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Abstract
An injury, chronic illness, obesity, infection, andmore can negatively affect the hip joint. Surgery and
implant placement are the standard treatments formoderate to severe hip issues. These treatments,
however, can alter a patient’s gait patterns. Gait patternsmust be assessed clinically by a qualified
physician and a specialized examination is required to detect andmonitor these changes. By contrast,
Machine Learning (ML) techniques assist in diagnosing awide variety of anomalies and illnesses. In
addition to being extremely accurate, it reduces subjectivity in clinical expert evaluations. Gait
anomalies can also be quickly identified andmonitored inexpensively and quickly usingML. Three
open-source datasets (GaitRec, Gutenberg, andOrthoload)were utilized in this study for the gait cycle
conditions for healthy control, hip surgery, and hip implant patients. This study classifies individuals
into two classes:Healthy control/Gait Abnormality and three classes:Healthy control/Hip surgery/
Hip implant by gait cycle conditions using only vertical ground reaction forces (vGRFs) from these
datasets, which consist of 3DGRFs. The essential steps in data preparation include filtering, denoising,
normalizing, resampling, and augmenting. The purpose of these efforts was to improve themodel
performance in classification and reduce biases.We used several feature extraction techniques,
focusing on excluding highly correlated features. Thefinal analysis utilized fivewidely recognized
feature selection algorithms (MinimumRedundancyMaximumRelevance (mRMR), Neighborhood
Component Analysis (NCA),Multi-Cluster Feature Selection (MCFS), Chi-square, andRelief) to
arrange the features systematically. Based on a comprehensive examination offivemachine learning
classifiers (k-nearest neighbor (KNN), artificial neural network (ANN), decision tree (DT), support
vectormachine (SVM), andNaïve Bayes (NB)), TheKNNclassifier exhibited the highest level of
accuracy. The two and three-class classification’s overall accuracy, precision, sensitivity, and F1 score
are 95.48%, 96.13%, 95.48%, 95.63% and 89.18%, 89.30%, 89.18, and 87.15%, respectively.With the
proposed solution, clinicians canmore easily identify gait abnormalities based on vertical ground
reaction forces.

1. Introduction and relatedworks

The pattern of limbmovements a personmakeswhilemoving around is known as their gait, and it can be either
natural or learned through particular training. Collectively, these styles are referred to as human gaits. Gait
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pattern analysis is a clinical tool for quantifying humanmovement and assessing gait performance. Gait pattern
analysis can detect abnormalities in gait cycles caused by various factors, such as injuries, arthritis, congenital
disabilities, neurological conditions (like cerebral palsy or stroke), hip joint issues, psychological disorders, etc
[1]. As of 2022, 1,334,357 primary hip replacements were reported to theNational Joint Registry (NJR), of which
30.7%were cemented, 37.1%were cement-less, 23.7%were hybrids, 2.6%were reverse, 3.1%were resurfacing,
and 2.9%were unclassified [2]. The gait patterns of patients change following surgical procedures and implants
compared to healthy individuals, necessitating their extensive observation and identification.

As a result of notable variations, complexity, non-linear interactions, and temporal complexities, clinical gait
analysis generates extensive and complex data [3]. Due to the complexity and time-consuming nature of
interpreting gait patterns, expertmedical interpretation is necessary. The role ofmachine learning has been
demonstrated to enhance diagnostics, therapy,medication research, surgeries, and patientmonitoring,
revolutionizing various industries [4–7]. Various automated gait analysis algorithms based onMachine
Learning (ML) have emerged in recent years, assisting physicians in the recognition and classification of
clinically notable gait patterns [3, 8]. There are severalmachine learning approaches commonly used in thisfield,
including artificial neural networks (ANN), K-nearest neighbor classifiers (KNNs), Support VectorMachines
(SVMs), and various clustering techniques [3, 8–13]. Despite this, the efficacy of thesemethods is heavily
dependent on the representation of the input data. Gait assessment often depends on kinematic gait parameters,
including temporal-distance parameters and localmaxima andminima of gait signals [3, 8, 9, 11].

Researchers have used different approaches to classify patients with gait disorders. Even though some have
addressed it as a two-class problem (distinguishing healthy individuals from thosewith gait disorders), others
have sought to categorize gait disorder patients based on severity levels, creating three, four, and five-class
classification problems. There have also been studies that combine both approaches. According to [3, 8–17], the
researchers usedML and deep learning techniques to classify the gait cycles of healthy and gait-disordered
subjects. Specifically, they use the Support VectorMachine (SVM), the K-Nearest Neighbors (KNN), the
RandomForest (RF), theDecision Tree (DT), and theArtificial Neural Network (ANN) as classical approaches,
togetherwithDeep Learning techniques like Convolutional Neural Networks (CNN) andRecursiveNeural
Networks (RNN). In this case, theminimumandmaximumaccuracies are 83.3% and 100%, respectively,
because binary classificationmakes itmuch easier to solve. Furthermore, authors in [18–24] categorize a
particular gait disorder based on its severity level (low,mild, severe) or stage (such as Parkinson’sDisease (PD),
autism spectrumdisorders (ASD), Huntington’sDisease (HD), and post-stroke gait disorders). Using the same
methods as previouslymentioned. Those cases hadminimumandmaximumaccuracy of 62% and 99.7%,
respectively. The studies in [25–28] attempted both types of classification, recognizing healthy and gait disorders
and stratifying the severity of the disorders. Zhang et al [27] developed anML framework for gait classification of
elderly, stroke survivors, andHuntington’s disease patients based on inertial sensors. However, researchers in
[29–31] utilizedCNNs, classicalmachine learning algorithms to classify pathological gait patterns. Using a
Microsoft Kinect sensor, a solitary case studywas presented about the feasibility of trackingmovement patterns
before and after total hip replacement surgery, using an inexpensive and portable vision-based system [31].
Using this approach, the study aimed to determinewhether it would be possible. Inmost existing research
studies, IMU, 3D-IMU, and EMG signals are utilized for the classification of gait abnormalities usingML andDL
methods. The existing systems lack generalizability due to a limited number of samples as well as being collected
under constrained environmental conditions. It ismore common for early works to consider binary classes as
opposed tomulti-class classifications. In this study, the results indicated that an automated algorithm and the
Kinect can be integrated into a patient’s residence. This will enable them to detect changes inmobility during
recovery from an injury or illness.

Based on a thorough review of previous literature, the following limitations can be identified and
summarized as follows: In the past,most of the investigations have typically relied on small datasets or with a
limited number of samples for developing gait abnormality detection usingGRF signals. However, detailed
investigations on larger datasets are essential to ensuring the generalizability of classification results. In addition,
the feasibility of incorporating the results of earlier studies directly into clinical practices is highly limited. In the
case of training and testing themachine learningmodels,most of the previous studies used random stratification
for training and testing, which is not alwayswell-suited or robust for practical applications.

The limitations listed above have inspired andmotivated the authors to conduct amore comprehensive
investigation tofill in these gaps. In our earlier work [36], we utilized two different datasets [GaitRec and
Gutenberg] to classify the gait disorders using different types of classicalmachine learning algorithms.Here, we
have performed both binary andmulti-class classification and achieved amean accuracy over 95%. To the best
of our knowledge, no previous study has attempted to distinguish between gait cycle abnormalities in patients
requiring hip surgery and those receiving hip implants. As a result, this classification can be extremely useful for
monitoring patient progress andmaking informed decisions based on their development. Usingmachine
learning to facilitate these investigations is the primary contribution of this paper. The authors attempted to
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classify the gait patterns of three groups: healthy controls, patients who have had hip surgery without hip
replacement, and patients with hip replacement. The classificationwas achieved usingmachine learning
techniques and vertical ground reaction force (vGRF) signals. This study aims to present a system for assessing
the health of patients, hip surgery patients, and hip-implanted patients fromgait analysis rather than x-rays.
Moreover, this will be useful for assessing the hip implant on a daily, weekly, ormonthly basis in a home setting,
allowing the patient tomonitor their hip implant condition fromhome and visit the hospital in case of an
abnormality. Thus, clinicians will be able tomanage patientsmore effectively, and their workloadwill be
reduced.

2.Materials andmethods

Figure 1 describes themethodology employed in this study.We used three prevalent benchmark datasets to
automate the prediction of abnormal gait patterns. Further details about these datasets are provided in the
following section (see section 2.1.1). Vertical GroundReaction Force (GRF) signals were acquired using
embedded force plates fromboth right and left feet. This study used vGRF signals to extract features across time,
frequency, and time-frequency domains to distinguish between healthy control (HC) subjects, thosewho
underwent hip surgery without hip arthroplasty, and thosewith hip implants in binary and three-class
classifications.Machine learningmodels were employed to perform various classification tasks on a large
benchmark dataset, providing comprehensive insights into predicting joint-specific gait abnormalities and their
implications.

vGRF signals are applied to the system for feature engineering (feature extraction and selection), and then
theDataset is divided into two subsets: training and test. The training dataset then trains severalmachine-
learningmodels. The hyperparameters were tuned to improve performance, and the bestmodel was foundwith
the best combination of features, and the results were reported.

2.1. Patient’s characteristics anddata overview
Based on their previousmedical diagnosis, a physical therapist puts each patient’s information into a class by
hand. Figure 2 shows the sample of vGRF signals of three different classes (control, hip implant, and hip surgery)
considered in this work. In each subject, we have provided a detailed description:

• Healthy control:Apublic appointment systemwas used to recruit healthy individuals from the clinic’s
surrounding area. Participants in the study had to be free of any discomfort or objections relating to their
lower extremities or spine. Furthermore, theywere not permitted towear orthotics or orthopaedic insoles.

• Hip Surgery: In this category, individuals with hip injuries such as thigh and pelvis fractures, hip dislocations,
and coxarthrosis are included.

• Hip Implantation:Patients in this group had hip implant surgery involving total hip replacement via the
direct lateral approach to treat primary hip osteoarthritis.

Figure 1.Overview of themethodology.
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2.1.1. GaitRec and gutenberg database
In the gait classification challenge, we used a public dataset calledGaitRec [32] andGutenberg [30], published
andmaintained by anAustrian rehabilitation clinic. In this study, 450 patients out of 2085 underwent hip
surgery, and 211 subjects were assigned to healthy controls. In contrast, theGutenbergGait Database [30]
contains the gait data of 350 healthy controls collected over seven years. The subjects walked at a self-selected
pace for two sequential walkswhile two force plates recorded ground reaction forces (GRFs) and center of
pressure (COP). The data contributor on thisDataset has completed four unpublished investigations, and some
of the data contributor’s previously published data have been included in thisDataset [29, 30, 32]. A total of 350
healthy controls (205males, 142 females, and 3 unknowns) between the ages of 11 and 64 participated in the
study.

2.1.2. Orthoload database
In vivomeasurements of orthopedic implant loads obtained via instrumented implants are stored in a publicly
accessible repository. Load data are available for hip joints, shoulder joints, knee joints, vertebral body
replacements, and internal spinal fixators. This study focuses on hip joint data collected from19 patients with
osteoarthritis and coxarthrosis using three different implants [33]. Datawere collected for each patient under
various loading conditions, but only level walking at a self-selected speed andwalking on a treadmill at 4 km
speed aremerged here (comparedwith the other two datasets). Detailed information about thisDataset (Force F
andMomentM) is available on their website [34]. Figure 2 shows an overview of the combined databases. This
study considers data from these three public databases, as shown in table 1. As a result of combining both
categories of the healthy control group fromGaitRec andGutenberg, three classes were calculated, which is the
final data for this study.

2.2. Preprocessing
ThisDataset included the center of pressure (COP) and three degrees of freedomanalog ground reaction force
(vGRF) signals, vertical, anterior-posterior (AP), andmedia-lateral (ML). Still, in this work, only vertical ground
reaction force (vGRF) is considered as other datasets include only vGRF.We only considered vGRF in this study
for several reasons. In gait analysis studies, vGRF alone provides enough information to assess gait. There is
minimal contribution fromother dimensions. Furthermore, 3DGRF is only possible using force plates. It is
challenging to use force plates outside of a laboratory setting. Due to this, it ismuchmore prudent to use vGRF,
which can be obtained by various other GRFmeasurementmethods, such as wearable insoles and inertial
measurement units (IMU). Therefore, this work can be deployedwith other technologies [36, 37].

A sampling frequency of 2 kHzwas initially used to gather the signals. However, the raw signals were
downscaled to 256 Hz for compatibility reasons alignedwith the center’s internal standards. Themajor reasons

Figure 2.Visualizingmeans and standard deviation for each class (vGRF) as participants walked at self-selected speeds.

Table 1.Details demographic information of the total database. Reproduced from [30, 33, 35]. CCBY 4.0.

Database name Category/class Subject Sample Age (years)mean Sex(m/f) Bodymass kg (Mean)

GaitRec Hip surgery 450 12748 34.7 373/77 82.4

Healthy control 211 2638 42.6 104/107 73.9

Gutenberg Healthy control 350 8820 24.2 205/142 70.7

Hip implant 17 594 61.5 14/5 76.9

Total 1030 24800 40.7 696/331 75.9
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for down sampling the vGRF signals to 256 Hz are: (i)most of the biomechanical signals have useful information
to understand the gait abnormalities below 100 Hz. The lower sampling frequency of 256 Hz is sufficient to
capture theminute changes in gait patterns and to reduce the effects of high frequency noises present in the
signal for efficient gait pattern classification. (ii)Down sampling the vGRF signals to 256 Hz helps to reduce the
computational complexity (time andmemory) of gait pattern classification using Raspberry PI 3. (iii)The lower
sampling frequency also helps to benchmark the performance of themodel against different datasets. Thus, we
workedwith the available down-sampled version and further down-sampled the data to 256 Hz. In the next step,
a 2nd order zero-lag Butterworth filter with a cut-off frequency of 20 Hzwas applied. As shown infigure 3, the
signals were first amplitude-normalized to 100%of bodyweight, then time-normalized to 101 samples, which
correspond to the entirety of the stance phase. Different individuals have different bodyweights, which
influences their vGRF signals. The vGRF force values would be affected by each subject’s weight without
normalization,making it difficult to distinguish biomechanical differences from simple weight differences.
Biomechanicalmodels and simulations assume forces relative to bodyweight. Indeed, researchers and clinicians
can use normalization to reduce variance due to bodyweight differences. Hence, comparing thesemodels
directly is easier with normalization. By normalizing bodyweight, comparisons are fair regardless ofmass. To
avoid the influence of walking speed on the study result, the gait data was collected at awalking speed of 4 kph.
Althoughmany recommendations exist for an adequate cut-off frequency, 20 Hz appears to be a good
compromise betweenminimizing noise andmaximizing physiological frequency content.

2.3. Feature extraction
Weextracted features from vGRF signals across several different domains, including time-domain (TD) [38],
frequency domain (FD) [39, 40], and time-frequency domain (TFD) [41]. TD features are derived from the
signal in the time domain by computing peak-to-peak values and other statistical features (such as kurtosis,
skewness, interquartile range, etc)with pure TD characteristics (such as peak-to-peak values). TD features also
include features obtained from the envelope of the signal such as the ratio between themaximumandminimum
of the envelope, the time at which the envelope peaked, and its amplitude, etc shown in detail in Supplementary
table 1. A time-domain feature accurately reflect inherent features of a time-domain signal. Indeed, the
abnormal peak-to-peak values can indicate altered load-bearing patterns, often observed in individuals with
joint impairments or post-surgical adaptations. The statistical features describe the distribution characteristics
of the vGRF signal. For instance, increased kurtosismay suggest abrupt force applications, while skewness can
reveal asymmetries in gait, potentially indicating compensatorymechanisms due to pain orweakness. There are
50TD features that were considered in this work for gait abnormality detection (Supplementary table 1).
Features that described the shape and size of the signal in the frequency domain representationwere
incorporated into FD features, including simple features such as the frequencywithmaximumpower
(dominant frequency) andmore complex features such as the spectral roll-off point and spectral deformation.

In specific, dominant frequency features identify the primary frequency component of the vGRF signal.
Deviations from typical dominant frequencies can reflect changes in gait cadence or the presence of pathological
conditions affecting rhythmicmovement patterns. The spectral roll-off point represents the frequency below
which a certain percentage of the total spectral energy is contained. Shifts in this point can indicate alterations in
gait dynamics, such as changes in step regularity or stability. Finally, the spectral deformation assesses deviations
from expected spectral patterns, which can be associatedwith irregular force applications or neuromuscular
control issues during gait. There are 24 FD features that were considered in this work for gait abnormality
detection and are listed in Supplementary table 2. Based on discrete wavelet transforms (DWTs) [41, 42], TFD

Figure 3.Overall data preparation steps.
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features include band power,mean absolute value, waveform length, rootmean square value, standard
deviation, and fractal length of extractedwavelets (see Supplementary table 3). These features, derived from
discrete wavelet transforms, capture transient changes in the vGRF signal. They are sensitive to abrupt force
variations and can detect subtle gait abnormalities, such as those arising from early-stagemusculoskeletal
disorders. By analyzing these features, our study aims to provide a comprehensive assessment of gait, facilitating
the detection of post-operative gait abnormalities and contributing to improved patient outcomes. A total of 191
features were extracted, including 50TD features (Supplementary table 1), 24 FD features (Supplementary table
2), and 117TFD features (Supplementary table 3).MATLAB codewas developed in-house, and these features
were used to train and test classicalmachine learning algorithms.

Before doing the feature ranking, strongly correlated features were removed to avoid influencing the
algorithm incorrectly. The correlationmatrix between features is computed using pairwise linear correlation.
Whenever a feature has a correlation coefficient (CC) of 0.9 ormore, it is deemed heavily correlated, and one of
those features is removed from the feature vector [53, 54]. Following the removal of highly correlated features in
each experimental scheme, Supplementary figure S1 shows the number of features that remained.

2.4. Featurewselection
Even after removing highly correlated features,many featuresmay still confound themodel. Feature selection
provides evenmore dimensionality reduction [43, 44]. Afive-fold cross-validation techniquewas used in this
present work to split the total number of features infive independent sets. Later, feature selectionwas applied to
the training data on each fold, and the overall feature importance score was computed across allfive folds. The
features were then ranked based on their importance scores. This study employs a feature selection technique
based onmachine learningmodel, where one feature is added at a time, and its performance is evaluated. The
featurematrix is reordered according to the significance of the features to ensure that themost eminent and
useful features are utilized.We usedMATLAB’s selection offilter-type feature algorithms, includingMinimum
RedundancyMaximumRelevance (mRMR), Forward SelectionNeighborhoodComponent Analysis (FSNCA),
Multi-Cluster Feature Selection (MCFS), Chi-square, andRelief. The supplementarymaterials concisely explain
their application. Figure 4 showsfive different algorithms are used to select features: FSCNA, Relief,mRMR,
Chi-square statistics, andMCFS ranking.

2.5.Machine learning
Out-of-fold data (4960) is used for testing (20%of thewhole data), while the remaining data is divided into 80%
and 20%as training (15872) and validation (3968) sets, respectively (table 2).

Based onGaitRec segments, Gutenberg, and sections ofOrthoload databases, two classification approaches
two-class classification (HealthyControl versusGait Abnormality) and three-class classification (Healthy
Control versusHip Surgery versusHip Implant). Twodifferent experiments (classificationwithout
hyperparameter tuning andwith hyperparameter tuning)were conducted in the three-class classification study.
An experimental design employs subject-wise stratification for both two-class and three-class classifications.
Following the processes of feature extraction and, where applicable, feature selection, variousmachine learning
models were trained to regulate the highest-performingmodel among them, includingDiscriminant Analysis
Classifier (DAC), DecisionTrees (DT), Kernel ClassificationModels (KCM), K-NearestNeighborModels

Figure 4.The feature selection process uses 5 algorithms: FSCNA, Relief,mRMR, Chi-square statistics, andMCFS ranking.
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(KNN), Naive Bayes (NB), Support VectorMachines (SVM), andArtificial Neural Networks (ANNs). However,
thefivemost promising classifiers (KNN, SVM,NB,DT, andANN)were selected for this work based on their
superior performance in classification and reported in thework [49].

Afive-fold cross-validation techniquewas used to assessmachine learningmodel performances. The
optimal features fromGaitRec, Guttenberg and orthoload datasets were divided into five folds, ensuring each
subject’s data appeared only once. The process was iterated five times, with four folds for training and one for
testing.Over these five runs, thefinal performance results are presented as the average Accuracy, Sensitivity,
Precision, and F1 score.

2.6.Hyperparameter tuning
Machine learning algorithms are tuned by optimizing their parameters tomaximize their performance, a
process known as hyperparameter tuning. Choosing optimal hyperparameters is essential to enhancemodel
performance. There are several automated hyperparameter optimization techniques, but these are often
problem-specific and differ fromone problem to another. Typically, hyperparameter tuning involves changing
the parameter’s value and testing themodel’s performance tofind the best value. To tune the hyperparameters of
amachine learning algorithm, significant trial and error is required since each algorithmhas several
hyperparameters to adjust. In this study, this process is automated using Bayesianmethods [48]. Taking a range
of values for each hyperparameter, testtrains, and test each parameter iteratively. A selection of the optimal
combination ismade after examining all conceivable combinations. As part of the tuning procedure, the study
examined the hyperparameters for each of the top fourmachine learning algorithms. Below are the parameters
and values examined for these parameters.

• Naive Bayes (NB):NB implementation includes an additive smoothing parameter ‘alpha’which varies
between 0 and 1. The parameters examinedwere 0, 0.25, 0.5, 0.75, and 1.0.

• SVM:The regularization parameter ‘C’ and the kernel functionwere tuned for SVM.The values for ‘C’were
1.0, 3.0, 5.0, and 10.0. The radial-basis function and the polynomial kernel were assessed for the kernel.

• KNN: In theKNNalgorithm, the crucial adjustable parameter is the number of neighbors, denoted as ‘k’.We
experimentedwith several values for this parameter, including 1, 3, 5, 7, 15, 30, and 77, to determine the
optimal choice for the algorithm.

• DT:The ‘max depth’ parameter of theDT classifier represents themaximum tree depth. This parameter was
testedwith values of 2, 3, 5, 10, 20, and 40.

2.7.Data augmentation
Amodelmight introduce bias if trained on an unbalanced dataset due to the differences in signal quantities
across classes. The use of data augmentation techniques on the training set is therefore crucial to achieving a
uniform signal distribution across various classes, thus enhancing the credibility ofmodel construction. The
SyntheticMinorityOver-Sampling Technique (SMOTE)was employed to balance theDataset due to the varying
sample sizes among classes [45]. Using this technique,minority class samples can be generated synthetically,
mitigating imbalance issues and fostering an equal representation of classes, enhancing themodel’s accuracy.

2.8. Evaluation criteria
The performance of a classifier as amodel is evaluated by fivemetrics. The terms true positives (TP), true
negatives (TN), false negatives (FN), and false positives (FP) are all used tomeasure diagnostic accuracy. These
fivemetrics are outlined below:

Accuracy is defined as

( )=
+

+ + +
Accuracy

TP TN

TP TN FP FN
1

Table 2.Description of the training, validation and
testing samples used for each fold.

Training Validation Testing Total

15872 3968 4960 24800
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Precision is defined by

( )=
+

Precision
TP

TP FP
2

Recall is defined by

( )=
+

Recall
TP

TP FN
3

F1-score is calculated as follows:

( )- = ´
´
+

=
´

´ + +
F score

Precision Recall

Precision Recall

TP

TP FN FP
1 2

2

2
4

Based on literature references, our primarymeasures were accuracy, sensitivity, specificity, andAUC [47].
Using the increasing feature search technique, we evaluated themodel’s classification performance across all
experimental groups, progressively exploring combinations of top-ranked features to determine the optimal
performance. To assess overall performance inmulticlass scenarios, we analyzed individual ReceiverOperating
Characteristic (ROC) plots for each class and themacro average derived from the collective class ROCplots.

3.Numerical results and discussion

There are 1,030 subjects in this experiment, with 24,800 samples collected. A total of 1,030 participants
participated in all the experiments, with equal numbers from each group being placed in the test and training
sets. A variety ofmachine learning algorithmswere tested, and the topfive, which report higher performance,
are presented here.

3.1. Two class classification
We reported two-class classification forHealthyControl versusGait Abnormality with only the best performing
feature selection algorithm (figure 5). Observing the feature importance plots (see figure 5) for two-class
classification task, it can be seen that descriptor of signal entropy lower bound is the dominant feature in
determining theGait pattern of a subject. Alongwith it the autoregressive features also play an important role.
Analyzing the important features in the aspect of channels, it can be observed thatZ-axis GRF features
contributed themost to the classification of theGait pattern. This highlights how vital vertical GRF is for gait
classification.However, as seen infigure 5, vertical GRFwith the other twoGRFsmakes themodel evenmore
accurate. Figure 5 shows the top 14 features from the best feature ranking technique for the binary classification
schemes. Infigure 6, the ROC curves are plotted. The top 1 to the top 60 features are plotted for the binary
classification task. This allows us to see the impact of different features on themodel. Table 3 shows that for the
two-class classification problem, KNNmodel is showing slightly better performancewith Relief-based feature
selection algorithmwith an accuracy of 95.48%.

Figure 5.Top-ranked 14 features in classifying two-class classifications (HealthyControl versus Gait Abnormality).
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3.2. Three class classification
Wepresent the three-class classification forHealthy control versusHip surgery versusHip implant results based
on subject-wise stratification. In subject stratification scenarios, the KNNclassifier outperformed the other
classifiers. Based on the results of a classification task, table 4 shows the results of five different classifiers.We
have usedKNNs,Naive Bayes, SVMs,DTs, andANNs as classifiers. Classification features are the top 31, 30, 16,
44, and 42 features for KNN,Naive Bayes, SVM,DT, andANN, respectively.We evaluated classifiers based on
accuracy, precision, sensitivity, F1_Score, AUC, inference time, andmodel size. The SVMclassifier had the
highest average accuracy of 88.36%, followed by theKNNclassifier at 87.08%, theDT classifier at 86.97%, the
Naive Bayes classifier at 85.95%, and the ANNclassifier at 84.83%.Among the five classifiers based on precision,
the SVMscored the highest at 88.49%, followed by theKNNat 87.09%, theDT at 86.98%, theNaive Bayes
classifier at 85.98%, and the ANNat 84.71%.

Based on sensitivity, the SVMclassifier achieved 88.33%, followed by theKNNclassifier at 87.08%, theDT
classifier at 86.97%, theNaive Bayes classifier at 85.94%, and theANNclassifier at 84.87%. The SVMclassifier
achieved the highest F1_Score of 88.30%, followed by theKNNclassifier at 87.08%, theDT classifier at 86.97%,
theNaive Bayes classifier at 85.94%, and the ANNclassifier at 84.87%. The SVMclassifierwas rated highest in
terms of AUCwith 0.950, followed by theKNNclassifier at 0.950, theDT classifier at 0.950, theNaive Bayes
classifier at 0.900, and the ANNclassifier at 0.930. In terms of inference time, theNaive Bayes classifier had the
fastest inference time of 4.36 μs, preceded by the SVMclassifier with 0.91 μs, theDT classifierwith 2.44 μs, the
KNNclassifierwith 195.00 μs, and theANNclassifierwith 340.80 μs. TheANNclassifier had the largestmodel
size of 9.49MB, followed by theKNNclassifierwith 6.71MB, theDT classifier with 6.64MB, theNaive Bayes
classifier with 6.55MB, and the SVMclassifierwith 6.63MB. Based on this task, the SVMclassifier consistently
outperformed theKNNclassifier, theDT classifier, theNaive Bayes classifier, and theANNclassifier. An SVM
classifier achieved the highest accuracy, precision, sensitivity, and F1_Score.With theNaive Bayes classifier, the
inference timewas the fastest, and the ANNclassifier had the largestmodel size.

Figure 6.Two-class classification AUROCplot for healthy control versus gait abnormality.

Table 3.Healthy control versus gait abnormality classification performance.

Experimental

schemes

Feature ranking

technique

# of

features Accuracy(%) Precision (%) Sensitivity (%) F1_Score (%) AUC

Relief Top 57 95.48 96.13 95.48 95.63 0.99

HC/GD mRMR Top 58 93.24 94.56 93.24 93.54 0.99

FSNCA Top 48 93.73 94.89 93.73 93.99 0.99

9

Eng. Res. Express 7 (2025) 035203 MMSoliman et al



Table 4.Results of classificationwithout hyperparameter tuning.

Classifier Best FSA Features num Accuracy (%) Precision(%) Sensitivity(%) F1_ score(%) AUC Stratification Inference time (μs) Model size (MB)

KNN Relief Top 31features 87.08 87.09 87.08 87.08 0.95 Subject 195.00 6.71

Naive Bayes Relief Top 30features 85.94 85.98 85.94 85.94 0.90 Subject 4.36 6.55

SVM Relief Top 16features 88.33 88.49 88.33 88.30 0.95 Subject 0.91 6.63

DT Relief Top 44 features 86.97 86.98 86.97 86.97 0.95 Subject 2.44 6.64

ANN Relief Top 42 features 84.87 84.71 84.87 84.87 0.93 Subject 340.80 9.49
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Table 5.Results of classificationwith hyperparameter tuning.

Classifier Best FSA Features num Accuracy (%) Precision(%) Sensitivity(%) F1_ Score(%) AUC Stratification Inference time (μs) Model size (MB)

KNN MCFS Top 34 features 89.18 89.30 89.18 87.15 0.96 Subject 198.20 6.74

Naive Bayes Relief Top 30features 85.98 85.91 85.94 85.97 0.90 Subject 4.36 6.55

SVM Relief Top 16features 88.36 88.51 88.35 88.36 0.95 Subject 0.91 6.63

DT Relief Top 44 features 87.07 87.08 87.07 87.07 0.95 Subject 2.44 6.64

ANN Relief Top 42 features 84.88 84.73 84.88 84.89 0.93 Subject 340.80 9.49
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The hyperparameter settings used in table 4 are default configurations and that no novel tuning
methodology is applied.We also clarify that these results serve as a preliminary benchmark and are
supplemented by further performance evaluation in subsequent sectionswhere optimal hyperparameter
configurations are applied as reported in section 2.6 and the improved results are reported in table 5.

We optimized themodel hyperparameters, which improved the results slightly. For subject-wise
stratification, the ‘number of neighbors’ parameter was set to 30 inKNN. InNB classifier, the optimal value of
alpha that gives the highestmean classification rate is 0.25. In SVM, the radial-basis function (RBF) kernel with
regularization parameter of 1.0 gives the highestmean classification rate in gait pattern classification. Finally, the
maximumnumber of trees of 40 gives the highest accuracy in the decision tree classifier. In general, the classifiers
achieved higher accuracy, precision, sensitivity, and F1_Score (table 5) using hyperparameter tuning. Table 4
shows the classifiers’ performancewithout hyperparameter tuning. In addition, both tables had similar
inference times andmodel sizes.

As for the feature selection algorithms used in these classifiers, for KNNweusedMCFS, forNaive Bayes we
usedRelief, for SVMweusedDT, and for ANNwe usedRelief. Accordingly, the top 34, 30, 16, 44, and 42
features are used for KNN,Naive Bayes, SVM,DT, andANN, respectively.We evaluated the classifiers based on
accuracy, precision, sensitivity, F1_Score, AUC, inference time, andmodel size. On average, the KNNclassifier
scored 89.18%, followed by the SVMclassifier at 88.36%, theDT classifier at 87.07%, theNaive Bayes classifier at
85.97%, and the ANNclassifier at 84.88%.

Figure 7 shows the top 34 features obtained through the best feature ranking techniques for subject-wise
stratification ofHealthy control versusHip Surgery versusHip Implant. According to the feature important
plots, time domain features play a critical role in categorizing a subject’s gait pattern. Each class’s ROCplot was
generated individually, and themacro average of these ROCplots was calculated. Each of these ROCplots is
presented separately infigure 8. The importance of establishing a reliable clinical standardmeasure for
diagnosing gait patterns cannot be overstated. A comprehensive review [46] of over 943 different classical
techniques for analyzing gait patterns indicates that supervisedMachine Learning algorithms have
demonstrated accuracies exceeding 90% in gait analysis.

According to this study, theMLmodel developed in this study demonstrated high accuracy for random
stratification cases and approached the standard range for subject-wise stratification. The achievement
represents an encouraging first step toward automating the classification of gait abnormalities and establishes a
baseline for future research. An extensive benchmark dataset comprising 1,030 subjects with 24,800 gait cycles
was used for this study. Due to this, the developedmodel is expected to be able to generalizemore efficiently. By
extracting a substantial number (191) of features from time, frequency, and time-frequency domains from single
channels, themodel captures the variability within gait cycles, leading to better feature representations and
enhanced learning. It is the first study to identify and distinguish gait cycle abnormalities among patients
undergoing hip surgery or receiving hip implants. Further, it serves as a foundation for future research into

Figure 7.Top 34 features from the best feature ranking techniques for subject-wise stratification (Healthy control versusHip surgery
versusHip implant) classification schemes.
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categorizingGait CycleDisorder (GCD). As a result of experiments conducted across three datasets with various
classification combinations, this study outperformed previous work in this area. This research focuses on
classifying gait abnormalities post-hip surgery using vertical ground reaction forces (vGRFs), understanding
joint interaction dynamics is crucial. Integratingmodels like theHénonmap could enhance our feature
extraction process by accounting for joint synergies, potentially improving classification accuracy [50].
Furthermore, themethodology of analyzingmuscle synergies to assess recovery alignswith our objective of
monitoring post-operative gait [51]. Incorporatingmuscle synergy patterns as features in ourmachine learning
models could provide a deeper understanding of neuromuscular coordination post-surgery [50, 51].
Monitoringmuscle fatigue is vital in post-operative rehabilitation [52]. Applying similar synergy pattern analysis
to lower limbmuscles could enhance our ability to detect early signs of fatigue-related gait abnormalities.

In our future work, we aim to develop highly accurate deep neural networks for diagnosing diverse gait
disorders, resulting in significant performance improvements usingConvolutional Neural Network (CNN),
Long Short TermMemory (LSTM), andRecurrentNeural Network (RNN). Additionally, adding aGenerative

Figure 8.ROCplot for randon stratification (top) and subject-wise stratification (bottom).
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Adversarial Network (GAN)model to the training data could improve themodel’s performance. Thismethod
integrates synthetic and authentic data during training to equalize class distributions. Using such a framework
can be immensely valuable for rehabilitation centers, allowing clinicians tometiculouslymonitor a patient’s
progress until complete recovery is achieved. Table 6 shows the comparison of performance of the proposed
methodwith the state-of-the-artmodels used for gait abnormalities detection. Among the different works, this
present work has utilized higher number of subjects (1030 subjects) and considered amaximumof three classes
(healthy control, hip implant, and hip surgery). Based on the randon stratificationmethod, the proposed
method achieved amaximummean classification rate of 94.68%and 89.18%on subject-wise stratification for
three-class classifiation and 95.48% for a two-class classification.

To enhance the relevance and fairness of our comparative analysis, we have updated table 6 to include recent
studies that utilized the same datasets. It is noteworthy that Khalil et al (2024) proposed amachine learning-
basedmajority voting approach using themergedGaitRec andGutenberg datasets, reporting strong binary
classification results for gait disorder detection [53]. Additionally, Slijepcevic et al (2024) [54] explored
explainable AImethods for class-specific gait analysis usingGaitRec, demonstrating the utility of interpretable
models in clinical gait evaluations. As a result of these comparisons, ourmulti-class classification approach
reinforces its significance and validates its robustness against recent benchmarks based on similar data sets. The

Table 6.Performance comparison of the present workwith state-of-the-artmodels.

Authors Goal Participants Best classifiers &performance

Zeng et al [18] Gait pattern classification in Parkin-

son’s disease patients and healthy

controls

93 Parkinson’sDisease

patients and 73 healthy

subjects

RBFNeuralNetwork (2 class)Acc-
uracy: 98.8%

Khandoker et al [25] Automatic detection of gait patterns

associatedwith balance deficiencies

13 healthy adults and 10 sub-

jects with a history of falls

SVMAccuracy: 100%

Zhang et al [27] Gait pattern recognition during lower

extremitymuscle fatigue and no-

fatigue

17 healthy subjects SVM (2 class)Accuracy: 96%

Slijepcevic et al [26] Automated human gait analysis 182 healthy subjects and 728

different GD (4 types)
patients

SVM (5 class)Accuracy: 62%

Alaqtash et al [9] Automatic classification of pathological

gait patterns fromhealthywalking

12 healthy volunteers, 4 CP

patients, and 4ME

patients

KNNAccuracy: 95%

Wu et al [13] Gait pattern categorization using kernel

PCA feature extraction

24 young and 24 elderly SVM (2 class)Accuracy: 91%

Wu et al [17] classify gait patterns based on kin-

etic data

30 young and 30 elderly

participants

SVM (2 class)Accuracy: 90%

Pogorelc et al [23] A system to early detect abnormal gait

patterns

5 healthy and 9 pathological

elderly subjects

KNN (5 class)Accuracy: 99%

Kaczmarczyk et al [21] Post-stroke patients’ gait patterns

classification

74 stroke survivors ANN (3 class)Accuracy: 100%

Begg andKamruzza-

man [19]
Gait pattern classification in young and

older individuals

12 young and 12 old

participants

SVM (2 class)Accuracy: 100%

Chan et al [20] Classification of younger and older

people’s gait patterns

13 healthy younger and 12

healthy elderly

participants

MLP (2 class)Accuracy: 96.8%

Khalil et al [53] Enhanced Binary Classification ofGait

Disorders Using aMachine Learning

Majority Voting Approach

2435 subjects Accuracy of 96.63% in binary

classification

Slijepcevic et al [54] DecodingGait Signatures: Exploring

Individual Patterns in Pathological

Gait using Explainable AI

2,092 individuals, including

1,283 cases with patholo-

gical gait

Classification accuracy of up to

99.3% (achievedwith bilateral
GRF3Ddata

ProposedWork AutomatedClassification of Post-

OperativeGait Abnormalities fol-

lowingHip Surgery usingMachine

Learning

561 healthy, 450 hip sur-

gery, and 17 hip implants

(total 1030) subjects

KNN (2-class)Accuracy: 95.48%
for subject-wise stratification

KNN (3 class)Accuracy: 94.68%
forRandom stratification and

89.18% for subject-wise

stratification
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results from these studies are not completely comparable with ours since none of themmentioned subject-wise
studies.

4. Real-time implementation

A summary of the real-time implementationmethodology can be found infigure 9. A vertical GRF signal was
collected from a force plate for this study. Raspberry Pi 3Bs are used to control the circuitry, andON/OFF
switches are used to switch the device on and offmanually. In terms of power consumption, the Raspberry Pi
consumes about 3.45Watts. Using Raspberry Pi, we have extracted features from the vGRF signal. The trained
KNNclassifier predicts predictably healthy controls (HC), Hip Surgery, andHip Implanted using the extracted
features. There is approximately 0.47-second inference time for each signal.

5. Conclusion

This study used three publicly availableGRF resources: Gaitrec, Gutenberg, and specific segments from
Orthoload.We homogenized theGutenbergGait Databasewith theGaitRec dataset to ensure their
indistinguishability. This present work only utilizes 1D-GRF signals for gait abnormality classification. To
accurately classify the gait patterns, different preprocessing steps such asfiltering, denoising, normalizing,
resampling, and augmenting data to reduce bias andmake the training accurate. The features were extracted
using different feature extraction techniques, the highly uncorrelated features were removed, and then the
features were ranked according tofive feature selection algorithms. Additionally, we tested severalMLmodels,
and theKNNmodel showed the best accuracy. Two-class subject-wise classification accuracy is 95.48%while
subject-wise and random stratification of the three-class classification yield 89.18% and 94.68%accuracy,
respectively. Finally, theKNN3-class classificationmodel is implemented in Raspberry PI 3B for real-time gait
pattern classification, and it requires 0.47 sec inference time for each signal. It is thefirst study to recognize and
differentiate between gait cycle abnormalities in patients undergoing hip surgery and thosewith implanted hips.
We used classicalmachine learning algorithms to classify vertical ground reaction force (vGRF) signals.

Institutional reviewboard statement

Not applicable.

Figure 9.Real time implementationworkflow.
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