ISSN: 1074-133X Vol 31 No. 8s (2024)

On δga Closure and δga Interior S In TSS

M. Madhesan¹, V.E. Sasikala^{2,*}

¹Research Scholar, Vels Institute of Science Technology and Advanced Studies, Chennai, Tamil Nadu, India.

^{2,*}Research Supervisor, Assistant Professor, Vels Institute of Science Technology and Advanced Studies, Chennai, Tamil Nadu, India

^{2,*} Corresponding author: sasikala.sbs@velsuniv.ac.in

Article History: Abstract:

Received: 21-04-2024

The purpose of this research article is to explain the new notions of $\delta g \alpha$ - derived, $\delta g \alpha$ -closure, $\delta g \alpha$ -interior, $\delta g \alpha$ -nbd., and moreover, the connections among them are identified.

Revised: 11-06-2024

Keywords: δgα-O, δgα-closure, δgα-interior, δgα-nbd., δgα-Derived, δgα-border, δgα-

Accepted: 24-06-2024

frontier, $\delta g\alpha$ -exterior and $\delta g\alpha$ -saturated.

1. Introduction

In many application domains, like data mining, the significance of general TSs is growing quickly [13]. Mathematizing both quantitative and qualitative data is possible with topological structures on the data collection serving as appropriate mathematical models. Nowadays, a large number of topologists worldwide are studying generalized Os because they are crucial to general topology.

A widely recognized concept that serves as a source of inspiration is the idea of $\alpha\delta$ -O [12], which was first presented by R. Devi et al., We shall carry out the analysis of related functions with $\alpha\delta$ -O and $\alpha\delta$ -C s in this research. We present and define the terms " $\alpha\delta$ -D," " $\alpha\delta$ -exterior," as well as deduce their relationship. Furthermore, we present a brand-new function known as $\alpha\delta$ -Totally-Continuous Functions. Additionally, as delineated and examined in these works by D. Sivaraj et al., [1-4], A Study on Beta Generalized C s in TS, Soft α -O s, [19–25] On soft regular star generalized star C s in soft TSs and [5-10] semi-closure, a note on soft g-C s Hildebrand S. K. et al., Regarding very $\alpha\delta$ super irresolute functions in TSs, Benchalli S et al., On RW-C s in TSs, [11–12] V. Kokilavani et al., the $\alpha\delta$ -kernal and $\alpha\delta$ -closure via $\alpha\delta$ -O s in TSs, D- $\alpha\delta$ -s and related separation axioms in TSs, [15–18] Davis A. S., In addition, the fundamental characteristics of these functions as well as TS preservation theorems are presented and examined.

2. Preliminaries

Let X be a TS and A be X's subset. A's interior and closure are represented, respectively, by the symbols cl(A) and int(A).

Definition 2.1: A sub A of a space (X, τ) is called

- (1) Regular-O [15] if A = int(cl(A)).
- (2) semi-O [15] if $A \subseteq cl(int(A))$.
- (3) α -O [2] if $A \subseteq int(cl(int(A)))$.

ISSN: 1074-133X Vol 31 No. 8s (2024)

(4) δ -semi-O [12] A \subseteq cl(Int δ (A)).

Levine's g-Cs have been compared to other generalized closure operators or classes of generalized-O s to generate a variety of ideas. A useful tool for characterizing TSs is the generalize-C. The union of all regular Os of X contained in A is the δ -interior [10] of a sub A of X, and it is represented by Int δ (A). If A = Int δ (A), then the sub A is referred to as δ -O [10]. That is, if an is the union of regular-O s, then it is δ -O. A δ -C is the complement of a δ -O.

Detailed study in this regard by many investigators has enriched the field of generalized C s to a considerable extent. Nbd. is one of the core concepts of topology. Nbd. in topology have significant role in the applications of mathematics.

3. $\delta g \alpha$ –Closure ($\delta g \alpha$ –cl) and $\delta g \alpha$ –Interior ($\delta g \alpha$ –int) In TSS

In this paper we establish the notion of $\delta g\alpha$ – closure, $\delta g\alpha$ – interior in the TSs.

Definition 3.1. A subset M of a TS X is called a $\delta g \alpha$ -O (briefly, $\delta g \alpha$ -O) if M^c is $\delta g \alpha$ -C. The family of all $\delta g \alpha$ - O s in a TS X is represented by $\delta g \alpha$ -O(X).

Example 3.2. Let $X = \{e, f, g, h\}$, $\tau = \{X, \phi, \{e\}, \{f\}, \{e, f\}, \{e, g\}, \{e, h\}, \{e, f, g\}, \{e, f, h\}, \{e, g, h\}\}$ then the $\delta g \alpha C$ s are $\{X, \phi, \{e\}, \{f\}, \{g\}, \{e, f, g\}\}$ and $\delta g \alpha$ -O s are $\{X, \phi, \{f, g, h\}, \{e, g, h\}, \{e, f, h\}, \{h\}\}$.

Definition 3.3. The $\delta g\alpha$ – cl of a subset A of (X, τ) is denoted by $\delta g\alpha$ – cl(A) and is defined as the intersection of all $\delta g\alpha$ – C s containing A and is denoted by $\delta g\alpha$ -cl(A). $\delta g\alpha$ -cl(A) is the smallest $\delta g\alpha$ -C containing A. Therefore, $\delta g\alpha$ – cl(A)= $\cap \{M \subseteq X: A \subseteq M \text{ and } M \text{ is } \delta g\alpha$ – C $\}$.

Definition 3.4. The $\delta g \alpha$ – int of subset A of (X, τ) is denoted by $\delta g \alpha$ –int(A) and is defined as the union of all $\delta g \alpha$ – O contained in A and is denoted by $\delta g \alpha$ -int(A). $\delta g \alpha$ -int(A) is the largest $\delta g \alpha$ O sub of A. Therefore, $\delta g \alpha$ -int $(A) = \bigcup \{N \subseteq X: N \subseteq A \text{ and } N \text{ is } \delta g \alpha - O\}$.

Remark 3.5. (i). Every O is $\delta g \alpha$ -O.

- (ii). Finite intersection of $\delta g\alpha$ -O s need not be $\delta g\alpha$ -O.
- (iii). Finite union of $\delta g\alpha$ -O s need not be $\delta g\alpha$ -O.

Theorem 3.6. A subset M of a space Z is $\delta g\alpha - O \Leftrightarrow F \subseteq \alpha int(M)$ whenever $F \subseteq M$ where F is $\delta - C$.

Proof: Let M be a $\delta g \alpha$ -O subset of X and suppose $F \subseteq M$ where F is δ -C. Then Z-M is $\delta g \alpha$ -C and Z-M \subseteq Z-F where Z-F is δ -O in Z. By Definition of $\delta g \alpha$ -C, $\alpha cl(Z-M) \subseteq Z$ -F. Since $\alpha cl(Z-M) = Z - \alpha int(M)$, then Z - $\alpha int(M) \subseteq Z$ - F. Therefore $F \subseteq \alpha int(M)$.

Conversely, let $F \subseteq \alpha$ int(M) be true whenever $F \subseteq M$ and F is δ -C in Z, then Z - α int(M) \subseteq Z - F. That is, α cl(Z - M) \subseteq Z - F. Thus Z - M is δ g α - C and M is δ g α - O.

Theorem 3.7. If F is $\delta g\alpha$ -O sub of a space Z whereas $\alpha int(F) \subseteq G \subseteq F$, then V is $\delta g\alpha$ -O.

Proof: From the Definition 3.1 and $\delta g\alpha - C$.

Theorem 3.8. If S is any $\delta g \alpha$ -O sub of a space X whereas $\alpha int(S) \subseteq N$, then $S \cap N$ is $\delta g \alpha$ -O.

ISSN: 1074-133X Vol 31 No. 8s (2024)

Proof: Let S be any $\delta g\alpha$ -O sub of X and $\alpha int(S) \subseteq N$, then $S \cap \alpha int(S) \subseteq S \cap N \subseteq S$. Since $\alpha int(S) \subseteq S$, then $\alpha int(S) \subseteq S \cap N \subseteq S$ and from Theorem 3.5, $S \cap N$ is $\delta g\alpha$ -O in X.

Theorem 3.9. Let M be any $\delta g\alpha$ -C subset. Then $\alpha cl(M)$ -M is $\delta g\alpha$ -O.

Proof: Let M be a $\delta g\alpha$ -C and F be a δ -C in X whereas $F \subseteq \alpha cl(M) - M$, Then by Theorem M be a $\delta g\alpha$ -C sub of a space X, then $\alpha cl(M)$ -M contains no non empty δ -C ., $F = \emptyset$ and hence $F \subseteq \alpha int(\alpha cl(M) - M)$. Therefore, by Theorem 3.4, $\alpha cl(M)$ - M is $\delta g\alpha$ -O in X.

Lemma 3.10. Let Y be a $\delta g\alpha$ -subspace of X. If U is $\delta g\alpha$ O in Y and Y is $\delta g\alpha$ O, then U is $\delta g\alpha$ -O.

Proof: Given U is $\delta g \alpha$ O in Y, U = Y \cap G for some G $\delta g \alpha$ O in X. But Y and G are both $\delta g \alpha$ O in X so Y \cap G is also $\delta g \alpha$ O in X.

Theorem 3.11. Assume that M and N be any two subs of a TS. Then

the succeeding properties hold.

- 1. E is $\delta g\alpha C$ iff $\delta g\alpha cl(E) = E$.
- 2. $\delta g\alpha cl(E)$ is the smallest $\delta g\alpha C$ sub of X containing E.
- 3. $\delta g \alpha c l (\phi)$ is empty, $\delta g \alpha c l (X) = X$.
- 4. $\delta g\alpha cl(E)$ is a $\delta g\alpha C$ in (X, τ) .
- 5. If $E \subseteq F$, then $\delta g\alpha cl(E) \subseteq \delta g\alpha cl(F)$
- 6. $\delta g\alpha cl(E \cup F) = \delta g\alpha cl(E) \cup \delta g\alpha cl(F)$.
- 7. $\delta g \alpha cl(E \cap F) = \delta g \alpha cl(E) \cap \delta g \alpha cl(F)$.
- 8. $\delta g\alpha cl(\delta g\alpha cl(E)) = \delta g\alpha cl(F)$.

Proof: 1. For any sub E of X we have $E \subseteq \delta g\alpha - cl(E)$. Assume that E is a $\delta g\alpha - C$ in (X, τ) . But $E \subseteq E$. Also $E \in \{H \subseteq X: E \subseteq H \text{ and } E \text{ is } \delta g\alpha - C\}$, it gives $E = \bigcap \{H \subseteq X: E \subseteq H \text{ and } H \text{ is } \delta g\alpha - C\} \subseteq E$. Then $\delta g\alpha - cl(E) \subseteq E$. So $E = \delta g\alpha - cl(E)$.

- 2. Beginning the definition of $\delta g \alpha cl$, $\delta g \alpha cl(E)$ is C. Suppose if F is any $\delta g \alpha C$ then $\delta g \alpha cl(E)$ $\subseteq F$. Hence $\delta g \alpha cl(E)$ is the smallest $\delta g \alpha C$ in (X, τ) containing E.
- 3. Proof is obvious from the definition.
- 4. Proof is apparent from the definition.
- 5. If $E \subseteq F$ then $E \subseteq \delta g\alpha cl(F)$ because $F \subseteq \delta g\alpha cl(F)$ for all F. Hence $\delta g\alpha cl(F)$ is the $\delta g\alpha C$ containing E. But $\delta g\alpha cl(E)$ is smallest $\delta g\alpha C$ containing E. So $\delta g\alpha cl(E) \subseteq \delta g\alpha cl(F)$.
- 6. We know the result $E \subseteq (E \cup F)$ and $N \subseteq E \cup F$, from the above result, $\delta g\alpha cl(E) \subseteq \delta g\alpha cl(E) \cup F$ also $\delta g\alpha cl(F) \subseteq \delta g\alpha cl(E \cup F)$ and $\delta g\alpha cl(F) \subseteq \delta g\alpha cl(E \cup F)$. So $\delta g\alpha cl(E) \cup \delta g\alpha cl(F) \subseteq \delta g\alpha cl(E \cup F)$. But $\delta g\alpha cl(E)$ is $\delta g\alpha C$ containing E and $\delta g\alpha cl(F)$ is $\delta g\alpha C$ containing E. Hence $\delta g\alpha cl(E) \cup \delta g\alpha cl(E)$ is $\delta g\alpha C$ containing $E \cup F$. Here $\delta g\alpha cl(E) \cup \delta g\alpha cl(E)$ is

ISSN: 1074-133X Vol 31 No. 8s (2024)

 $\delta g \alpha - C$ containing $(E \cup F)$. Therefore $\delta g \alpha - cl(E) \cup \delta g \alpha - cl(F) \supseteq \delta g \alpha - cl(E \cup F)$. Therefore we get $\delta g \alpha - cl(E \cup F) = \delta g \alpha - cl(E) \cup \delta g \alpha - cl(F)$.

- 8. $\delta g \alpha cl(E)$ is a $\delta g \alpha$ C in (X, τ) . Let then K is $\delta g \alpha$ C $\delta g \alpha cl(E) = K$, in (X, τ) . Using (i) $\delta g \alpha cl(K) = K$, which gives $\delta g \alpha cl(\delta g \alpha cl(E)) = \delta g \alpha cl(E)$.

Remark 3.12. For any sub $A \subseteq X$,

- 1. $\delta g \alpha int(E)$ is the largest $\delta g \alpha O \subseteq E$.
- 2. A is $\delta g \alpha O$, iff $\delta g \alpha int(A) = A$.
- 3. $\delta g \alpha int(X) = X$.
- 4. $\delta g\alpha int(\phi) = \phi$.

4. δgα - NBD In TSS:

In this paper we establish the notion of $\delta g\alpha$ – nbd. in the TSs.

Definition 4.1. Let N be a sub of TS (X, τ) , then N is said to be $\delta g\alpha$ – nbd. of point $x \in X$ if there exist a $\delta g\alpha$ – O (G) where as $x \in G \subseteq N$. The group of all $\delta g\alpha$ – nbd. of an element $x \in X$ called $\delta g\alpha$ – nbd. of x and is signified by $\delta g\alpha$ –N(x).

Example 4.2. Let $X = \{e, f, g, h\}$, $\tau = \{X, \varphi, \{e\}, \{f\}, \{e, f\}, \{e, g\}, \{e, h\}, \{e, f, g\}, \{e, f, d\}, \{e, g, h\}\}$ then the δgα C s are $\{X, \varphi, \{e\}, \{f\}, \{g\}, \{e, f, g\}\}$ and δgα - O s are $\{X, \varphi, \{f, g, h\}, \{e, g, h\}, \{e, f, h\}\}$. Let b∈ X, if there exist a δgα - O G whereas $f \in G \subseteq N$, then δgα-nbd. of an element b∈ X, That is δgα -N(f) ={ $X, \varphi, \{f, g, h\}, \{e, f, h\}$ }.

Theorem 4.3. A sub P of (X, τ) is $\delta g\alpha - C$ and $p \in \delta g\alpha - cl(P)$ iff $Y \cap P$ is not empty for any $\delta g\alpha - nbd$. Y of p in (X, τ) .

Proof: Assume p is not an element of $\delta g\alpha - cl(P)$. Then there exits $\delta g\alpha - C E$ of X whereas $P \subseteq E$ and p is not an element of E. Hence $p \in (X \setminus E)$ is $\delta g\alpha - O$ in X. But $P \cap (X \setminus E)$ is empty. This is a contradiction. Thus $p \in \delta g\alpha - cl(P)$.

Conversely assume that there is a $\delta g\alpha$ – nbd. Y of a pt. $p \in X$ where as $Y \cap P$ is empty. Then there is a $\delta g\alpha$ – O E of X whereas $p \in E \subseteq Y$. Hence $E \cap P$ is empty, $p \in (X / E)$. So $\delta g\alpha - \epsilon(X \setminus E)$ and p is not an element of $\delta g\alpha - cl(P)$. This is a contradiction to $p \in \delta g\alpha - cl(P)$. Thus, the intersection of Y and P is not empty.

Theorem 4.4. If B is $\delta g \alpha - O$ then it is $\delta g \alpha - nbd$. of each of its pts.

Proof: Consider a $\delta g\alpha$ – O of (X,τ) . Then by definition for all $b \in B$, $b \in B \subseteq M$. So M is $\delta g\alpha$ – nbd. of each of its pts.

Theorem 4.5. If $B \subseteq X$ is a $\delta g \alpha - C$, $b \in B^c$, then there is a $\delta g \alpha - \text{nbd}$. M of b whereas $M \cap B = \emptyset$.

ISSN: 1074-133X Vol 31 No. 8s (2024)

Proof: Assume that B is a $\delta g\alpha - C$, then B^c is $\delta g\alpha - O$. By definition B^c is $\delta g\alpha - nbd$. of each of its points. Let us assume that $b \in B^c$ then there is a $\delta g\alpha - O$ M whereas $b \in M \subseteq B^c$. So $M \cap B = \emptyset$.

Theorem 4.6. If x is an element in the TS (X, τ) then

- 1. $\delta g\alpha N(x)$ is non empty.
- 2. If a sub B $\in \delta g\alpha N(x)$ then $x \in B$.

Proof: (1) Since $X \in \delta g\alpha - N(x)$ and $\delta g\alpha - N(x)$ is not empty.

(2) Assume that $B \in \delta g\alpha - N(x)$, then there is a $\delta g\alpha - OM$ whereas $x \in M \subseteq B$. Hence $x \in B$.

Theorem 4.7. If a sub $B \in \delta g\alpha - N(x)$ and $B \subseteq A$, then $A \in \delta g\alpha - N(x)$.

Proof: Assume that $B \in \delta g\alpha - N(x)$, then there is a $\delta g\alpha - O$ U whereas $x \in U \subseteq B$. Given $B \subseteq A$, then $x \in U \subseteq A$. Hence $A \in \delta g\alpha - N(x)$.

Theorem 4.8. Let (X, τ) be a TS. If N is a nbd. of $t \in X$, then N is

a $\delta g\alpha$ – nbd. of X.

Proof: Assume that N is a nbd. of $t \in X$. By definition there exist an O H whereas $t \in F \subseteq N$. But we know that all O s are $\delta g \alpha - O$ whereas $t \in F \subseteq N$. Thus, N is $\delta g \alpha - nbd$. of X.

5. $\delta g\alpha$ -Derived

In this paper we establish the notion of $\delta g\alpha$ – derived in TSs.

Definition 5.1: If M is a sub of a TS (X, τ) , then a pt. $p \in X$ is called an $\delta g\alpha$ – limit point of a M $\subseteq X$ if every $\delta g\alpha$ -O S $\subseteq X$ containing p, contains a pt. of M other than p. The set of all $\delta g\alpha$ – limit pt. of M is called an $\delta g\alpha$ -derived set of M and is signified by $\delta g\alpha$ -D(M).

Theorem 5.2: The following five results are true. If M and S are two subs of a TS (X, τ) .

- (i). If $M \subseteq S$, then $\delta g \alpha d(M) \subseteq \delta g \alpha d(S)$.
- (ii) M is an $\delta g\alpha$ -C if and only if it contains each of its $\delta g\alpha$ -limit point.
- (iii). $\delta g \alpha$ -cl(M) = M $\cup \delta g \alpha$ -d(M).
- (iv). $\delta g \alpha d(M \cup S) \supseteq \delta g \alpha d(M) \cup \delta g \alpha d(S)$.
- (v). $\delta g \alpha d(M \cap S) \subseteq \delta g \alpha d(M) \cap \delta g \alpha d(S)$.

Proof: (i) By definition 5.1, we have $p \in \delta g\alpha$ -d(M) if and only if $E \cap (M-\{p\}) \neq \varphi$, for every $\delta g\alpha$ -O E containing p. But, $M \subseteq S$, then $E \cap (S-\{p\}) \neq \varphi$, for every $\delta g\alpha$ -O E containing p. Hence $p \in \delta g\alpha$ -d(S). Therefore, $\delta g\alpha$ -d(S).

(ii). Let M be an $\delta g \alpha$ -C and $p \notin M$ then $p \in (X-M)$ which is an $\delta g \alpha$ -O, hence there exist an $\delta g \alpha$ -O (X-M) whereas (X-M) \cap M = φ . So $p \notin \delta g \alpha$ -d(M), therefore, $\delta g \alpha$ -d(M) \subseteq M.

Conversely, suppose that $\delta g\alpha$ -d(M) \subseteq M and $p \notin M$. Then $p \notin \delta g\alpha$ -d(M), hence there exist

ISSN: 1074-133X Vol 31 No. 8s (2024)

an $\delta g \alpha$ -O E containing p whereas E \cap M = ϕ and hence X-M = U_{p \in M} {E, E is $\delta g \alpha$ -O}. Therefore, M is $\delta g \alpha$ - C.

(iii). Since $\delta g \alpha$ -d(M) $\subseteq \delta g \alpha$ -cl(M) and M $\subseteq \delta g \alpha$ -cl(M). $\delta g \alpha$ -d(M) \cup M $\subseteq \delta g \alpha$ -cl(M).

Conversely, suppose that $p \notin \delta g\alpha$ -d(M) \cup M. Then $p \notin \delta g\alpha$ -d(M), $p \notin$ M and hence there

exist an $\delta g \alpha$ -O E containing p whereas $E \cap M = \varphi$. Thus $p \notin \delta g \alpha$ -cl(M)). $\delta g \alpha$ -cl(M) $\subseteq \delta g \alpha$ -d(M) \cup M, therefore, $\delta g \alpha$ -cl(M) $= \delta g \alpha$ -d(M) \cup M.

- (iv). Since $M \subseteq M \cup S$ and $S \subseteq M \cup S$. We have, $\delta g \alpha d(M) \subseteq \delta g \alpha d(M \cup S)$ and $\delta g \alpha d(S) \subseteq \delta g \alpha d(M \cup S)$. Therefore, $\delta g \alpha d(M) \cup \delta g \alpha d(S) \subseteq \delta g \alpha d(M \cup S)$.
- (v). Since $M \supseteq M \cap S$ and $S \supseteq M \cap S$. We have, $\delta g \alpha d(M) \supseteq \delta g \alpha d(M \cap S)$ and $\delta g \alpha d(S) \supseteq \delta g \alpha d(M \cap S)$. Therefore, $\delta g \alpha d(M) \cap \delta g \alpha d(S) \supseteq \delta g \alpha d(M \cap S)$.

6. Conclusion

In this study, different idea of closure and interior sets namely, $\delta g\alpha$ -closure, $\delta g\alpha$ -interior was established and also discussed about $\delta g\alpha$ -nbd, $\delta g\alpha$ -derived sets and also about their properties in topological spaces.

References

- [1] Sivaraj, D., & Sasikala, V. E. (2016). A study on soft α–O sets. *IOSR Journal of Mathematics*, 12(5), 70-74.
- [2] Kavitha, V., & Sasikala, V. E. (2022). Beta generalized closed sets in topological spaces. *Journal of Algebraic Statistics*, 13(3), 891-898.
- [3] Sasikala, V. E., Sivaraj, D., & Thirumalaisamy, R. (2018). Note on soft g-closed sets. *Journal of Advanced Research in Dynamical and Control Systems*, 10(7), 2129-2134.
- [4] Sasikala, V. E., Sivaraj, D., Thirumalaisamy, R., & Venkatesan, S. J. (2018). On soft regular star generalized star closed sets in soft topological spaces. *Journal of Advanced Research in Dynamical and Control Systems*, 10(7), 2135-2142.
- [5] Crossley, S. G., & Hildebrand, S. K. (1971). Semi-closure. Texas Journal of Science, 22, 99-112.
- [6] Crossley, S. G., & Hildebrand, S. K. (1972). Semi topological properties. Fundamenta Mathematicae, 74, 233-254.
- [7] Devi, R., Kokilavani, V., & Basker, P. (2012). On strongly αδ super irresolute functions in topological spaces. *International Journal of Computer Applications*, 40(17), 38-42.
- [8] Benchalli, S., & Wali, R. S. (2007). On RW-closed sets in topological spaces. *Bulletin of the Malaysian Mathematical Sciences Society*, *30*(2), 99-110.
- [9] Benchalli, S. S., Patil, P. G., & Rayanagauda, D. (2009). wα-closed sets in topological spaces. *The Global Journal of Applied Mathematics and Mathematical Sciences*, 2(1-2), 53-63.
- [10] Kokilavani, V., & Basker, P. (2012). On Sober-MX αδ R0 spaces in M-structures. *International Journal of Scientific Research Publications*, 2(3), 1-4.
- [11] Benchalli, S. S., & Patil, P. G. (2010). Some new continuous maps in topological spaces. *Journal of Advanced Topics in Topology, 1*(2).
- [12] Kokilavani, V., & Basker, P. (2012). The αδ-kernel and αδ-closure via αδ-open sets in topological spaces. *International Journal of Mathematics Archive*, 3(3), 1-4.
- [13] Kokilavani, V., & Basker, P. (2012). D-αδ-sets and associated separation axioms in topological spaces. *Elixir Discrete Mathematics*, 46, 8207-8210.
- [14] Maki, H. (1996). On generalizing semi-open sets and pre-open sets. In *Meeting on Topological Spaces Theory and Its Application* (pp. 13-18).

ISSN: 1074-133X Vol 31 No. 8s (2024)

- Davis, A. S. (1961). Indexed system of neighborhoods for general topology. *American Mathematical Society*, 68(9), 886-893.
- [16] Bhattacharya, P., & Lahiri, B. K. (1987). Semi-generalized closed sets in topology. *Indian Journal of Mathematics*, 29(3), 375-382.
- [17] Al-Swidi, A. L., & Mohammed, B. (2012). Separation axioms via kernel in topological spaces. *Archive Des Sciences*, 65(7), 41-48.
- [18] Bhattacharya, P., & Lahiri, B. K. (1987). Semi-generalized closed sets in topology. *Indian Journal of Mathematics*, 29(3), 375-382.
- [19] Levine, N. (1970). Generalized closed sets in topology. Rendiconti del Circolo Matematico di Palermo, 19, 89-96.
- [20] Mandal, D., & Mukherjee, M. N. (2007). On a type of generalized closed sets. *Sociedade Paranaense de Matemática*, 30(1), 67-76.
- [21] Ganguly, G. A., & Chandel, R. S. (1987). Some results on general topology. *Journal of the Indian Academy of Mathematics*, 9(2), 87-91.
- [22] Ganster, M., Jafari, S., & Navalagi, G. B. (2002). On semi-g-regular and semi-g-normal spaces. *Demonstratio Mathematica*, 35(2), 415-421.
- [23] Maki, H., Devi, R., & Balachandran, K. (1994). Associated topologies of generalized α-closed sets and α-generalized closed sets. *Memoirs of the Faculty of Science, Kochi University, Series A: Mathematics, 15*, 51-63.
- [24] Malghan, S. R. (1982). Generalized closed maps. *Journal of Karnatak University, Science*, 27, 82-88.
- [25] Njastad, O. (1965). On some classes of nearly open sets. Pacific Journal of Mathematics, 15, 961-970.