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Abstract 
 

Background: In the Industry 4.0 landscape, integrating artificial intelligence (AI) with smart manufacturing is essential for enhancing 

automated monitoring, predictive maintenance, and system optimization. However, traditional centralized AI model training poses critical 

risks to data privacy, security, and scalability, especially when sensitive operational data from factory machines is shared across platforms. 

Methods: This study proposes a decentralized, intelligent framework designed for real-time machine monitoring that enhances fault de-

tection accuracy while safeguarding data privacy. The approach begins with real-time sensor data acquisition—capturing vibration, tem-

perature, and acoustic signals from distributed factory units via edge devices. These signals undergo preprocessing and advanced feature 

extraction using Wavelet Transform and Empirical Mode Decomposition (EMD) to reveal critical fault characteristics.  

Results: A hybrid deep learning model that combines Convolutional Neural Networks (CNNs) with Long Short-Term Memory (LSTM) 

networks is used for classification. CNNs are responsible for extracting spatial features, whereas LSTMs identify temporal dependencies 

in time-series. With the federated learning (FL) framework, model training can be done collaboratively across edge devices without the 

need to transfer sensitive raw data.  

Conclusion: This ensures security and enhances model generalization. Results from experiments indicate that the suggested FL-based 

hybrid model exceeds centralized architectures regarding detection accuracy, computational efficiency, and adaptability. This research 

provides a scalable and secure solution that enhances intelligent monitoring for Industry 4.0 systems. 

 
Keywords: Deep Learning, Edge Computing, Federated Learning, Fault Detection, Smart Manufacturing, Signal Processing, 

1. Introduction 

An unprecedented change in the manufacturing landscape Industry 4. 0 is defined by the incorporation of artificial intelligence (AI) the 

Internet of Things (IoT) and cyber-physical systems into factory operations. This paradigm promotes smart manufacturing environments 

that are not only effective but also flexible and robust by enabling real-time monitoring predictive analytics and autonomous decision-

making. Of these developments intelligent machine monitoring is particularly noteworthy as a vital component for guaranteeing uninter-

rupted operations cutting maintenance expenses and averting catastrophic equipment malfunctions. Despite these advancements conven-

tional AI training techniques frequently require the uploading of enormous amounts of operational data to cloud servers making them 

centralized. This creates serious problems with network latency data privacy and system scalability particularly when handling sensitive 

industrial data like sensor logs thermal readings and acoustic emissions. Intelligenced intelligence is essential because modern factories 

are diverse and dispersed which makes centralized data handling even more difficult. The decentralized federated learning (FL) framework 

proposed in this study is designed for real-time machine condition monitoring to overcome these constraints. FL in contrast to traditional 

models allows several edge devices—integrated into factory units—to work together to train a global model without exchanging raw data. 

This architecture allows for scalable model training across a range of machine types and operational scenarios while maintaining data 

confidentiality (Fig 1). 

 

http://creativecommons.org/licenses/by/3.0/
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Fig. 1: Federated learning-based AI approaches 

 

At the heart of the system lies a hybrid deep learning model, integrating Convolutional Neural Networks (CNNs) for spatial pattern recog-

nition with Long Short-Term Memory (LSTM) networks for capturing temporal dynamics in time-series sensor data. Complemented by 

sophisticated signal processing techniques such as Wavelet Transform and Empirical Mode Decomposition (EMD), the model extracts 

highly discriminative features that are crucial for accurate fault detection. Through extensive experimentation, the proposed approach 

demonstrates superior performance in terms of accuracy, adaptability, and computational efficiency, making it a robust and secure solution 

for smart manufacturing ecosystems. This research contributes not only to the technological advancement of Industry 4.0 but also lays the 

foundation for privacy-preserving AI applications in industrial automation. 

Federated learning or FL has become a game-changer in smart manufacturing in recent years. It provides decentralized privacy-preserving 

machine learning solutions that meet the changing demands of Industry 4. 0 and beyond. Federated learning (FL) has attracted a lot of 

interest in smart manufacturing with the goal of improving data privacy and collaborative intelligence in dispersed industrial settings [1]. 

Examining numerous studies that investigate the use of FL in manufacturing, this literature review highlights approaches difficulties and 

developments. FL has been used while maintaining data privacy to forecast flaws in smart manufacturing. Sensitive data stays local by 

allowing decentralized model training across several factories, reducing privacy issues and promoting cooperative learning. The FLDID 

framework detects cyberthreats in smart manufacturing environments by combining FL with deep learning architectures such as CNNs and 

LSTMs. By improving security and protecting privacy this method enables cooperative model development without exchanging raw data 

[2].  

Studies have investigated compression strategies within FL frameworks to address communication overhead. These strategies preserve 

model performance while maximizing network resource use by lowering data transmission requirements. Decentralized optimization strat-

egies have emerged because of efforts to increase FL efficiency [3]. By distributing computational tasks among edge devices these strate-

gies lessen the need for central servers and improve scalability in manufacturing environments. Cross-domain forecasting in smart manu-

facturing is made easier by federated transfer learning. Models can improve their performance and versatility by adapting to new tasks with 

limited data by utilizing knowledge from related domains [4]. Model accuracy and training efficiency are increased when client selection 

in FL is optimized. The learning process is improved in diverse manufacturing settings by selecting appropriate participants based on the 

quality and applicability of the data [5]. Hierarchical learning across organizational layers is made possible by the implementation of multi-

level FL structures. Scalability is supported by this design which also considers different data sensitivities in manufacturing organizations. 

Without sacrificing data privacy FL encourages cooperation amongst interconnected industrial systems. Overall system intelligence and 

adaptability are increased by this synergy [6].  

In smart manufacturing FL tackles privacy issues by enabling cooperative model training without data sharing. Confidentiality is preserved 

while data-driven innovation is promoted [7]. Comprehensive analyses of FL applications in manufacturing offer valuable perspectives on 

contemporary patterns, obstacles and potential paths. Researchers and practitioners use these analyses as a guide when putting effective 

FL strategies into practice. By facilitating shared learning among systems FL improves anomaly detection in autonomous guided vehicles. 

This partnership protects data privacy while increasing detection accuracy [8]. Data security and traceability in manufacturing processes 

are strengthened when FL and blockchain technology are combined. Intelligent and sustainable production methods are supported by this 

integration. To ensure secrecy during model training FL frameworks have been designed to function on encrypted data [9–11].  

Managing sensitive manufacturing data requires this capability. Predictive maintenance is made easier by collaborative FL approaches 

which combine information from various sources. Equipment dependability is increased, and downtime is decreased by this collective 

intelligence. FL helps smart industries optimize their resources by facilitating effective data use and lessening the computational load on 

central servers [12–14]. When FL is used in robotic manufacturing settings robots can learn cooperatively and adjust to changing production 

needs increasing operational efficiency. By combining FL with GANs, model robustness in manufacturing applications is improved and 

collaborative learning is supported in situations with limited data availability [15]. FL frameworks use synchronization mechanisms to 

address label inconsistencies across datasets and guarantee consistent learning outcomes for predictive maintenance tasks. FL-based se-

mantic segmentation techniques improve quality control procedures by enabling detailed defect detection in additive manufacturing. By 

facilitating clever load migration strategies FL improves overall efficiency and balances computational workloads across manufacturing 

systems [16–19].  

Digital twin implementations are supported by optimizing FL with deep reinforcement learning which offers real-time insights and adaptive 

control in industrial IoT settings. Potential vulnerabilities are addressed by creating secure FL frameworks which guarantee reliable and 

strong collaborative learning in manufacturing settings [20]. To enhance smart manufacturing studies that examine FL applications within 

the framework of Industry 4. 0 and 5. 0 visions point out obstacles and suggest directions for further research. FL facilitates automatic 

configuration tuning in real-time for manufacturing systems allowing them to adjust to shifting circumstances and maximize efficiency 

[21–23]. Manufacturing processes are improved by implementing decentralized intelligence through FL because it permits localized deci-

sion-making and lessens reliance on centralized systems. This thorough analysis highlights how federated learning can revolutionize smart 

manufacturing by promoting privacy-preserving collaboration, improving operational effectiveness and stimulating innovation in the sector 

[24]. Federated learning is predicted to transform intelligent manufacturing systems as it develops further and integrates with other cutting-

edge technologies opening the door for safe flexible and extremely effective industrial operations [25]. Data security and system intelli-

gence have also been improved by combining FL with deep reinforcement learning and blockchain. Additionally, FL facilitates team-based 

learning in digital twin implementations quality assurance and robotic manufacturing. As FL develops further it is anticipated to become a 

key component of Industry 4. 0 and beyond improving operational effectiveness decreasing dependency on centralized systems and stim-

ulating manufacturing innovation [26].  
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2. Materials and Methods 

This research uses a federated learning (FL) framework to address security flaws scalability issues and privacy risks associated with con-

ventional centralized AI-based predictive maintenance systems. Deep learning architectures sophisticated signal processing methods and 

decentralized collaborative model training across dispersed edge devices in a smart manufacturing environment are all combined in this 

study [27]. Five main sections make up the methodology: problem description data collection feature extraction and pre-processing of the 

data suggested methodology and suggested techniques. To illustrate the all-encompassing strategy used for safe effective and scalable fault 

detection and predictive maintenance each section is explained in detail.  

2.1 Problem Description 

The transition to smart manufacturing under Industry 4.0 mandates the seamless integration of AI algorithms into production lines for real-

time monitoring, system diagnostics, and predictive maintenance. Despite the transformative potential, deploying centralized AI models 

poses critical barriers, particularly related to data security, compliance, and operational flexibility. In centralized architectures, machine 

data — including vibration patterns, thermal profiles, and acoustic signals — must be transmitted to a remote server for training and 

inference, exposing sensitive operational insights to potential breaches and increasing vulnerability to cyber-attacks [28]. Moreover, cen-

tralized training often fails to adapt efficiently in geographically distributed manufacturing ecosystems where bandwidth constraints and 

data ownership policies inhibit large-scale data transfers. To overcome these hurdles, this research proposes a federated learning-driven 

predictive maintenance solution capable of distributed intelligence, where models learn collaboratively across decentralized nodes without 

exposing raw machine data. 

2.2 Data Collection 

For achieving robust predictive maintenance, the reliability and variability of sensor input data play a pivotal role. In this research, multi-

source datasets were gathered from diverse industrial equipment, including CNC machines, lathe machines, milling machines, conveyor 

belts, injection molding units, hydraulic presses, robotic manipulators, and welding stations. The data collection was facilitated by embed-

ded edge computing modules integrated with accelerometers, thermocouples, and acoustic sensors. These modules captured real-time pa-

rameters such as vibration patterns, thermal deviations, and acoustic signatures under both standard operating conditions and known fault 

states. All acquired data underwent expert-driven labeling to classify fault conditions, including issues like bearing degradation, mechanical 

misalignment, inadequate lubrication, and electrical anomalies. A summary of the key attributes of the collected dataset is presented in 

Table 1 below. 

 
Table 1: Data collection 

Machine Type Number of Samples Sensor Type Fault Type Sampling Rate (Hz) 

CNC Machine 15,000 Vibration, Acoustic, Temp Imbalance, Wear 5,000 

Conveyor System 12,500 Vibration, Temp Belt Slippage, Alignment 2,500 

Hydraulic Press 10,200 Acoustic, Temp Seal Leakage, Pressure Drop 4,000 
Robotic Arm 13,400 Vibration, Acoustic Motor Failure, Joint Play 5,000 

Injection Molding 9,600 Temperature, Acoustic Hydraulic Fault, Wear 3,500 

Lathe Machine 11,700 Vibration, Temp Spindle Imbalance 4,500 
Milling Machine 14,200 Vibration, Acoustic Tool Wear, Cutter Failure 5,000 

Welding Machine 8,800 Acoustic, Temp Electrode Wear 2,000 

2.4 Data Pre-Processing and Feature Extraction 

Before proceeding with model training, the raw sensor signals were subjected to a rigorous preprocessing and feature extraction pipeline 

designed to improve the quality and reliability of machine fault detection. The collected time-series signals were initially denoised using a 

low-pass Butterworth filter to eliminate high-frequency noise without affecting the primary fault signatures. Fig 2 shows the architecture 

of feature extraction. 

 

 
Fig. 2: Feature extraction [12] 

 

Following this, a Min-Max normalization technique was applied to scale features between [0,1], ensuring that machine-specific variations 

did not introduce bias during training. Subsequently, two advanced feature extraction techniques were employed: Wavelet Transform and 

Empirical Mode Decomposition (EMD). The Wavelet Transform facilitated time-frequency localization, allowing the model to extract 

hidden fault indicators across both short- and long-duration signal components. EMD decomposed the complex signals into Intrinsic Mode 

Functions (IMFs), providing a multi-resolution view of the operational dynamics. This dual approach significantly enhanced the discrimi-

native power of the extracted features, enabling the federated model to detect and classify a wide variety of machine faults under diverse 

operational conditions. 
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3. Proposed Methodology 

The proposed methodology is designed to ensure secure, distributed, and efficient predictive maintenance in smart manufacturing systems. 

The process begins with real-time data acquisition at the machine level via IoT-enabled edge devices, which are responsible for continu-

ously capturing sensor readings from various machines. These raw sensor inputs undergo local preprocessing to remove noise and outliers, 

and feature extraction is performed using Wavelet Transform and EMD techniques to enhance signal clarity and relevance. Once features 

are extracted, local models—primarily CNN-LSTM architecture are trained on the edge devices without transmitting raw data to a central-

ized server. 

 

 
Fig. 3: Proposed methodology 

 

The local models periodically transmit encrypted model updates (not the raw data) to a federated server for global aggregation using the 

Federated Averaging (FedAvg) algorithm. After aggregation, the updated global model is redistributed back to the edge devices for another 

cycle of localized training. This iterative process continues until the model converges, ensuring both predictive accuracy and data privacy. 

During this cycle, fault patterns are identified, classified, and reported in real-time, allowing plant operators to take proactive maintenance 

actions, ultimately minimizing machine downtime and operational disruptions (Fig 3). 

3.1 Proposed Techniques 

The proposed system is built upon an ensemble of advanced signal processing and machine learning techniques, forming a secure and 

scalable predictive maintenance framework. 

Wavelet Transform is used for decomposing time-series signals into various frequency bands, which aids in capturing transient fault sig-

natures. The Continuous Wavelet Transform (CWT) of a signal s(t) is given by (Eq 1): 

 

𝐶(𝑎, 𝑏) =
1

√|𝑎|
∫  
∞

−∞
 𝑠(𝑡)𝜓∗ (

𝑡−𝑏

𝑎
) 𝑑𝑡                                 (1) 

 

where a represents the scale, bb is the translation, and ψ∗ is the complex conjugate of the mother wavelet function. 

EMD decomposes non-linear and non-stationary signals into a finite set of Intrinsic Mode Functions (IMFs). A signal x(t)x(t) can be 

expressed as (Eq 2): 

 

𝑥(𝑡) = ∑  𝑛
𝑖=1  𝐼𝑀𝐹𝑖(𝑡) + 𝑟𝑛(𝑡)

                                       (2) 

 

where IMFi(t) represents each extracted intrinsic component, and rn(t)r is the final residual. 

CNNs are employed for spatial feature extraction from the preprocessed sensor data. The core operation involves a convolution between 

input x and kernel w (Eq 3): 

 

z=x∗w+b                     (3) 

 

Where b is the bias term. The extracted features are passed through non-linear activation functions to improve model representation. 

LSTM networks are used for learning the temporal dependencies in the extracted features. The memory cell updates its internal state as 

(Eq 4): 

 

𝐶𝑡 = 𝑓𝑡 ⊙𝐶𝑡−1 + 𝑖𝑡 ⊙𝐶𝑡                                    (4) 

 

where ftf_t is the forget gate, iti_t is the input gate, and C~t\tilde{C}_t is the candidate cell state. 

The global model wtw_t is updated at each communication round tt as (Eq 5 and 6): 

 

                    (5) 

 

𝑤𝑡+1 = ∑  𝐾
𝑘=1  

𝑛𝑘

𝑛
𝑤𝑡
𝑘                          (6) 

where wtk is the local model at client kk, nk is the number of samples at client kk, and nn is the total number of samples. 
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3.2 Performance Metrics 

The performance of the proposed system was rigorously assessed using a range of evaluation metrics including Fault Detection Precision, 

Recall, F1-Score, Training Time, Communication Overhead, Scalability, and Security Level. The Fault Detection Precision measured the 

model’s ability to accurately identify fault conditions without false alarms, while the Recall emphasized its capacity to capture all real fault 

cases. The F1-Score provided a harmonic means of precision and recall ensuring balanced evaluation. Computational metrics such as 

Training Time, Communication Overhead, and Energy Consumption reflected the system’s operational efficiency, particularly in resource-

constrained edge computing environments. Scalability was measured by the number of devices the federated system could support while 

maintaining high prediction accuracy, and Security Level was rated based on exposure of raw data, which remained minimally federated 

learning framework. 

4. Results and Discussion 

This section presents a comprehensive evaluation of the performance differences between Federated Learning and Centralized models in 

the context of industrial fault detection systems. The comparison focuses on key metrics including fault detection precision, training time, 

communication overhead, scalability, security, and adaptability across various machine types. Through this analysis, the strengths and 

limitations of each approach are systematically highlighted, offering insights into their suitability for real-world deployment in distributed 

industrial environments. The following subsections detail the comparative performance of these models, supported by empirical results 

and statistical analysis. 

4.1 Performance Comparison of Federated Learning vs. Centralized Model 

In this comparison, the Federated Learning and Centralized models are evaluated across various industrial machine types for fault detec-

tion, training time, communication overhead, scalability, and security (Table 2). The CNC machine exhibits high precision and recalls in 

both models, with Federated Learning achieving a slightly higher precision at 92.5%. The Conveyor System and Hydraulic Press show a 

similar trend with Federated Learning outperforming Centralized models in terms of precision. In terms of training time, the Centralized 

model performs better in the Hydraulic Press scenario, taking only 9.2 hours compared to Federated Learning's 10 hours. Communication 

overhead is slightly higher for Federated Learning, especially with the Robotic Arm, while Federated Learning demonstrates greater 

scalability with 500 nodes versus the Centralized model’s 200 nodes. Security levels are higher in Federated Learning, notably with the 

Lathe Machine, which shows a high security level for Federated Learning compared to moderate in the Centralized model. 

 
Table 2: Performance Comparison of Federated Learning vs. Centralized Model 

Metric Federated Learn-

ing 

Centralized 

Model 

Fault Detection Precision 

(%) 

Recalling 

(%) 

Precision 

(%) 

F1-

Score 

Machine Type CNC Machine CNC Machine 92.5 91.7 93.1 0.92 

Fault Detection Precision Conveyor System Conveyor System 90.1 88.6 89.8 0.87 

Training Time (hrs) Hydraulic Press Hydraulic Press 10 9.5 9.2 0.90 
Communication Overhead 

(MB) 

Robotic Arm Robotic Arm 50 55 58 0.89 

Scalability (Nodes) Injection Molding Injection Mold-
ing 

500 200 220 0.91 

Security Level Lathe Machine Lathe Machine High Moderate High 0.88 

4.2 Fault Detection Precision Across various machines 

The fault detection precision across different machine types highlights the effectiveness of the Federated Learning model in fault detec-

tion in Table 3. CNC Machines, Milling Machines, and Hydraulic Presses show high precision values, with the CNC Machine achieving 

95.2% and the Milling Machine reaching 94.1%. The Conveyor System and Robotic Arm show slightly lower precision at 90.1% and 

88.6%, respectively. In terms of recall, the CNC Machine again stands out with 91.5%, while the Conveyor System and Robotic Arm 

have lower recall values, indicating room for improvement in detection for these machines. Training times vary across machine types, 

with the Lathe Machine taking the least time at 5 hours, and the Hydraulic Press requiring 6 hours. These results indicate that fault detec-

tion precision can vary significantly across different industrial equipment. 

 
Table 3: Fault Detection Precision Across Machine Types [15] 

Machine Type Fault Detection Precision 

(%) 

False Positive Rate 

(%) 

Recalling 

(%) 

Training Time 

(hrs) 

Precision 

(%) 

Accuracy 

(%) 

CNC Machine 95.2 4.8 91.5 8 94.7 92.5 
Conveyor System 90.1 9.9 85.6 7 88.6 89.1 

Hydraulic Press 93.8 6.2 92.3 6 94.0 91.9 

Robotic Arm 88.6 11.4 84.5 9 86.3 87.0 
Injection Mold-

ing 

91.4 8.6 89.2 8 90.0 90.8 

Lathe Machine 89.7 10.3 87.1 5 88.9 89.2 
Milling Machine 94.1 5.9 93.7 7 94.5 94.0 

Welding Ma-

chine 

92.3 7.7 90.8 6 91.2 92.0 

4.3 Feature Extraction Comparison 

A comparison of feature extraction methods, Wavelet Transform and EMD, reveals significant differences in their performance. The 

Signal-to-Noise Ratio (SNR) is higher for EMD at 42.3 compared to Wavelet Transform's 40.5, suggesting better noise resilience with 

EMD. In terms of computational complexity, Wavelet Transform is faster, taking only 120 ms compared to EMD’s 145 ms. Feature ac-

curacy is slightly higher for EMD at 93.2%, while Wavelet Transform achieves 92.0%. When it comes to time frequency analysis and 
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data processing efficiency, both methods exhibit high efficiency, with EMD slightly outperforming Wavelet Transform. The combined 

approach of Wavelet and EMD results in the highest feature accuracy (94.5%) and efficient data processing (92.0%), albeit at the cost of 

longer feature extraction times (Table 4). 

 
Table 4: Feature Extraction Comparison: Wavelet Transform vs. EMD 

Feature Extraction 
Method 

Signal-to-Noise 
Ratio (SNR) 

Computational 
Complexity (ms) 

Feature Accu-
racy (%) 

Feature Extraction 
Time (ms) 

Time Frequency 
Analysis 

Data Processing Ef-
ficiency (%) 

Wavelet Transform 40.5 120 92.0 45 High 88.3 

EMD 42.3 145 93.2 50 Medium 90.1 
Combined (Wave-

let+EMD) 

43.0 175 94.5 60 High 92.0 

4.4 Computational Efficiency  

Federated Learning models, such as CNN-LSTM and SVM, demonstrate varying computational efficiencies. The CNN-LSTM model in 

Federated Learning requires 15 hours for local training and 5 hours for communication, with an energy consumption of 1200 J and a 

model size of 150 MB. The SVM model is faster in terms of communication time but slightly less computationally efficient. The central-

ized CNN-LSTM model, however, requires 20 hours of training time and consumes 2000 J of energy, significantly higher than the Feder-

ated Learning models. This comparison underscores the more distributed nature of Federated Learning, which leads to greater scalability 

but also increased communication time compared to centralized models (Table 5). 

 
Table 5: Computational Efficiency of Federated Learning Models 

Model Type Local Training 

Time (hrs) 

Communication 

Time (hrs) 

Model Size 

(MB) 

Energy Consump-

tion (J) 

Training 

Nodes 

Scalability 

Factor 

Federated Learning (CNN-

LSTM) 

15 5 150 1200 500 1.4 

Federated Learning (SVM) 12 3 120 1000 450 1.3 
Centralized Model (CNN-

LSTM) 

20 N/A 200 2000 200 0.9 

 

Fig 4 illustrates the comparative predictive performance of various models on the validation dataset, each trained using a consistent window 

size of 30. Subfigure (a) showcases the Federated Learning model leveraging a CNN-LSTM architecture, which demonstrates robust fault 

detection capability and high prediction stability across the validation set, owing to its effective spatiotemporal feature extraction. In sub-

figure (b), the Federated Learning model based on SVM exhibits slightly lower predictive accuracy but maintains strong generalization in 

distributed data scenarios, highlighting its suitability for environments with limited computational resources.  

 

 
Fig. 4: Predictive performance of models on validation partition trained using a window size of 30. (a) Federated Learning (CNN-LSTM) (b) Federated 

Learning (SVM). (c) LSTM encoder–decoder. (d) Centralized Model (CNN-LSTM) 

 

Subfigure (c) presents the LSTM encoder–decoder model, which performs well in capturing sequential dependencies but shows moderate 

sensitivity to data noise compared to federated approaches. Lastly, subfigure (d) depicts the Centralized CNN-LSTM model, which, alt-

hough it benefits from centralized data aggregation, shows a performance gap under dynamic or heterogeneous conditions, emphasizing 

the advantages of federated architecture for real-world fault detection tasks in distributed manufacturing systems. 

4.5 Training Time  

In terms of training time, Federated Learning models generally require more time than their Centralized counterparts. The CNN-LSTM 

model in Federated Learning takes 25 hours compared to the Centralized model's 20 hours. Communication overhead in Federated Learning 

is modest, particularly for the CNN-LSTM model (50 MB), while the Centralized model has no communication overhead. Despite the 

longer training time, Federated Learning offers significant advantages in terms of scalability, as seen with the large node count (500), 

compared to the Centralized model’s lower node count of 200. Additionally, Federated Learning models exhibit higher training efficiency, 

emphasizing their potential for use in larger, distributed systems (Table 6). 
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Table 6: Training Time Comparison (Federated vs. Centralized Models) 

Model Type Federated Training 

Time (hrs) 

Centralized Training 

Time (hrs) 

Data Size 

(GB) 

Communication 

Overhead (MB) 

Training Effi-

ciency (%) 

Energy Con-

sumption (J) 

Federated Learning 

(CNN-LSTM) 

25 18 50 50 88.3 1200 

Federated Learning 
(SVM) 

22 15 48 45 85.2 1100 

Centralized Model 

(CNN-LSTM) 

20 N/A 55 N/A 90.1 1500 

Centralized Model 

(SVM) 

18 13 47 N/A 87.8 1300 

4.6 Model Accuracy for Fault Classification 

Federated Learning models, particularly CNN-LSTM, exhibit high accuracy in fault classification, with a notable 95.3% accuracy, which 

is higher than the Centralized model's accuracy of 91.8%. Precision is also higher in Federated Learning, with the CNN-LSTM model 

reaching 93.5%, surpassing the Centralized model's 90.0%.  
 

 
Fig. 5: Model accuracy 

 

The SVM models in both Federated and Centralized Learning show lower performance in terms of precision and recall, with Federated 

Learning's SVM model achieving 91.8% precision compared to 86.3% in the Centralized SVM model given in Fig 5 and Table 7. These 

results indicate that Federated Learning can deliver superior performance in fault classification tasks, particularly in distributed manufac-

turing environments. 

 
Table 7: Model Accuracy for Fault Classification 

Model Type Accuracy 

(%) 

Precision 

(%) 

Recalling 

(%) 

F1-

Score 

Training Time 

(hrs) 

Fault Detection Precision 

(%) 

Federated Learning (CNN-

LSTM) 

95.3 93.5 91.7 0.92 25 92.5 

Federated Learning (SVM) 93.5 91.8 89.3 0.89 22 90.1 
Centralized Model (CNN-

LSTM) 

91.8 90.0 87.2 0.86 20 85.3 

Centralized Model (SVM) 89.7 86.3 83.5 0.82 18 80.5 

4.7 Adaptability of the Model  

The adaptability of both Federated Learning and Centralized models under varying operational conditions such as high vibration, variable 

load, and high temperature reveals that Federated Learning generally outperforms the Centralized model in terms of accuracy and fault 

detection precision. 

 

 
Fig. 6: Model adaptability [20] 
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For example, under high vibration, Federated Learning achieves 94.6% accuracy and 92.3% fault detection precision, whereas the Central-

ized model only achieves 88.5% and 86.3%, respectively provided in Fig 6 and Table 8. This trend is consistent across all test conditions, 

highlighting the robustness and reliability of Federated Learning models in dynamic environments. 

 
Table 8: Adaptability of the Model to Operational Conditions 

Condition Federated Learning 
Accuracy (%) 

Centralized Model 
Accuracy (%) 

Response 
Time (ms) 

Fault Detection 
Precision (%) 

Training 
Time (hrs) 

Environmental 
Impact (J) 

High Vibration 94.6 88.5 320 92.3 9 1100 

Variable Load 93.2 85.4 330 89.0 8 1080 
High Temperature 92.7 89.1 310 91.8 7 1040 

Low Signal-to-

Noise Ratio 

91.9 84.7 340 89.5 6 1025 

Unstable Power 

Supply 

93.4 87.3 325 90.2 5 1030 

 

Fig. 7 shows how model accuracy changes over time (10 FL iterations) when different aggregation approaches are used on the server. It is 

inferred that the FedAVG approach converges more rapidly than the FedSGD. In both approaches, the final model accuracy reaches around 

95%. Regarding runtime, FedSGD requires 65 rounds to train the model, whereas FedAVG needs 60 rounds 

 

 
Fig. 7: The impact of FL aggregation approaches (FedAVG versus FedSGD) on the accuracy and runtime. [25] 

4.8 Robustness 

Federated Learning models demonstrate superior robustness and generalization ability across various test scenarios, including multi-device 

setups and heterogeneous data sources given in Table 9. In the multi-device setup, Federated Learning achieves 95.1% accuracy, signifi-

cantly higher than the Centralized model's 88.3%. Similarly, Federated Learning models show better generalization ability, with 94.0% 

generalization ability in the multi-device setup compared to 85.3% in the Centralized model. This ability to generalize across different 

distributed systems makes Federated Learning more suitable for real-world applications, where data sources and devices are diverse. 

 
Table 9: Robustness and Generalization Across Distributed Systems 

Test Scenario Federated Learning 

Accuracy (%) 

Centralized Model 

Accuracy (%) 

Fault Detection 

Precision (%) 

Generalization 

Ability (%) 

Model Size 

(MB) 

Training 

Time (hrs) 

Multi-Device Setup 95.1 88.3 92.5 94.0 150 25 
Heterogeneous Data 

Sources 

94.5 89.4 93.0 91.7 145 23 

Edge Computing In-
tegration 

93.2 85.9 91.7 92.5 140 22 

Data Privacy 

Breaches 

90.4 81.7 89.1 90.5 160 28 

Fault Detection Ac-

curacy 

92.5 85.3 90.2 94.1 155 30 

4.9 Comparative Analysis 

In the context of secure AI-driven predictive maintenance, Federated Learning offers substantial advantages over the Centralized model 

(Table 10). Federated Learning provides high data privacy, fault detection precision (92.5%), and scalability (500 nodes), making it ideal 

for smart manufacturing environments. The Centralized model, in comparison, has lower data privacy and scalability, with only 200 nodes 

supported. Additionally, Federated Learning has a moderate training time of 25 hours, which is higher than the Centralized model's 18 

hours, but it delivers better overall accuracy (95.3% vs. 91.8%). These results highlight Federated Learning’s potential for secure, scalable, 

and efficient predictive maintenance in smart manufacturing. 

 
Table 10: Comparative Analysis of Federated Learning for Secure AI-Driven Predictive Maintenance in Smart Manufacturing [28] 

Aspect Federated Learn-
ing 

Centralized 
Model 

Fault Detection Precision 
(%) 

Accuracy 
(%) 

Scalability 
(Nodes) 

Data Pri-
vacy 

Data Privacy High Low 92.5 95.3 500 High 

Fault Detection Precision 92.5 85.3 92.5 91.8 500 High 

Scalability (Nodes) 500 200 91.8 90.1 500 High 
Training Time (hrs) 25 18 92.1 91.2 500 Moderate 

Accuracy (%) 95.3 91.8 91.9 90.0 500 High 

Communication Overhead 
(MB) 

50 N/A 92.3 90.5 500 Low 
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Smart factories (manufacturing) and Industry 4.0 are empowering each other, both often described in CPS architecture. However, the CPS 

architecture is not sufficient for Industry 4.0 or a manufacturing system, which is, by its very nature, socio technical. Like Industry 4.0 also 

focuses on intelligent (smart) manufacturing [47]. Moreover, there is an increasing need for customized/personalized products and sustain-

able manufacturing, as well as the emergence of Enterprise 2.0, socialized enterprises, crowdsourcing, social manufacturing, and open 

innovation, so social dimension should be as well considered in smart manufacturing/smart factories/ Industry 4.0, as illustrated in Fig 8. 

 

 
Fig. 8: Industry 4.0 as a social-technical revolution for producing customized/personalized products. (a) Manufacturing paradigm shift; (b) Industrial Rev-

olutions 

5. Conclusion 

In today’s rapidly evolving industrial landscape, the integration of artificial intelligence into smart manufacturing systems has emerged as 

a cornerstone for improving operational efficiency, minimizing downtime, and fostering predictive maintenance. However, securing sen-

sitive machine data while maintaining model accuracy remains a persistent challenge, especially in distributed industrial setups were cen-

tralized training exposes systems to potential security risks and scalability limitations. This study successfully addresses these hurdles by 

introducing a Federated Learning-based intelligent predictive maintenance framework that prioritizes data security, scalability, and fault 

detection accuracy.  

1. The proposed hybrid deep learning model, leveraging CNN and LSTM architectures, combined with advanced signal processing tech-

niques such as Wavelet Transform and Empirical Mode Decomposition (EMD), demonstrated exceptional performance across multiple 

dimensions.  

2. Specifically, fault detection precision achieved standout values—95.2% for CNC machines, 94.1% for milling machines, and 93.8% 

for hydraulic presses—highlighting the robustness of the federated approach in diverse industrial scenarios.  

3. Additionally, the federated model exhibited superior scalability, efficiently accommodating 500 nodes, while maintaining high security 

levels, particularly for sensitive machine types like the Lathe Machine.  

4.  The importance of combining Wavelet and EMD methods was further highlighted by the comparative analysis of feature extraction 

techniques which produced the highest feature accuracy of 94. 5 percent and increased data processing efficiency.  

5. Additionally, the CNN-LSTM-based Federated Learning model demonstrated remarkable energy efficiency using only 1200 J signifi-

cantly less than the centralized models 2000 J consumption. As the decentralized models continuously outperformed their centralized 

counterparts in terms of robustness and generalization, the predictive performance analysis further confirmed the federated approachs 

strength particularly in dynamic and real-world industrial conditions.  

Future research can examine the incorporation of sophisticated privacy-preserving techniques such as differential privacy and homomor-

phic encryption as well as adaptive model aggregation strategies to further improve learning efficiency and guarantee resilience against 

adversarial attacks in increasingly complex manufacturing networks even though the study confirms that Federated Learning paves the 

way for secure and scalable predictive maintenance in Industry 4. 0 ecosystems. 
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