies converge and stabilize after approximately 10 epochs, with the training accuracy slightly
surpassing the validation accuracy. The graph on the right shows the learning ability of the WBC-KICNet
model where, the training accuracy begins around 0.8 and quickly reaches close to 1.0 by the second epoch,
after which both training and validation accuracies stabilize at nearly perfect levels. This graph illustrates the
model’s strong performance showing minimal deviation between the training and validation accuracies,
suggesting excellent generalization and minimal overfitting.

3.6. Statistical analysis
Based on the k-fold cross-validation accuracy, a one-tailed t-test was performed on the models [19]. The
k-fold cross-validation was performed on the training set and the results are tabulated in table 3. Despite the
above empirical analysis confirming that WBC-KICNet performs better than baseline CNN, it is important
to confirm the results statistically. The performance of both models is compared using a one-tailed t-test
(hypothesis testing). The null hypothesis H0 is that there is no significant difference between Baseline CNN
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Figure 12. Representation of training vs validation accuracies of baseline CNN (left) and WBC-KICNet (right).

Table 3. Statistical t-test evaluation measures.

Fold

K-fold cross validation
accuracies of

baseline CNN (T1)

K-fold cross-validation
accuracies of proposed
WBC-KICNet (T2)

Difference
(T2− T1)

Square of
deviation

1 97.11 99.09 1.98 0.29
2 96.21 99.09 2.88 0.13
3 95.63 99.42 3.79 1.61
4 96.13 98.76 2.63 0.01
5 96.95 99.25 2.3 0.05
6 97.20 98.76 1.56 0.92
7 98.10 99.42 1.32 1.44
8 95.79 99.17 3.38 0.74
9 97.11 99.01 1.9 0.38
10 95.71 99.17 3.46 0.88

Average 2.52 6.46

and WBC-KICNet, whereas the alternative hypothesis H1 is that WBC-KICNet is more efficient than
baseline CNN at a 5% significance level. On the K-fold (K = 10) cross-validation accuracy of Baseline CNN
and WBC-KICNet, a one-tailed t-test with 0.05 as the significance level is applied, and the p-value obtained
is 0.000 01. If the p-value is less than α, then the null hypothesis is rejected, otherwise it is not rejected. In
this case, the p-value of compared accuracy is less than 0.05, indicating that the null hypothesis H0 is
rejected. With a 95% confidence level, the statistical results confirm that WBC-KICNet is more efficient than
baseline CNN.

3.7. Quantitative result analysis with existing deep learning models
A comparison of the proposed WBC-KICNet model and nine existing CNN-based classification models is
presented in table 4 and pre-trained models in table 5. In the works, values that are not reported are
mentioned as ‘NP’. Models based on BCCD datasets are considered righteous comparisons. WBC
classification has been attempted by authors using CNNs and pre-trained CNNs, either in their original form
or modified and the results of testing is compared. Tiwari et al [1] have proposed a CNN model for the
classification of WBCs and achieved an accuracy of 78%. Cheuque et al [2] have performed a two-stage
classification of WBC using Faster-RCNN in the first stage and two parallel CNNs in the second stage and
achieved an accuracy of 98.4%. Chen et al [4] developed a framework by coupling ResNet and DenseNet
with spatial and channel attention modules and obtained an accuracy of 88.4%. Togacar et al [6] proposed a
model for WBC classification by using Maximal Information Coefficient and Ridge feature selection for
feature extraction and CNN for classification and achieved an accuracy of 97.95%. Banik et al [7] have
developed a CNN model by fusing the features of the first and the last convolutional layers for WBC
classification thereby considering the morphological characteristics of WBC and achieving an accuracy of
96%. Wang et al [9] used transfer learning in SE-ResNeXt 50 and utilized attention mechanisms with squeeze
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Table 4. Performance of proposed WBC-KICNet vs existing deep learning models on BCCD dataset.

Authors/Models Accuracy % Precision % Recall % Specificity % F1-score %

Tiwari et al (Double CNN model) [1] 78 88 83 NP 83
Banik et al (Nucleus-based CNN classification) [7] 96 96.25 96 98.6 96
Togacar et al (CNN & feature selection) [6] 97.95 NP NP NP NP
Yao et al (TWO DCNN) [19] NP 91.6 91.6 NP 91.6
Cheuque et al (ML-CNN) [2] 98.4 98.4 98.4 NP 98.4
Ramya et al (CNN-PSO) [16] 99.1 NP 94.56 98.78 NP
WBC-KICNet (Proposed model) 99.22 99.25 99 99.77 99.25

NP: Not reported

Table 5. Performance of proposed WBC-KICNet vs pre-trained networks based deep learning models on BCCD dataset.

Authors/Models Accuracy % Precision % Recall % Specificity % F1-score %

Chen et al (Pre-trained Rest-Net and
DenseNet with SCAM) [4]

88.44 90.84 88.45 NP 88.73

Wang et al (WBC-AMNet) [9] 98.39 90.72 NP 89.22 89.48
Sharma et al (Transfer learning using
DenseNet 121) [17]

98.84 99.33 98.85 99.61 NP

WBC-KICNet (Proposed model) 99.22 99.25 99 99.77 99.25

NP: Not reported

and excitation and gather-excite modules for WBC classification and obtained an accuracy of 98.39%.
Ramya et al [16] proposed a CNN-based classification of WBC and achieved an accuracy of 99.1% which is
in par with the accuracy of the proposed model but it is observed that recall and specificity values are higher
at 99% and 99.77% respectively. Yao et al [19] proposed a methodology based on two-module weighted
optimized deformable CNN for WBC classification. Sharma et al [17] used DenseNet 121 model optimized
with pre-processing techniques such as normalization and data augmentation and achieved an accuracy of
98.84%. However, while compared with the experimental results of the works in literature, the proposed
WBC-KICNet model based on infusing domain knowledge into a CNN using feature fusion stands out with
an accuracy of 99.22%. The other evaluation measures displayed in the tables 4 and 5 also prove that the
WBC-KICNet model outperforms the existing works in the literature.

The performance of WBC-KICNet is finally compared with five classical CNN models: Inception V3,
DenseNet121, MobileNetV2, RestNet 50, and VGGNet16. On the BCCD dataset, the models were trained for
WBC classification through transfer learning. Model weights obtained from the ImageNet dataset were
retained in the convolutional layers, and only the output softmax activation function parameters were set to
4. According to the comparison between the pre-trained models and the proposed WBC-KICNet model, the
proposed WBC-KICNet performs better for the BCCD dataset with the knowledge feature vectors fused with
CNN extracted features. Table 6 summarizes the results.

The novel WBC-KICNet model offers competitive accuracy in classifying WBCs while requiring minimal
computational resources. Its design allows fast training and analysis, making it ideal for time-sensitive
applications like emergency medicine. WBC-KICNet utilizes standard color images, reducing data
acquisition costs and enabling real-world use. Compared to existing methods, it achieves superior accuracy
and precision, leading to more reliable WBC classification. The model also avoids complexities associated
with pre-trained models and simplifies the process compared to ensemble or hybrid approaches. Future
research could explore using pre-trained models with WBC-KICNet and investigate the model’s applicability
to other medical image analysis tasks. Additionally, the model’s ability to learn kernel weights autonomously
holds promise for improved interpretability and potentially even higher accuracy.

4. Conclusion

A CNN based model called the WBC-KICNet was developed to accurately classify WBCs from blood smear
images. A key objective was to improve the model’s accuracy by incorporating WBC-specific knowledge. To
delineate the WBCs in the dataset, Boolean Domain Knowledge vectors were combined with a contouring
preprocessing step. We developed two deep-learning models to achieve our goal. The first model generates
the knowledge vector from the images, and the second model uses the knowledge vector and image data to
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Table 6. Result comparison of proposed WBC-KICNet with classical CNN models on BCCD dataset.

Model WBC class
Accuracy
(%)

Precision
(%) Recall (%)

F1-score
(%)

Inception V3 Eosinophil 95.66 98.79 95.66 97.20
Lymphocyte 98.87 99.35 98.87 99.11
Monocyte 90.35 96.38 90.35 93.27
Neutrophil 97.56 89.02 97.56 93.09
Average 95.61 95.88 95.61 95.67

DenseNet121 Eosinophil 98.71 98.07 98.71 98.39
Lymphocyte 99.68 99.67 99.68 99.68
Monocyte 99.32 98.81 99.32 99.07
Neutrophil 97.49 98.64 97.42 98.06
Average 98.8 98.79 98.78 98.8

MobileNetV2 Eosinophil 96.93 97.56 96.93 97.24
Lymphocyte 99.67 90.37 99.67 94.80
Monocyte 92.03 98.90 92.03 95.34
Neutrophil 92.80 95.85 92.80 94.30
Average 95.36 95.67 95.36 95.42

ResNet 50 Eosinophil 93.06 94.28 93.06 93.66
Lymphocyte 98.71 99.51 98.71 99.11
Monocyte 98.64 96.67 98.64 97.65
Neutrophil 94.14 93.98 94.14 94.06
Average 96.13 96.11 96.13 96.12

VGGNet16 Eosinophil 68.38 99.29 68.38 80.99
Lymphocyte 100.0 96.58 100.0 98.26
Monocyte 99.15 94.66 99.15 96.85
Neutrophil 93.47 75.43 93.47 83.49
Average 90.25 91.49 90.25 89.89

WBC-KICNet
(Proposed model)

Eosinophil 98.7 99.00 99.00 99
Lymphocyte 99.83 100.00 100.00 100
Monocyte 100 100.00 99.00 100
Neutrophil 98.32 98.00 98.00 98
Average 99.22 99.25 99 99.25

classify the images. A key component of the approach was the incorporation of domain information, which
significantly improved the performance of the model. In addition, the Baseline CNN model’s accuracy
without the knowledge vector was 90.5%. However, domain knowledge enabled this accuracy to reach
99.22%, which is a remarkable achievement. By incorporating domain knowledge into the classification
process, we can achieve such an enormous improvement in accuracy. The results of the proposed method
have been validated using a statistical hypothesis test (t-test). As knowledge and technology advance, the
proposed work will open the door for additional investigation and innovation in medical image analysis and
classification. In addition, the work leads to the development of more accurate and effective diagnostic tools
and the advancement of medical image processing.
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