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Abstract

An injury, chronic illness, obesity, infection, and more can negatively affect the hip joint. Surgery and
implant placement are the standard treatments for moderate to severe hip issues. These treatments,
however, can alter a patient’s gait patterns. Gait patterns must be assessed clinically by a qualified
physician and a specialized examination is required to detect and monitor these changes. By contrast,
Machine Learning (ML) techniques assist in diagnosing a wide variety of anomalies and illnesses. In
addition to being extremely accurate, it reduces subjectivity in clinical expert evaluations. Gait
anomalies can also be quickly identified and monitored inexpensively and quickly using ML. Three
open-source datasets (GaitRec, Gutenberg, and Orthoload) were utilized in this study for the gait cycle
conditions for healthy control, hip surgery, and hip implant patients. This study classifies individuals
into two classes: Healthy control/Gait Abnormality and three classes: Healthy control/ Hip surgery/
Hip implant by gait cycle conditions using only vertical ground reaction forces (VGRFs) from these
datasets, which consist of 3D GRFs. The essential steps in data preparation include filtering, denoising,
normalizing, resampling, and augmenting. The purpose of these efforts was to improve the model
performance in classification and reduce biases. We used several feature extraction techniques,
focusing on excluding highly correlated features. The final analysis utilized five widely recognized
feature selection algorithms (Minimum Redundancy Maximum Relevance (mRMR), Neighborhood
Component Analysis (NCA), Multi-Cluster Feature Selection (MCFS), Chi-square, and Relief) to
arrange the features systematically. Based on a comprehensive examination of five machine learning
classifiers (k-nearest neighbor (KNN)), artificial neural network (ANN), decision tree (DT), support
vector machine (SVM), and Naive Bayes (NB)), The KNN classifier exhibited the highest level of
accuracy. The two and three-class classification’s overall accuracy, precision, sensitivity, and F1 score
are 95.48%, 96.13%, 95.48%, 95.63% and 89.18%, 89.30%, 89.18, and 87.15%, respectively. With the
proposed solution, clinicians can more easily identify gait abnormalities based on vertical ground
reaction forces.

1. Introduction and related works

The pattern of limb movements a person makes while moving around is known as their gait, and it can be either
natural or learned through particular training. Collectively, these styles are referred to as human gaits. Gait

© 2025 IOP Publishing Ltd. All rights, including for text and data mining, Al training, and similar technologies, are reserved.
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pattern analysis is a clinical tool for quantifying human movement and assessing gait performance. Gait pattern
analysis can detect abnormalities in gait cycles caused by various factors, such as injuries, arthritis, congenital
disabilities, neurological conditions (like cerebral palsy or stroke), hip joint issues, psychological disorders, etc
[1]. As 0f 2022, 1,334,357 primary hip replacements were reported to the National Joint Registry (NJR), of which
30.7% were cemented, 37.1% were cement-less, 23.7% were hybrids, 2.6% were reverse, 3.1% were resurfacing,
and 2.9% were unclassified [2]. The gait patterns of patients change following surgical procedures and implants
compared to healthy individuals, necessitating their extensive observation and identification.

As aresult of notable variations, complexity, non-linear interactions, and temporal complexities, clinical gait
analysis generates extensive and complex data [3]. Due to the complexity and time-consuming nature of
interpreting gait patterns, expert medical interpretation is necessary. The role of machine learning has been
demonstrated to enhance diagnostics, therapy, medication research, surgeries, and patient monitoring,
revolutionizing various industries [4—7]. Various automated gait analysis algorithms based on Machine
Learning (ML) have emerged in recent years, assisting physicians in the recognition and classification of
clinically notable gait patterns [3, 8]. There are several machine learning approaches commonly used in this field,
including artificial neural networks (ANN), K-nearest neighbor classifiers (KNNs), Support Vector Machines
(SVMs), and various clustering techniques [3, 8—13]. Despite this, the efficacy of these methods is heavily
dependent on the representation of the input data. Gait assessment often depends on kinematic gait parameters,
including temporal-distance parameters and local maxima and minima of gait signals 3, 8,9, 11].

Researchers have used different approaches to classify patients with gait disorders. Even though some have
addressed it as a two-class problem (distinguishing healthy individuals from those with gait disorders), others
have sought to categorize gait disorder patients based on severity levels, creating three, four, and five-class
classification problems. There have also been studies that combine both approaches. According to [3, 8—17], the
researchers used ML and deep learning techniques to classify the gait cycles of healthy and gait-disordered
subjects. Specifically, they use the Support Vector Machine (SVM), the K-Nearest Neighbors (KNN), the
Random Forest (RF), the Decision Tree (DT), and the Artificial Neural Network (ANN) as classical approaches,
together with Deep Learning techniques like Convolutional Neural Networks (CNN) and Recursive Neural
Networks (RNN). In this case, the minimum and maximum accuracies are 83.3% and 100%, respectively,
because binary classification makes it much easier to solve. Furthermore, authors in [18-24] categorize a
particular gait disorder based on its severity level (low, mild, severe) or stage (such as Parkinson’s Disease (PD),
autism spectrum disorders (ASD), Huntington’s Disease (HD), and post-stroke gait disorders). Using the same
methods as previously mentioned. Those cases had minimum and maximum accuracy of 62% and 99.7%,
respectively. The studies in [25-28] attempted both types of classification, recognizing healthy and gait disorders
and stratifying the severity of the disorders. Zhang et al [27] developed an ML framework for gait classification of
elderly, stroke survivors, and Huntington’s disease patients based on inertial sensors. However, researchers in
[29-31] utilized CNNs, classical machine learning algorithms to classify pathological gait patterns. Usinga
Microsoft Kinect sensor, a solitary case study was presented about the feasibility of tracking movement patterns
before and after total hip replacement surgery, using an inexpensive and portable vision-based system [31].
Using this approach, the study aimed to determine whether it would be possible. In most existing research
studies, IMU, 3D-IMU, and EMG signals are utilized for the classification of gait abnormalities using ML and DL
methods. The existing systems lack generalizability due to a limited number of samples as well as being collected
under constrained environmental conditions. It is more common for early works to consider binary classes as
opposed to multi-class classifications. In this study, the results indicated that an automated algorithm and the
Kinect can be integrated into a patient’s residence. This will enable them to detect changes in mobility during
recovery from an injury or illness.

Based on a thorough review of previous literature, the following limitations can be identified and
summarized as follows: In the past, most of the investigations have typically relied on small datasets or with a
limited number of samples for developing gait abnormality detection using GRF signals. However, detailed
investigations on larger datasets are essential to ensuring the generalizability of classification results. In addition,
the feasibility of incorporating the results of earlier studies directly into clinical practices is highly limited. In the
case of training and testing the machine learning models, most of the previous studies used random stratification
for training and testing, which is not always well-suited or robust for practical applications.

The limitations listed above have inspired and motivated the authors to conduct a more comprehensive
investigation to fill in these gaps. In our earlier work [36], we utilized two different datasets [GaitRec and
Gutenberg] to classify the gait disorders using different types of classical machine learning algorithms. Here, we
have performed both binary and multi-class classification and achieved a mean accuracy over 95%. To the best
of our knowledge, no previous study has attempted to distinguish between gait cycle abnormalities in patients
requiring hip surgery and those receiving hip implants. As a result, this classification can be extremely useful for
monitoring patient progress and making informed decisions based on their development. Using machine
learning to facilitate these investigations is the primary contribution of this paper. The authors attempted to
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Figure 1. Overview of the methodology.

classify the gait patterns of three groups: healthy controls, patients who have had hip surgery without hip
replacement, and patients with hip replacement. The classification was achieved using machine learning
techniques and vertical ground reaction force (vGRF) signals. This study aims to present a system for assessing
the health of patients, hip surgery patients, and hip-implanted patients from gait analysis rather than x-rays.
Moreover, this will be useful for assessing the hip implant on a daily, weekly, or monthly basis in a home setting,
allowing the patient to monitor their hip implant condition from home and visit the hospital in case of an
abnormality. Thus, clinicians will be able to manage patients more effectively, and their workload will be
reduced.

2. Materials and methods

Figure 1 describes the methodology employed in this study. We used three prevalent benchmark datasets to
automate the prediction of abnormal gait patterns. Further details about these datasets are provided in the
following section (see section 2.1.1). Vertical Ground Reaction Force (GRF) signals were acquired using
embedded force plates from both right and left feet. This study used vGRF signals to extract features across time,
frequency, and time-frequency domains to distinguish between healthy control (HC) subjects, those who
underwent hip surgery without hip arthroplasty, and those with hip implants in binary and three-class
classifications. Machine learning models were employed to perform various classification tasks on a large
benchmark dataset, providing comprehensive insights into predicting joint-specific gait abnormalities and their
implications.

vGRF signals are applied to the system for feature engineering (feature extraction and selection), and then
the Dataset is divided into two subsets: training and test. The training dataset then trains several machine-
learning models. The hyperparameters were tuned to improve performance, and the best model was found with
the best combination of features, and the results were reported.

2.1.Patient’s characteristics and data overview

Based on their previous medical diagnosis, a physical therapist puts each patient’s information into a class by
hand. Figure 2 shows the sample of vGRF signals of three different classes (control, hip implant, and hip surgery)
considered in this work. In each subject, we have provided a detailed description:

+ Healthy control: A public appointment system was used to recruit healthy individuals from the clinic’s
surrounding area. Participants in the study had to be free of any discomfort or objections relating to their
lower extremities or spine. Furthermore, they were not permitted to wear orthotics or orthopaedic insoles.

+ Hip Surgery: In this category, individuals with hip injuries such as thigh and pelvis fractures, hip dislocations,
and coxarthrosis are included.

+ Hip Implantation: Patients in this group had hip implant surgery involving total hip replacement via the
direct lateral approach to treat primary hip osteoarthritis.
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Figure 2. Visualizing means and standard deviation for each class (vGRF) as participants walked at self-selected speeds.

Table 1. Details demographic information of the total database. Reproduced from [30, 33, 35]. CC BY 4.0.

Database name Category/class Subject Sample Age (years)mean Sex(m/f) Body mass kg (Mean)
GaitRec Hip surgery 450 12748 34.7 373/77 824
Healthy control 211 2638 42.6 104/107 73.9
Gutenberg Healthy control 350 8820 24.2 205/142 70.7
Hip implant 17 594 61.5 14/5 76.9
Total 1030 24800 40.7 696/331 75.9

2.1.1. GaitRec and gutenberg database

In the gait classification challenge, we used a public dataset called GaitRec [32] and Gutenberg [30], published
and maintained by an Austrian rehabilitation clinic. In this study, 450 patients out of 2085 underwent hip
surgery, and 211 subjects were assigned to healthy controls. In contrast, the Gutenberg Gait Database [30]
contains the gait data of 350 healthy controls collected over seven years. The subjects walked at a self-selected
pace for two sequential walks while two force plates recorded ground reaction forces (GRFs) and center of
pressure (COP). The data contributor on this Dataset has completed four unpublished investigations, and some
of the data contributor’s previously published data have been included in this Dataset [29, 30, 32]. A total of 350
healthy controls (205 males, 142 females, and 3 unknowns) between the ages of 11 and 64 participated in the
study.

2.1.2. Orthoload database

Invivo measurements of orthopedic implant loads obtained via instrumented implants are stored in a publicly
accessible repository. Load data are available for hip joints, shoulder joints, knee joints, vertebral body
replacements, and internal spinal fixators. This study focuses on hip joint data collected from 19 patients with
osteoarthritis and coxarthrosis using three different implants [33]. Data were collected for each patient under
various loading conditions, but only level walking at a self-selected speed and walking on a treadmill at 4 km
speed are merged here (compared with the other two datasets). Detailed information about this Dataset (Force F
and Moment M) is available on their website [34]. Figure 2 shows an overview of the combined databases. This
study considers data from these three public databases, as shown in table 1. As a result of combining both
categories of the healthy control group from GaitRec and Gutenberg, three classes were calculated, which is the
final data for this study.

2.2. Preprocessing
This Dataset included the center of pressure (COP) and three degrees of freedom analog ground reaction force
(VGREF) signals, vertical, anterior-posterior (AP), and media-lateral (ML). Still, in this work, only vertical ground
reaction force (VGRF) is considered as other datasets include only vGRF. We only considered vGRF in this study
for several reasons. In gait analysis studies, vVGRF alone provides enough information to assess gait. There is
minimal contribution from other dimensions. Furthermore, 3D GRF is only possible using force plates. Itis
challenging to use force plates outside of a laboratory setting. Due to this, it is much more prudent to use vGRF,
which can be obtained by various other GRF measurement methods, such as wearable insoles and inertial
measurement units (IMU). Therefore, this work can be deployed with other technologies [36, 37].

A sampling frequency of 2 kHz was initially used to gather the signals. However, the raw signals were
downscaled to 256 Hz for compatibility reasons aligned with the center’s internal standards. The major reasons
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for down sampling the vGRF signals to 256 Hz are: (i) most of the biomechanical signals have useful information
to understand the gait abnormalities below 100 Hz. The lower sampling frequency of 256 Hz is sufficient to
capture the minute changes in gait patterns and to reduce the effects of high frequency noises present in the
signal for efficient gait pattern classification. (ii) Down sampling the vGRF signals to 256 Hz helps to reduce the
computational complexity (time and memory) of gait pattern classification using Raspberry PI 3. (iii) The lower
sampling frequency also helps to benchmark the performance of the model against different datasets. Thus, we
worked with the available down-sampled version and further down-sampled the data to 256 Hz. In the next step,
a2nd order zero-lag Butterworth filter with a cut-off frequency of 20 Hz was applied. As shown in figure 3, the
signals were firstamplitude-normalized to 100% of body weight, then time-normalized to 101 samples, which
correspond to the entirety of the stance phase. Different individuals have different body weights, which
influences their vGRF signals. The vGRF force values would be affected by each subject’s weight without
normalization, making it difficult to distinguish biomechanical differences from simple weight differences.
Biomechanical models and simulations assume forces relative to body weight. Indeed, researchers and clinicians
can use normalization to reduce variance due to body weight differences. Hence, comparing these models
directly is easier with normalization. By normalizing body weight, comparisons are fair regardless of mass. To
avoid the influence of walking speed on the study result, the gait data was collected at a walking speed of 4 kph.
Although many recommendations exist for an adequate cut-off frequency, 20 Hz appears to be a good
compromise between minimizing noise and maximizing physiological frequency content.

2.3. Feature extraction
We extracted features from vGRF signals across several different domains, including time-domain (TD) [38],
frequency domain (FD) [39, 40], and time-frequency domain (TFD) [41]. TD features are derived from the
signal in the time domain by computing peak-to-peak values and other statistical features (such as kurtosis,
skewness, interquartile range, etc) with pure TD characteristics (such as peak-to-peak values). TD features also
include features obtained from the envelope of the signal such as the ratio between the maximum and minimum
of the envelope, the time at which the envelope peaked, and its amplitude, etc shown in detail in Supplementary
table 1. A time-domain feature accurately reflect inherent features of a time-domain signal. Indeed, the
abnormal peak-to-peak values can indicate altered load-bearing patterns, often observed in individuals with
joint impairments or post-surgical adaptations. The statistical features describe the distribution characteristics
of the vGRF signal. For instance, increased kurtosis may suggest abrupt force applications, while skewness can
reveal asymmetries in gait, potentially indicating compensatory mechanisms due to pain or weakness. There are
50 TD features that were considered in this work for gait abnormality detection (Supplementary table 1).
Features that described the shape and size of the signal in the frequency domain representation were
incorporated into FD features, including simple features such as the frequency with maximum power
(dominant frequency) and more complex features such as the spectral roll-off point and spectral deformation.
In specific, dominant frequency features identify the primary frequency component of the vGRF signal.
Deviations from typical dominant frequencies can reflect changes in gait cadence or the presence of pathological
conditions affecting rhythmic movement patterns. The spectral roll-off point represents the frequency below
which a certain percentage of the total spectral energy is contained. Shifts in this point can indicate alterations in
gait dynamics, such as changes in step regularity or stability. Finally, the spectral deformation assesses deviations
from expected spectral patterns, which can be associated with irregular force applications or neuromuscular
control issues during gait. There are 24 FD features that were considered in this work for gait abnormality
detection and are listed in Supplementary table 2. Based on discrete wavelet transforms (DWTs) [41, 42], TFD
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Figure 4. The feature selection process uses 5 algorithms: FSCNA, Relief, nRMR, Chi-square statistics, and MCFS ranking.

features include band power, mean absolute value, waveform length, root mean square value, standard
deviation, and fractal length of extracted wavelets (see Supplementary table 3). These features, derived from
discrete wavelet transforms, capture transient changes in the vGRF signal. They are sensitive to abrupt force
variations and can detect subtle gait abnormalities, such as those arising from early-stage musculoskeletal
disorders. By analyzing these features, our study aims to provide a comprehensive assessment of gait, facilitating
the detection of post-operative gait abnormalities and contributing to improved patient outcomes. A total of 191
features were extracted, including 50 TD features (Supplementary table 1), 24 FD features (Supplementary table
2),and 117 TFD features (Supplementary table 3). MATLAB code was developed in-house, and these features
were used to train and test classical machine learning algorithms.

Before doing the feature ranking, strongly correlated features were removed to avoid influencing the
algorithm incorrectly. The correlation matrix between features is computed using pairwise linear correlation.
Whenever a feature has a correlation coefficient (CC) of 0.9 or more, it is deemed heavily correlated, and one of
those features is removed from the feature vector [53, 54]. Following the removal of highly correlated features in
each experimental scheme, Supplementary figure S1 shows the number of features that remained.

2.4. Feature wselection

Even after removing highly correlated features, many features may still confound the model. Feature selection
provides even more dimensionality reduction [43, 44]. A five-fold cross-validation technique was used in this
present work to split the total number of features in five independent sets. Later, feature selection was applied to
the training data on each fold, and the overall feature importance score was computed across all five folds. The
features were then ranked based on their importance scores. This study employs a feature selection technique
based on machine learning model, where one feature is added at a time, and its performance is evaluated. The
feature matrix is reordered according to the significance of the features to ensure that the most eminent and
useful features are utilized. We used MATLAB’s selection of filter-type feature algorithms, including Minimum
Redundancy Maximum Relevance (nRMR), Forward Selection Neighborhood Component Analysis (FSNCA),
Multi-Cluster Feature Selection (MCFS), Chi-square, and Relief. The supplementary materials concisely explain
their application. Figure 4 shows five different algorithms are used to select features: FSCNA, Relief, mRMR,
Chi-square statistics, and MCFS ranking.

2.5.Machine learning
Out-of-fold data (4960) is used for testing (20% of the whole data), while the remaining data is divided into 80%
and 20% as training (15872) and validation (3968) sets, respectively (table 2).

Based on GaitRec segments, Gutenberg, and sections of Orthoload databases, two classification approaches
two-class classification (Healthy Control versus Gait Abnormality) and three-class classification (Healthy
Control versus Hip Surgery versus Hip Implant). Two different experiments (classification without
hyperparameter tuning and with hyperparameter tuning) were conducted in the three-class classification study.
An experimental design employs subject-wise stratification for both two-class and three-class classifications.
Following the processes of feature extraction and, where applicable, feature selection, various machine learning
models were trained to regulate the highest-performing model among them, including Discriminant Analysis
Classifier (DAC), Decision Trees (DT), Kernel Classification Models (KCM), K-Nearest Neighbor Models
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Table 2. Description of the training, validation and
testing samples used for each fold.

Training Validation Testing Total

15872 3968 4960 24800

(KNN), Naive Bayes (NB), Support Vector Machines (SVM), and Artificial Neural Networks (ANNs). However,
the five most promising classifiers (KNN, SVM, NB, DT, and ANN) were selected for this work based on their
superior performance in classification and reported in the work [49].

A five-fold cross-validation technique was used to assess machine learning model performances. The
optimal features from GaitRec, Guttenberg and orthoload datasets were divided into five folds, ensuring each
subject’s data appeared only once. The process was iterated five times, with four folds for training and one for
testing. Over these five runs, the final performance results are presented as the average Accuracy, Sensitivity,
Precision, and F1 score.

2.6. Hyperparameter tuning

Machine learning algorithms are tuned by optimizing their parameters to maximize their performance, a
process known as hyperparameter tuning. Choosing optimal hyperparameters is essential to enhance model
performance. There are several automated hyperparameter optimization techniques, but these are often
problem-specific and differ from one problem to another. Typically, hyperparameter tuning involves changing
the parameter’s value and testing the model’s performance to find the best value. To tune the hyperparameters of
amachine learning algorithm, significant trial and error is required since each algorithm has several
hyperparameters to adjust. In this study, this process is automated using Bayesian methods [48]. Taking a range
of values for each hyperparameter, testtrains, and test each parameter iteratively. A selection of the optimal
combination is made after examining all conceivable combinations. As part of the tuning procedure, the study
examined the hyperparameters for each of the top four machine learning algorithms. Below are the parameters
and values examined for these parameters.

+ Naive Bayes (NB): NB implementation includes an additive smoothing parameter ‘alpha’ which varies
between 0 and 1. The parameters examined were 0, 0.25, 0.5, 0.75, and 1.0.

+ SVM: The regularization parameter ‘C’ and the kernel function were tuned for SVM. The values for ‘C’ were
1.0, 3.0, 5.0, and 10.0. The radial-basis function and the polynomial kernel were assessed for the kernel.

+ KNN: In the KNN algorithm, the crucial adjustable parameter is the number of neighbors, denoted as ‘k’. We
experimented with several values for this parameter, including 1, 3, 5, 7, 15, 30, and 77, to determine the
optimal choice for the algorithm.

+ DT: The ‘max depth’ parameter of the DT classifier represents the maximum tree depth. This parameter was
tested with values of 2, 3, 5, 10, 20, and 40.

2.7. Data augmentation

A model might introduce bias if trained on an unbalanced dataset due to the differences in signal quantities
across classes. The use of data augmentation techniques on the training set is therefore crucial to achieving a
uniform signal distribution across various classes, thus enhancing the credibility of model construction. The
Synthetic Minority Over-Sampling Technique (SMOTE) was employed to balance the Dataset due to the varying
sample sizes among classes [45]. Using this technique, minority class samples can be generated synthetically,
mitigating imbalance issues and fostering an equal representation of classes, enhancing the model’s accuracy.

2.8. Evaluation criteria
The performance of a classifier as a model is evaluated by five metrics. The terms true positives (TP), true
negatives (TN), false negatives (FN), and false positives (FP) are all used to measure diagnostic accuracy. These
five metrics are outlined below:

Accuracy is defined as

Accuracy = TP + TN (D)
T TP { IN 1 FP 1+ EN




10P Publishing

Eng. Res. Express 7 (2025) 035203 MM Soliman et al

Feature Importance Estimates using relieff

BandF‘owerDBx
BandPowerCDSx
MaxFrequencyY
MaxMinRatio
BandPowerCD7
MeanAbsValD4
BandPowerCD6.
WaveformLengthRatio
FinalByMin
AutoRegressive 1

Features

AutoRegressive2
AutoRegressive2,
AutoRegressive1
DescriptorSELowerBound

Z
z
pd
X
Z
Z
¥
Z
>
Z
Z

0 0.01 0.02 0.03 0.04 0.05 0.06
Relative Importance

Figure 5. Top-ranked 14 features in classifying two-class classifications (Healthy Control versus Gait Abnormality).

Precision is defined by
Precision = _r 2)
TP + FP
Recall is defined by
Recall = _P 3)
TP + FN
F1-score is calculated as follows:
Precision x Recall 2 x TP

F1 — score =2 X

= 4
Precision + Recall 2 x TP + FN + FP “

Based on literature references, our primary measures were accuracy, sensitivity, specificity, and AUC [47].
Using the increasing feature search technique, we evaluated the model’s classification performance across all
experimental groups, progressively exploring combinations of top-ranked features to determine the optimal
performance. To assess overall performance in multiclass scenarios, we analyzed individual Receiver Operating
Characteristic (ROC) plots for each class and the macro average derived from the collective class ROC plots.

3. Numerical results and discussion

There are 1,030 subjects in this experiment, with 24,800 samples collected. A total of 1,030 participants
participated in all the experiments, with equal numbers from each group being placed in the test and training
sets. A variety of machine learning algorithms were tested, and the top five, which report higher performance,
are presented here.

3.1. Two class classification

We reported two-class classification for Healthy Control versus Gait Abnormality with only the best performing
feature selection algorithm (figure 5). Observing the feature importance plots (see figure 5) for two-class
classification task, it can be seen that descriptor of signal entropy lower bound is the dominant feature in
determining the Gait pattern of a subject. Along with it the autoregressive features also play an important role.
Analyzing the important features in the aspect of channels, it can be observed that Z-axis GRF features
contributed the most to the classification of the Gait pattern. This highlights how vital vertical GRF is for gait
classification. However, as seen in figure 5, vertical GRF with the other two GRFs makes the model even more
accurate. Figure 5 shows the top 14 features from the best feature ranking technique for the binary classification
schemes. In figure 6, the ROC curves are plotted. The top 1 to the top 60 features are plotted for the binary
classification task. This allows us to see the impact of different features on the model. Table 3 shows that for the
two-class classification problem, KNN model is showing slightly better performance with Relief-based feature
selection algorithm with an accuracy of 95.48%.
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Figure 6. Two-class classification AUROC plot for healthy control versus gait abnormality.
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Table 3. Healthy control versus gait abnormality classification performance.

Experimental Feature ranking # of

schemes technique features Accuracy(%)  Precision (%)  Sensitivity (%)  F1_Score(%) AUC
Relief Top 57 95.48 96.13 95.48 95.63 0.99

HC/GD mRMR Top 58 93.24 94.56 93.24 93.54 0.99
FSNCA Top 48 93.73 94.89 93.73 93.99 0.99

3.2. Three class classification

We present the three-class classification for Healthy control versus Hip surgery versus Hip implant results based
on subject-wise stratification. In subject stratification scenarios, the KNN classifier outperformed the other
classifiers. Based on the results of a classification task, table 4 shows the results of five different classifiers. We
have used KNNs, Naive Bayes, SVMs, DTs, and ANNs as classifiers. Classification features are the top 31, 30, 16,
44, and 42 features for KNN, Naive Bayes, SVM, DT, and ANN, respectively. We evaluated classifiers based on
accuracy, precision, sensitivity, F1_Score, AUC, inference time, and model size. The SVM classifier had the
highest average accuracy of 88.36%), followed by the KNN classifier at 87.08%, the DT classifier at 86.97%, the
Naive Bayes classifier at 85.95%, and the ANN classifier at 84.83%. Among the five classifiers based on precision,
the SVM scored the highest at 88.49%, followed by the KNN at 87.09%, the DT at 86.98%, the Naive Bayes
classifier at 85.98%, and the ANN at 84.71%.
Based on sensitivity, the SVM classifier achieved 88.33%, followed by the KNN classifier at 87.08%, the DT
classifier at 86.97%, the Naive Bayes classifier at 85.94%, and the ANN classifier at 84.87%. The SVM classifier
achieved the highest F1_Score of 88.30%, followed by the KNN classifier at 87.08%, the DT classifier at 86.97%,
the Naive Bayes classifier at 85.94%, and the ANN classifier at 84.87%. The SVM classifier was rated highest in
terms of AUC with 0.950, followed by the KNN classifier at 0.950, the DT classifier at 0.950, the Naive Bayes
classifier at 0.900, and the ANN classifier at 0.930. In terms of inference time, the Naive Bayes classifier had the
fastest inference time of 4.36 ps, preceded by the SVM classifier with 0.91 ps, the DT classifier with 2.44 ps, the
KNN classifier with 195.00 ps, and the ANN classifier with 340.80 pis. The ANN classifier had the largest model
size 0f 9.49 MB, followed by the KNN classifier with 6.71 MB, the DT classifier with 6.64 MB, the Naive Bayes
classifier with 6.55 MB, and the SVM classifier with 6.63 MB. Based on this task, the SVM classifier consistently
outperformed the KNN classifier, the DT classifier, the Naive Bayes classifier, and the ANN classifier. An SVM
classifier achieved the highest accuracy, precision, sensitivity, and F1_Score. With the Naive Bayes classifier, the
inference time was the fastest, and the ANN classifier had the largest model size.
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Table 4. Results of classification without hyperparameter tuning.

Classifier Best FSA Features num Accuracy (%) Precision(%) Sensitivity(%) F1_score(%) AUC Stratification Inference time (js) Model size (MB)
KNN Relief Top 31features 87.08 87.09 87.08 87.08 0.95 Subject 195.00 6.71
Naive Bayes Relief Top 30features 85.94 85.98 85.94 85.94 0.90 Subject 4.36 6.55
SVM Relief Top 16features 88.33 88.49 88.33 88.30 0.95 Subject 0.91 6.63
DT Relief Top 44 features 86.97 86.98 86.97 86.97 0.95 Subject 2.44 6.64
ANN Relief Top 42 features 84.87 84.71 84.87 84.87 0.93 Subject 340.80 9.49
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Table 5. Results of classification with hyperparameter tuning.

Classifier Best FSA Features num Accuracy (%) Precision(%) Sensitivity(%) F1_Score(%) AUC Stratification Inference time (jus) Model size (MB)
KNN MCEFS Top 34 features 89.18 89.30 89.18 87.15 0.96 Subject 198.20 6.74
Naive Bayes Relief Top 30features 85.98 85.91 85.94 85.97 0.90 Subject 4.36 6.55
SVM Relief Top 16features 88.36 88.51 88.35 88.36 0.95 Subject 0.91 6.63
DT Relief Top 44 features 87.07 87.08 87.07 87.07 0.95 Subject 2.44 6.64
ANN Relief Top 42 features 84.88 84.73 84.88 84.89 0.93 Subject 340.80 9.49
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Figure 7. Top 34 features from the best feature ranking techniques for subject-wise stratification (Healthy control versus Hip surgery
versus Hip implant) classification schemes.

The hyperparameter settings used in table 4 are default configurations and that no novel tuning
methodology is applied. We also clarify that these results serve as a preliminary benchmark and are
supplemented by further performance evaluation in subsequent sections where optimal hyperparameter
configurations are applied as reported in section 2.6 and the improved results are reported in table 5.

We optimized the model hyperparameters, which improved the results slightly. For subject-wise
stratification, the ‘number of neighbors’ parameter was set to 30 in KNN. In NB classifier, the optimal value of
alpha that gives the highest mean classification rate is 0.25. In SVM, the radial-basis function (RBF) kernel with
regularization parameter of 1.0 gives the highest mean classification rate in gait pattern classification. Finally, the
maximum number of trees of 40 gives the highest accuracy in the decision tree classifier. In general, the classifiers
achieved higher accuracy, precision, sensitivity, and F1_Score (table 5) using hyperparameter tuning. Table 4
shows the classifiers’ performance without hyperparameter tuning. In addition, both tables had similar
inference times and model sizes.

As for the feature selection algorithms used in these classifiers, for KNN we used MCEFS, for Naive Bayes we
used Relief, for SVM we used DT, and for ANN we used Relief. Accordingly, the top 34, 30, 16, 44, and 42
features are used for KNN, Naive Bayes, SVM, DT, and ANN, respectively. We evaluated the classifiers based on
accuracy, precision, sensitivity, F1_Score, AUC, inference time, and model size. On average, the KNN classifier
scored 89.18%, followed by the SVM classifier at 88.36%), the DT classifier at 87.07%, the Naive Bayes classifier at
85.97%, and the ANN classifier at 84.88%.

Figure 7 shows the top 34 features obtained through the best feature ranking techniques for subject-wise
stratification of Healthy control versus Hip Surgery versus Hip Implant. According to the feature important
plots, time domain features play a critical role in categorizing a subject’s gait pattern. Each class’s ROC plot was
generated individually, and the macro average of these ROC plots was calculated. Each of these ROC plots is
presented separately in figure 8. The importance of establishing a reliable clinical standard measure for
diagnosing gait patterns cannot be overstated. A comprehensive review [46] of over 943 different classical
techniques for analyzing gait patterns indicates that supervised Machine Learning algorithms have
demonstrated accuracies exceeding 90% in gait analysis.

According to this study, the ML model developed in this study demonstrated high accuracy for random
stratification cases and approached the standard range for subject-wise stratification. The achievement
represents an encouraging first step toward automating the classification of gait abnormalities and establishes a
baseline for future research. An extensive benchmark dataset comprising 1,030 subjects with 24,800 gait cycles
was used for this study. Due to this, the developed model is expected to be able to generalize more efficiently. By
extracting a substantial number (191) of features from time, frequency, and time-frequency domains from single
channels, the model captures the variability within gait cycles, leading to better feature representations and
enhanced learning. Itis the first study to identify and distinguish gait cycle abnormalities among patients
undergoing hip surgery or receiving hip implants. Further, it serves as a foundation for future research into
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Figure 8. ROC plot for randon stratification (top) and subject-wise stratification (bottom).
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categorizing Gait Cycle Disorder (GCD). As a result of experiments conducted across three datasets with various
classification combinations, this study outperformed previous work in this area. This research focuses on
classifying gait abnormalities post-hip surgery using vertical ground reaction forces (vGRFs), understanding
joint interaction dynamics is crucial. Integrating models like the Hénon map could enhance our feature
extraction process by accounting for joint synergies, potentially improving classification accuracy [50].
Furthermore, the methodology of analyzing muscle synergies to assess recovery aligns with our objective of
monitoring post-operative gait [51]. Incorporating muscle synergy patterns as features in our machine learning
models could provide a deeper understanding of neuromuscular coordination post-surgery [50, 51].
Monitoring muscle fatigue is vital in post-operative rehabilitation [52]. Applying similar synergy pattern analysis
to lower limb muscles could enhance our ability to detect early signs of fatigue-related gait abnormalities.

In our future work, we aim to develop highly accurate deep neural networks for diagnosing diverse gait
disorders, resulting in significant performance improvements using Convolutional Neural Network (CNN),
Long Short Term Memory (LSTM), and Recurrent Neural Network (RNN). Additionally, adding a Generative
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Authors

Goal

Participants

Best classifiers & performance

Zengetal[18]

Gait pattern classification in Parkin-

93 Parkinson’s Disease

RBF Neural Network (2 class)Acc-

son’s disease patients and healthy patients and 73 healthy uracy: 98.8%
controls subjects
Khandoker et al [25] Automatic detection of gait patterns 13 healthyadultsand 10 sub- ~ SVMAccuracy: 100%
associated with balance deficiencies jects with a history of falls
Zhangetal [27] Gait pattern recognition during lower 17 healthy subjects SVM (2 class)Accuracy: 96%
extremity muscle fatigue and no-
fatigue
Slijepcevicetal [26] Automated human gait analysis 182 healthy subjectsand 728 ~ SVM (5 class)Accuracy: 62%
different GD (4 types)
patients
Alagtash et al [9] Automatic classification of pathological 12 healthy volunteers, 4 CP KNNAccuracy: 95%
gait patterns from healthy walking patients, and 4 ME
patients
Wuetal[13] Gait pattern categorization using kernel 24 youngand 24 elderly SVM (2 class)Accuracy: 91%
PCA feature extraction
Wuetal[17] classify gait patterns based on kin- 30 youngand 30 elderly SVM (2 class)Accuracy: 90%
etic data participants
Pogorelcetal [23] A system to early detect abnormal gait 5 healthy and 9 pathological KNN (5 class)Accuracy: 99%
patterns elderly subjects
Kaczmarczyk et al [21] Post-stroke patients’ gait patterns 74 stroke survivors ANN (3 class)Accuracy: 100%
classification
Begg and Kamruzza- Gait pattern classification in young and 12 youngand 12 old SVM (2 class)Accuracy: 100%
man [19] older individuals participants
Chanetal[20] Classification of younger and older 13 healthy younger and 12 MLP (2 class)Accuracy: 96.8%
people’s gait patterns healthy elderly
participants
Khalil et al [53] Enhanced Binary Classification of Gait 2435 subjects Accuracy 0f 96.63% in binary
Disorders Using a Machine Learning classification
Majority Voting Approach
Slijepcevic et al [54] Decoding Gait Signatures: Exploring 2,092 individuals, including Classification accuracy of up to
Individual Patterns in Pathological 1,283 cases with patholo- 99.3% (achieved with bilateral
Gait using Explainable Al gical gait GRF3D data
Proposed Work Automated Classification of Post- 561 healthy, 450 hip sur- KNN (2-class)Accuracy: 95.48%
Operative Gait Abnormalities fol- gery, and 17 hip implants for subject-wise stratification
lowing Hip Surgery using Machine (total 1030) subjects

Learning

KNN (3 class)Accuracy: 94.68%
for Random stratification and
89.18% for subject-wise
stratification

Adversarial Network (GAN) model to the training data could improve the model’s performance. This method
integrates synthetic and authentic data during training to equalize class distributions. Using such a framework
can be immensely valuable for rehabilitation centers, allowing clinicians to meticulously monitor a patient’s
progress until complete recovery is achieved. Table 6 shows the comparison of performance of the proposed
method with the state-of-the-art models used for gait abnormalities detection. Among the different works, this
present work has utilized higher number of subjects (1030 subjects) and considered a maximum of three classes
(healthy control, hip implant, and hip surgery). Based on the randon stratification method, the proposed
method achieved a maximum mean classification rate of 94.68% and 89.18% on subject-wise stratification for
three-class classifiation and 95.48% for a two-class classification.

To enhance the relevance and fairness of our comparative analysis, we have updated table 6 to include recent
studies that utilized the same datasets. It is noteworthy that Khalil et al (2024) proposed a machine learning-
based majority voting approach using the merged GaitRec and Gutenberg datasets, reporting strong binary
classification results for gait disorder detection [53]. Additionally, Slijepcevic et al (2024) [54] explored
explainable Al methods for class-specific gait analysis using GaitRec, demonstrating the utility of interpretable
models in clinical gait evaluations. As a result of these comparisons, our multi-class classification approach
reinforces its significance and validates its robustness against recent benchmarks based on similar data sets. The
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Figure 9. Real time implementation workflow.

results from these studies are not completely comparable with ours since none of them mentioned subject-wise
studies.

4. Real-time implementation

A summary of the real-time implementation methodology can be found in figure 9. A vertical GRF signal was
collected from a force plate for this study. Raspberry Pi3Bs are used to control the circuitry, and ON/OFF
switches are used to switch the device on and off manually. In terms of power consumption, the Raspberry Pi
consumes about 3.45 Watts. Using Raspberry Pi, we have extracted features from the vGRF signal. The trained
KNN classifier predicts predictably healthy controls (HC), Hip Surgery, and Hip Implanted using the extracted
features. There is approximately 0.47-second inference time for each signal.

5. Conclusion

This study used three publicly available GRF resources: Gaitrec, Gutenberg, and specific segments from
Orthoload. We homogenized the Gutenberg Gait Database with the GaitRec dataset to ensure their
indistinguishability. This present work only utilizes 1D-GRF signals for gait abnormality classification. To
accurately classify the gait patterns, different preprocessing steps such as filtering, denoising, normalizing,
resampling, and augmenting data to reduce bias and make the training accurate. The features were extracted
using different feature extraction techniques, the highly uncorrelated features were removed, and then the
features were ranked according to five feature selection algorithms. Additionally, we tested several ML models,
and the KNN model showed the best accuracy. Two-class subject-wise classification accuracy is 95.48% while
subject-wise and random stratification of the three-class classification yield 89.18% and 94.68% accuracy,
respectively. Finally, the KNN 3-class classification model is implemented in Raspberry PI 3B for real-time gait
pattern classification, and it requires 0.47 sec inference time for each signal. It is the first study to recognize and
differentiate between gait cycle abnormalities in patients undergoing hip surgery and those with implanted hips.
We used classical machine learning algorithms to classify vertical ground reaction force (vGRF) signals.
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