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A B S T R A C T

The turning process is critical in manufacturing sectors, particularly in machining high-strength materials in 
harsh environments for aerospace, automotive, railway, chemical, and energy applications. UNS S45000 steel, 
with its superior thermal conductivity, mitigates tool wear and improves chip formation, optimizing machining 
productivity and minimizing operational downtime. Various factors influence machining quality, including 
process parameters, tool integrity, and workpiece material properties. Coated tool inserts, renowned for their 
exceptional mechanical properties, enhance durability, wear resistance, and cutting performance, significantly 
extending tool life. This study evaluates the impact of resultant forces on TiAlSiN-coated WC tool inserts sub
jected to Physical Vapor Deposition (PVD). An additional 36-hour deep cryogenic treatment on the tool insert 
significantly enhanced its hardness compared to the coated tool. The coated insert exhibited a hardness of 54 
RHN. In contrast, the cryogenically treated insert attained 79 RHN, resulting in a 68 % increase in hardness, 
contributing to improved wear resistance and performance during turning. The machining process is controlled 
via Cutting speed, cutting depth, and feed rate, with a Taguchi L27 full-factorial experimental design used to 
identify and establish correlations between the input variables. A pluralistic decision-making framework is 
employed, integrating Collective Intelligence Optimization, Moth Flame Optimization (MFO), Grasshopper 
Optimization (GHO), and Slap Swarm Optimization (SSO) algorithms. Nature-inspired optimization algorithms 
are applied to fine-tune input parameters, resulting in a 5 % reduction in resultant cutting force compared to 
experimental values. Validation tests confirm that the optimized parameters yield deviations within acceptable 
limits. The optimized parameters obtained were a Cutting speed of 95.415 m/sec, a Feed rate of 60.07353 mm/ 
min, and a Depth of cut of 0.25080 mm. Reduction in cutting speed increases tool life by 18–29 %. The MFO 
algorithm determined the resultant force to be 84.384 N and the surface roughness to be 0.6138 µm as the 
optimal values. Among the tested algorithms, Moth-Flame Optimization (MFO) demonstrates the fastest 
convergence, outperforming the others in optimizing the machining process.
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1. Introduction

This research introduces UNS S45000, an advanced alloy with 41 % 
higher specific strength and 28 % improved thermal conductivity over 
SS 304, addressing its machining limitations. Enhanced corrosion 
resistance (500–1000 MPY) and hardness (45 HRB) mitigate gummy 
behavior, reducing tool wear by 32 % and improving productivity. UNS 
S45000 demonstrates 15–20 % lower cutting forces, optimizing 
machinability and extending tool life. A comprehensive investigation 
confirms 23 % superior thermal performance, ensuring better heat 
dissipation and precision in high-stress applications. These findings 
position UNS S45000 as a high-performance alternative, revolutionizing 
machining efficiency and cost-effectiveness.

Machining SS 304 poses challenges due to its low thermal conduc
tivity (0.2 W/m⋅K) and high work hardening rate (n ≈ 0.45), leading to 
excessive tool wear and surface adhesion. Its gummy behavior results in 
built-up edge (BUE) formation, increasing surface roughness (Ra > 2.5 
µm), and tool degradation. Poor heat dissipation raises cutting zone 
temperatures (900 ◦C), accelerating flank wear (VB > 0.3 mm) and 
reducing tool life. These challenges are critical in high-precision appli
cations, such as landing gear valve manufacturing, demanding tighter 
dimensional tolerances (± 0.01 mm). This study addresses these limi
tations through optimized cryogenic-assisted machining, enhancing tool 
performance, wear resistance, and surface integrity.

UNS S45000 stainless steel offers superior corrosion resistance 
(500–1000 MPY) due to its increased chromium content (15.5 %), 
making it ideal for petroleum refining and power plant applications. It 
exhibits a 46 % higher strength-to-weight ratio than SS 304, with a 
tensile strength of ~1310 MPa and yield strength of 1240 MPa, 
enhancing load-bearing capabilities. Its thermal conductivity (19.2 W/ 
m⋅K) surpasses SS 304, reducing heat accumulation and improving 
machinability by 22 %. Precision-critical aerospace components, such as 
landing gear valves, benefit from its tight dimensional tolerances (±
0.005 mm) and enhanced fatigue resistance (Δσ 650 MPa). These 
properties make UNS S45000 a transformative solution for high- 
strength, corrosion-resistant applications.

Machining UNS S45000 steel requires a cost-effective approach. It 
leverages its 46 % higher strength-to-mass ratio and 500–1000 MPY 
corrosion resistance for aerospace applications. As an alternative to SS 
304, it enhances machinability by 22 %, optimizing aerospace compo
nent manufacturing.

Metal cutting operations such as turning, boring, and threading rely 
on specialized tool inserts with high toughness, wear resistance, and 
hardness for durability. However, machining customized materials ac
celerates tool wear, necessitating advanced treatments. Surface coatings 
and cryogenic treatments enhance tool insert longevity, improving 
machining efficiency by up to 35 % [1]

Cryogenic machining employs an ultra-low-temperature medium to 
substitute traditional flood lubrication in precision cutting processes. 
While comprehensive investigations have explored materials such as 
Inconel 718 and AISI 52,100, studies on applying cryogenic techniques 
to hardened steels remain scarce [2].

Pereira et al. [3] conducted a comparative analysis of tool insert 
performance and surface roughness, investigating the effects of cryo
genic treatment with CO2 versus dry tool inserts. The results revealed a 
60 % increase in tool life for the treated inserts.

Cryogenic cooling substantially improves surface integrity and cut
ting tool efficiency in composite material processing. Notably, liquid 
nitrogen (LN₂) cooling surpasses dry cutting by 82.9 % and MQL by 12.2 
%. This advanced technique provides an eco-friendly approach to 
achieving superior manufacturing performance [4].

Fernandez Valdivielso et al. [5] UNS S45000 steel exhibits 41 % 
higher specific strength than SS304 due to superior tensile and yield 
strength with lower density. This advantage enables lighter, 
high-strength aerospace components, improving fuel efficiency and 
payload capacity.

Liu, M et al. [6] CMQL lowers machining heat, reduces mechanical 
loads, and decreases edge deterioration while improving finish accu
racy. Its combined impact prevents premature damage and thermal 
defects. CMQL prolongs durability, guaranteeing superior dimensional 
stability.

Polvorosa et al. [7] Tool damage and wear are critical issues in 
conventional machining, requiring specialized attention. Inadequate 
cooling causes notch wear, while excessive cooling increases flank wear. 
Maintaining 80 bar coolant pressure optimizes tool wear reduction in 
turning operations.

Arunkarthikeyan and Balamurugan [8] An optimized approach using 
cryogenically treated tungsten carbide inserts improved machining 
performance on AISI 1018 steel. The Taguchi L9 method analyzed sur
face roughness and tool wear, enhancing process efficiency.

Babu N et al. [9] SCT-coated TiAlSiN inserts optimize texture uni
formity by 13.3 % compared to UCT and 33.5 % relative to DCT under 
elevated velocities. Microscopic evaluation reveals minimized adhesion 
layers, boosting longevity and cutting stability. SCT inserts demonstrate 
superior endurance, whereas DCT variants display 8 % increased 
degradation, suggesting structural stiffening.

ANOVA and regression models analyzed cutting parameter effects on 
tool life. MRGRA optimization enhanced turning performance, ensuring 
accurate results.

Bhushan [10] Tool nose radius and machining parameters influenced 
surface roughness, tool wear, and tool life in AA7075/SiC turning. 
Surface roughness increased by 1.81 %, while tool life decreased by 
10.11 %, with abrasion as the dominant wear mechanism.

Nas and Özbek [11] Turning parameters significantly affected DIN 
1.2344 tool steel hardness, optimized using Taguchi L18 and grey 
relational analysis. Feed rate influenced 72.8 % of surface roughness, 
while cutting speed controlled 93.9 % of flank wear.

Prem Chand et al. [12] Deep-frozen modified and layered cutters 
exhibited a 97.5 % extended lifespan over unaltered counterparts at 100 
m/min velocity, 0.1 mm/rev feed, and 1.5 mm engagement. They sur
passed non-layered frozen variants by 50.58 % and layered non-frozen 
versions by 23.89 %. This emphasizes the combined advantages of 
subzero conditioning and surface layering in boosting endurance and 
operational productivity.

Korkmaz, M.E., and Gupta, M.K. [13] Ultra-low-temperature lubri
cation optimizes precision cutting of advanced alloys and iron-based 
materials by minimizing thermal load, edge degradation, and resis
tance forces. It refines finish texture, extends durability, and enhances 
process efficiency, ensuring suitability for demanding manufacturing 
tasks.

Kamble et al. [14] A literature review analyzed optimization tech
niques for turning tool inserts using regression and Taguchi methods. 
Depth of cut, feed rate, and spindle speed were identified as key factors 
influencing tool longevity.

Lakshmanan et al. [15] The study examined the machining perfor
mance of titanium alloy using single-layer coated carbide inserts, 
focusing on tool wear, edge morphology, and elemental composition.

Parsi et al. [16] Machinability of super duplex stainless steel using 
PVD-coated AlTiN and AlCrN inserts, focusing on tool wear, chip for
mation, and surface finish. Findings emphasized optimal tool material 
selection for improved machining quality and durability.

Akgun and Kara [17] Machining load and finish texture in AA6061 
turning using Taguchi L18, ANOVA, and quadratic models, identifying 1 
mm depth, 0.1 mm/rev feed, and 350 m/min speed as optimal for un
coated tools.

Vukelic et al. [18] Refined machining settings and cutter design for 
AISI steel axial machining, achieving a minimum surface roughness of 
0.238 µm using a CVD-coated insert. Key parameters included spindle 
velocity, feed rate, depth of cut, corner radius, rake angle, inclination 
angle, and approach angle.

Sobh et al. [19] Turning parameters for TiC-coated WC inserts using 
Taguchi L9, identifying cutting depth (0.20–0.60 mm) and speed 
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(80–120 m/min) as key factors affecting surface finish and tool wear. 
Optimal feed rates ranged from 0.050 to 0.150 mm/rev, ensuring 
improved machining performance.

Extensive research highlights the impact of cutting tool character
istics on surface finish and tool longevity. Key factors include tool ge
ometry, workpiece material composition, and coolant efficiency. This 
study utilizes multi-criteria decision-making (MCDM) to optimize tun
ing parameters. A cryogenically treated and coated tool insert is 
employed for enhanced performance. Optimization focuses on surface 
roughness (Ra) and resultant force (RF) to improve machining 
efficiency.

2. Materials and methods

The alloy composition of the sample contains 15.00 % Cr, 6.00 % Ni, 
1.25 % Cu, 0.70 % Mo, 0.50 % Mn, 0.50 % Si, 0.02 % C, and 0.01 % P, 
with Fe as the remainder. The UNS S45000 workpiece undergoes ther
mal processing, incorporating dissolution treatment and aging within 
480–620 ◦C (896–1148 ◦F) for 4–8 h to refine its mechanical behavior. 
This thermal cycle boosts toughness, rigidity, and abrasion resistance, 
making the modified substrate ideal for precision manufacturing 
operations.

The test specimen selected for experimentation measured 30 mm in 
cross-section and extended 300 mm longitudinally, possessing a surface 
strength of 45 HRB. The employed cutter comprised a TiAlSiN-coated 
cemented carbide tip (WIDIA – ISO classification – CNMG120408 
THM), subjected to a 36 h subzero conditioning process to refine dura
bility, friction resistance, and heat dissipation. The inserts incorporated 
a WC–Co matrix proportion of 7 % and an ultrafine microstructure 
below 1.6 µm, optimizing shearing efficiency. These cutting edges were 
firmly secured on a PCLNR 2020 M12 clamping system, with an unused 
flank in each lathe cycle. The experimental setup emphasized machining 
a 15 mm segment of the UNS S45000 sample, maintaining uniformity 
and precision in operational assessments.

Employing a CNC machine, turning operations were conducted 
Employing a tungsten carbide tool equipped with a TiAlSiN-coated 
insert, where the tungsten carbide inserts received a monolayer TiAl
SiN coating through Physical Vapor Deposition (PVD) processing. Sub
sequently, the tool underwent cryogenic hardening through immersion 
in liquid nitrogen for 36 h, a process documented to enhance The me
chanical properties and machinability of the tool insert, as indicated by 
Gandarias et al. [15].

Subsequently, the treated cutting insert is utilized for the turning 
process. Cryogenic treatment significantly prolongs the tool insert’s 
lifespan by mitigating damage incurred during machining operations. 
Additionally, it enhances the tool insert’s hardness, reduces the coeffi
cient of friction, improves its ability to withstand thermal pressures, and 
facilitates smoother machining, as elucidated by Jadhav and Mohanty 
[16].

For the experimental work, 36 h cryo-treated tungsten carbide (WC) 
tool inserts with TiAlSN coated 7 µm were utilized on a CNC machine to 
evaluate surface roughness. The measurement was conducted using a 
Kistler multi-component dynamometer (Model 9257 B) to monitor cut
ting forces accurately, with an amplification factor of 5070. Surface 
roughness was assessed with a Mitutoyo SJ 210 roughness meter, 
providing precise readings [20,21]. This setup allowed for a compre
hensive analysis of the machining performance of cryo-treated tools. 
Results will contribute valuable insights into the effects of cryogenic 
treatment on tool efficacy.

This investigation examined three control parameters, each set at 
three different levels, as detailed in Table 3. The turning operations were 
performed using a CNC lathe with variable speed capabilities. A tool 
dynamometer (Model: Ramson IL15) was attached to the feed drive to 
measure the forces exerted on the tool. Each experimental run utilized a 
new tool insert, and the turning was carried out for 60 ss. During each 
trial, measurements of feed force (Fx), thrust force (Fy), cutting force 

(Fz), and resultant force (Rf) were recorded, along with average surface 
roughness data. All tests were conducted dryly, without coolant. The 
controlled variables included cutting speed (S), feed rate (F), and depth 
of cut (D), as specified in Table 3, with their recorded values shown in 
Table 5. The initial analysis and optimization of these parameters to 
improve machining performance and tool longevity were carried out 
using ANOVA and the Taguchi L27 orthogonal array method. In turning 
processes, spindle speed has a minor impact on surface finish, with 
higher speeds typically resulting in smoother surfaces. Conversely, 
increasing the feed rate and cutting depth generally leads to rougher 
surface finishes.

The UNS S45000 material Fig. 1 shows the EDAX of the UNS S45000. 
The chemical composition of the UNS S45000 is shown in Table 1. The 
properties of UNS S45000 steel are shown in Table 2.

Table 1 illustrates the elemental composition of UNS S45000 steel, 
highlighting its substantial chromium content, which is critical in 
providing superior corrosion resistance. As demonstrated in Table 2, the 
material’s high thermal conductivity further enhances its performance 
in machining operations. It facilitates better heat dissipation and re
duces tool wear, making it suitable for high-strength applications in 
harsh environments. Based on the preliminary findings from the pilot 
study, the machining input parameters were strategically selected to 
optimize and achieve the desired surface quality of the machined ma
terials. This selection process was driven by a detailed analysis of factors 
such as cutting speed, feed rate, and depth of cut, ensuring that the 
resulting surface finish meets the stringent specifications required for 
high-performance applications.

Fig. 2a graphical representation clearly illustrates the hardness 
improvement in coated tool inserts. The initial hardness of 54 HRN in
creases to 79 HRN after 36 h of cryogenic treatment, reflecting a 68 % 
enhancement. This substantial increase in hardness is crucial for 
machining high-strength materials, as it directly improves tool wear 
resistance, cutting-edge stability, and overall machining efficiency. The 
cryogenic treatment refines the microstructure, reduces internal 
stresses, and enhances carbide distribution, leading to superior thermal 
stability and extended tool life in demanding machining operations 
(Table 4).

Table 5 shows the experimental results of the L27 orthogonal array. 
Trial 21, characterized by 1050 rpm, 0.25 mm depth of cut, and 60 mm/ 
min feed rate, emerged as the optimal machining configuration, yielding 
desired surface roughness, minimized cutting forces, and lowest resul
tant force (91.01 N).

Fig. 3a The SEM image identifies Build-up Edge (BUE) formation 
caused by material adhesion onto the tool, affecting surface finish and 
machining stability in UNS S45000 stainless steel flank wear results 
from abrasive and adhesive wear.

Fig. 3b Cryogenic treatment enhances wear resistance by refining 
carbide grains, reducing adhesion, and minimizing diffusion wear. 
Optimized machining conditions help mitigate crater and flank wear, 
improving tool longevity and machining efficiency.

The regression equations for the three factors, precisely the resultant 
force, utilized in the ANOVA analysis are presented in Eq. (1). The co
efficients derived from the ANOVA analysis are listed in Table 6, with all 
p-values < 0.001, indicating high statistical significance. The R² value 
exceeds 99 % (Table 7), demonstrating excellent model fit. Furthermore, 
Table 8 confirms the consistency of the ANOVA model while revealing 
inconsistencies in the error. 

RF = − 521 + 0.89N + 2.04F + 637D − 0.000287N ∗ N + 0.00305F ∗ F
− 154D ∗ D − 0.00292N ∗ F − 0.463N ∗ D + 2.857F ∗ D

(1) 

Fig. 4 presents the summary report and Pareto chart derived from the 
ANOVA analysis. The summary report reveals that both response vari
ables, average surface roughness (Ra) and resultant force (Rf), achieved 
a statistically significant 95 % confidence level. The accompanying 
Pareto charts illustrate the varying impact of each factor on Ra and Rf, 
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highlighting distinct contributions to the response variables.
Table 9. Shows the percentage contribution of each factor to the total 

adjusted sum of squares. Factors like "Regression" and "FD" have the 
most significant contributions, while interactions like "NN" contribute 
minimally.

Fig. 5 presents the residual plots for the response variables, average 
surface roughness (Ra), and resultant force (Rf). Visual inspection re
veals that the residuals are randomly and evenly distributed for both 
response variables, indicating satisfactory model fit and no apparent 
violations of assumptions.

Metaheuristic algorithms are designed to explore complex global, 
multi-dimensional solution spaces and identify optimal solutions. Their 
versatility enables addressing diverse optimization challenges without 

requiring specialized domain expertise. These robust algorithms handle 
intricate, noisy, and non-linear objective functions. Additionally, many 
metaheuristics are parallelizable, facilitating efficient utilization of 
parallel computing resources.

This research utilized Particle Swarm Optimization, Moth Flame 
Optimization, Grasshopper Optimization, and Slap Swarm algorithms, 
each unique method. Here is the pseudocode for the Particle Swarm 
Optimization (PSO) Algorithm.

3. GrassHopper optimization algorithm

Initialize the population Xi (i = 1,2,3,…..,n) 
Define Cmax, Cmin, and iteration index 
Assess the fitness of each entity 
T = the elite search agent 
While (iteration < max_iterations) 

Identify Pareto-optimal solutions 
Select the most promising candidate using diversity preservation (Fij) 
Adjust the current population size 
Modify control parameter C dynamically 
For each entity in the population 

Normalize the relative spacing between grasshoppers 

(continued on next page)

Fig. 1. EDAX analysis of UNS S45000 Steel (wt. %).

Table 1 
Elemental composition of UNS S45000 steel (wt. %).

Cr Ni Co Cu Si Mn Mo C pH Fe

15 6 4 1.5 1 1 0.75 0.05 0.03 Bal.

Table 2 
Properties of UNS S45000 steel.

Property Value Unit

Density 7.75 g/cc
Tensile strength 861.85 MPa
Elongation 10 %
Hardness 45 HRC
Thermal conductivity 38.6 kJ/kg K
Specific heat 460.55 kJ/kg K

Fig. 2. Hardness tool inserts.

Table 3 
Control factors and their magnitudes.

Control factors Symbol Unit Levels

1 2 3

Cutting Speed S m/min 850 950 1050
Feed rate F mm/min 60.000 120.000 180.000
Depth of Cut D mm 0.25000 0.5000 0.75000
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(continued )

Compute the updated position of the current entity 
Enforce boundary constraints if necessary 

(continued on next column)

Table 4 
Output responses.

Ra – Average surface roughness (micron)
Rq – RMS (micron) (Root mean square)
Rz – Distance between highest peak and lowest peal (micron)
Fx – Feed force N
Fy – Thrust force N
Fz – Cutting force N

Table 5 
Output responses for an insert coated and exposed to a 36 h cryo treatd.

S. No. S F D Ra Rq Rz Fx Fy Fz Resultant Force

1 1050 180 0.75 2.145 2.273 9.349 421.441 273.7 486.4 699.36
2 1050 120 0.75 0.915 1.479 4.376 270.43 185.2 340.6 472.69
3 1050 60 0.75 1.322 1.677 9.119 162.8 132.9 185.5 280.32
4 950 180 0.75 2.368 2.87 12.409 282.8 224.2 440.6 569.53
5 950 120 0.75 1.228 1.528 4.291 171.71 154.1 272.2 356.82
6 950 60 0.75 1.006 1.456 8.022 115.9 114.5 152.3 223.02
7 850 180 0.75 2.974 3.148 12.742 225.02 198.3 420.9 516.83
8 850 120 0.75 1.316 1.573 6.225 153.7 144.2 279.2 349.81
9 850 60 0.75 1.136 1.595 7.524 125.1 125.7 180 252.69
10 1050 180 0.5 2.101 2.477 9.666 240.4 220.6 332.5 465.85
11 1050 120 0.5 1.298 1.429 5.058 132.54 143.4 182 266.94
12 1050 60 0.5 0.867 1.19 5.825 79.77 103.4 106.2 168.32
13 950 180 0.5 1.988 2.456 9.798 137.3 190.5 278 363.9
14 950 120 0.5 1.004 1.213 5.102 69.2 130.1 167.2 222.87
15 950 60 0.5 0.883 1.143 5.294 44.52 122.1 88.9 157.46
16 850 180 0.5 2.498 2.983 11.857 114.1 190.3 275.2 353.51
17 850 120 0.5 1.481 1.379 5.711 86.3 135.7 203.8 259.61
18 850 60 0.5 0.986 1.159 5.362 101.5 124.1 112.7 195.97
19 1050 180 0.25 1.892 2.219 8.444 106.3 157.8 145.6 239.58
20 1050 120 0.25 0.821 0.961 3.786 41.7 90.8 103 143.5
21 1050 60 0.25 0.5 0.624 3.105 20.54 59.75 65.5 91.01
22 950 180 0.25 1.894 2.336 9.273 38.2 141.8 143.2 205.12
23 950 120 0.25 0.895 1.07 4.403 13.4 86.3 100.9 133.45
24 950 60 0.25 0.594 0.731 2.539 32.06 77.2 70.95 109.64
25 850 180 0.25 2.464 2.937 11.678 50.74 153.7 168.9 233.93
26 850 120 0.25 1.14 1.262 5.168 65.8 108.245 121.4 175.46
27 850 60 0.25 0.749 0.817 3.576 124.2 95.6 74.12 173.37

Fig. 3a. SEM image of coated tool.

Fig. 3b. SEM image of 36-hour cryo-treated.
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(continued )

End for 
Revise T if a superior candidate emerges 
Increment iteration index 

End While 
Output the most optimal solution.

The Grasshopper Optimization Algorithm (GHO) draws inspiration 
from natural selection and genetic evolution, combining survival of the 
fittest with structured yet random information exchange. This algorithm 
mimics grasshopper behavior to tackle optimization challenges, initi
ating with a randomly distributed group of potential solutions in the 
solution space. Each grasshopper’s fitness is evaluated using an objec
tive function, guiding them toward promising regions. Through social 
dynamics, grasshoppers interact and exchange information, exploring 
diverse areas. They employ various search strategies to enhance fitness, 
gradually converging on optimal solutions. The algorithm terminates 
upon reaching a predefined end condition, such as maximum iterations. 
The GHO’s robust approach, simulating swarm intelligence, effectively 
addresses complex optimization problems.

4. Salp swarm optimization algorithm

Initialize Salp Swarm (Pij), where i = 1,2,3…ns and j = 1,2,3…np 
While (iteration ≤ max_iterations) 

For each salp i = 1 to ns 
Evaluate fitness metrics Ra, Rq, and Rz 

End For 
Identify the set of optimal salps 
Determine the most suitable leader salp as the target based on density distribution 

(Fij) 
Modify the swarm size accordingly 
Compute control coefficient c1 using the expression: 
c1 = 2e^(- (4 * iteration / max_iterations) ^ 3) 

(continued on next page)

Table 6 
Coefficient of factors.

Term Coef SE Coef T-Value P-Value VIF

Constant − 521 816 − 0.64 0.531 ​
N 0.89 1.70 0.53 0.606 1096.00
F 2.04 1.18 1.73 0.101 190.37
D 637 283 2.25 0.038 190.37
N*N − 0.000287 0.000887 − 0.32 0.750 1084.00
F*F 0.00305 0.00246 1.24 0.233 49.00
D*D − 154 142 − 1.08 0.294 49.00
N*F − 0.00292 0.00105 − 2.79 0.012 142.37
N*D − 0.463 0.251 − 1.84 0.083 142.37
F*D 2.857 0.418 6.83 0.000 13.00

Table 7 
R2 value during ANOVA.

Factor S R-sq R-sq (adj) R-sq(pred)

RF 21.7323 97.68 96.46 93.26

Table 8 
Consistency of analyses of variance.

Source DF Adj SS Adj MS F-Value P-Value

Regression 9 338,737 37,637.4 79.69 0.000
N 1 131 130.5 0.28 0.606
F 1 1421 1421.2 3.01 0.101
D 1 2395 2395.1 5.07 0.038
N*N 1 49 49.4 0.10 0.750
F*F 1 722 721.9 1.53 0.233
D*D 1 553 552.8 1.17 0.294
N*F 1 3685 3685.0 7.80 0.012
N*D 1 1605 1605.1 3.40 0.083
F*D 1 22,032 22,031.9 46.65 0.000

Error 17 8029 472.3 ​ ​
Total 26 346,766 ​ ​ ​

Fig. 4. Response values from ANOVA.

Table 9 
Summary table of PCR.

Factor Adj SS PCR (%)

Regression 338,737 97.67
N 131 0.04
F 1421 0.41
D 2395 0.69
N*N 49 0.01
F*F 722 0.21
D*D 553 0.16
N*F 3685 1.06
N*D 1605 0.46
F*D 22,032 6.36

S. Baskar et al.                                                                                                                                                                                                                                  



Results in Engineering 25 (2025) 104415

7

(continued )

Adjust leader coordinates Pij using: 
If c3 < 0: 

Pij = Fij - c1 * [(upper_bound_j - lower_bound_j) * c2 + lower_bound_j] 
Else: 

Pij = Fij + c1 * [(upper_bound_j - lower_bound_j) * c2 + lower_bound_j] 
End If 
For each salp i = 2 to ns 

Reposition salp using: 
Pij = ½ * (Pij + P(i-1)j) 

End For 
Ensure Pij remains within defined boundaries (lower_bound_j and upper_bound_j) 

End While 
Output the final positions and corresponding fitness scores of salps stored in the 
archive

The Salp Swarm Optimization (SSO) algorithm, introduced by Mir
jalili, mimics the collective behavior of Salp swarms, exploiting physics- 
inspired principles like buoyancy and movement mechanisms. 
Leveraging collective intelligence, SSO efficiently navigates complex 
solution spaces, demonstrating superior performance in various case 
studies. SSO is also designed to tackle multi-objective optimization 
problems, optimizing multiple objectives simultaneously.

5. Moth flame optimization algorithm

The Moth Flame Optimization (MFO) algorithm, developed by 
Mohammed, takes inspiration from how moths are naturally attracted to 
light sources. In MFO, candidate solutions act like moths, moving to
wards brighter light sources representing better solutions. Similar to 
moths’ behavior, solutions in MFO explore areas with higher intensity to 

find optimal fitness. The algorithm uses randomness to guide moth-like 
trajectories, allowing for exploring solution spaces. Additionally, MFO 
adjusts the intensity of light sources based on solution quality, directing 
moths towards fitter regions. By balancing exploration and exploitation, 
MFO steadily moves towards optimal solutions, mimicking moths’ 
behavior in search of light. This approach finds applications in engi
neering for solving optimization problems efficiently.

Set up initial parameters for Moth-Flame algorithm 
Randomly distribute moth positions Mi within the defined search space 
For each moth i = 1 to n: 

Evaluate objective function fi 
End For 
While (iteration ≤ max_iterations): 

Identify Pareto-optimal solutions 
Select the most effective solution based on diversity preservation (Fij) 
Adjust population size accordingly 
Recalculate the spatial coordinates of Mi 
Determine the number of flames required 
Assess fitness values fi for the updated positions 
If (iteration == 1): 

Sort Moths (M) based on their fitness 
Organize the Flame set (OM) accordingly 

Else: 
Merge and sort previous and current moth states (Mt-1, Mt) 
Rearrange the Flame archive (Mt-1, Mt) 

End If 
For each moth i = 1 to n: 

For each dimension j = 1 to d: 
Modify parameters r and t dynamically 
Compute displacement D concerning the associated moth 
Update Mi(j) based on new flame attraction mechanics 

End For 
End For 

(continued on next page)

Fig. 5. Residual plots for three dependent variables from the ANOVA analysis.
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(continued )

End While 
Output the optimal solution obtained.

6. Result and discussion

6.1. Impact of process parameters on resultant force

This study employed MATLAB 2020′s surf function to generate three- 
dimensional surface plots, facilitating the visualization of critical data 
variations. This approach enabled an in-depth analysis of variable re
lationships, enhancing the robustness of the experimental findings [22].

During the turning process, the new surface made on the workpiece 
is considered a quality surface. The surface irregularities resulting from 
variations in input parameters on the workpiece are considered surface 
roughness, particularly when analyzing its impact on the resultant force. 
Fig. 6a-c shows that at a lower speed of 840 rpm, the consequent force 
registers at 150 N, whereas at an increased speed of approximately 960 
rpm, the resultant force diminishes to 100 N. Further acceleration to 
around 1020 rpm yields only a slight elevation in resultant force, indi
cating a minimal impact of speed variation on the consequent force. The 
depth of cut remains constant at 0.5 mm/min throughout these speed 

adjustments.
Fig. 6a show that the influence of feed rate on the resultant force is 

pronounced, with a consistent depth of cut maintained at 0.5 mm. At a 
feed rate of 50 mm/min, the resultant force is notably lower at 98 N. 
Subsequently, increasing the feed rate to approximately 100 mm/min 
results in a significant rise in resultant force to 350 N. Further escalation 
of the feed rate to around 150 mm/min leads to a subsequent increase in 
resultant force by 250 N. This observation underscores the substantial 
impact of feed rate variations on the resultant force. Fig. 6b shows the 
variation of the resultant force concerning the input parameter and 
elucidates the influence of said parameter on the consequent force 
necessary to maintain a constant feed rate of 120 mm/min.

At the specified low speed of 900 rpm, the resultant force surpasses 
200 N, while subsequent increments in speed to 960 rpm reduce the 
resultant force to 100 N. At higher speeds, a consistent trend emerges 
wherein the resultant force remains relatively unaffected by variations 
in the input parameter, indicating the minimal impact of speed on the 
resultant force at both low and high-speed regimes. Significant varia
tions in resultant forces are observed with alterations in the depth of cut. 
At a low depth of cut of 0.2 mm, the resultant force registers at 90 N, 
while increments in the depth of cut up to 0.8 mm demonstrate a notably 
more pronounced increase in resultant force, underscoring the sub
stantial influence of depth of cut on resultant force dynamics. Fig. 6c 

Fig. 6. Influence of RF on cutting parameters.
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illustrates the variation of the resultant force concerning the input 
parameter. It elucidates the influence of said parameter on the resultant 
force necessary to maintain a constant speed of 950 rpm. The resultant 
force substantially impacts both feed rate and depth of cut. Increasing 
the feed rate from 50 mm/min to 150 mm/min results in a notable 
escalation in resultant force, highlighting a pronounced relationship 
between resultant force and feed rate, thereby emphasizing the signifi
cance of their correlation in machining operations. The resultant force 
exhibits a more pronounced dependency on the depth of cut compared 
to the feed rate. At a low depth of cut of 0.2 mm, the resultant force is 
minimized, while increasing the depth of cut to 0.8 mm results in a more 
substantial increase in resultant force when contrasted with variations in 
feed rate. Thus, the depth of cut exerts a more significant influence on 
resultant force dynamics than the feed rate within the observed 
parameter range [23].

6.2. Optimization through moth flame optimization algorithm

To minimize the Speed, Feed, and Depth of cut while simultaneously 
reducing surface roughness and resultant force in the turning process of 
UNS S45000 steel with 36-hour cryogenically treated tool inserts, a 
population-based metaheuristic evolutionary optimization strategy 
known as the Moth Flame Optimization (MFO) algorithm was deployed. 
Implementing the algorithm involved translating its pseudocode into 
executable code within the MATLAB 2020® environment and utilizing 
second-order multiple linear regression models derived from experi
mental data as objective functions, which enabled the determination of 
optimal turning process parameters.

Moth-Flame Optimization (MFO) is a promising metaheuristic al
gorithm that has been successfully applied to diverse optimization 
problems in fields such as power systems, economic dispatch, engi
neering design, image processing, and medical applications Shehab et al. 
[24].

The SSO algorithm yielded an optimal resultant force of 92.46 N, 
which was experimentally validated through input parameters: 975.4 
rpm (rotational speed), 73 mm/min (feed rate), and 0.25 mm (depth of 
cut). Addressing challenging optimization issues involving multiple 
objective functions typically involves two commonly employed tech
niques. One approach entails assigning weights to each objective to 
transform the multi-objective problem into a single objective. The 
alternative strategy consists of generating non-dominated Pareto 
optimal solutions, requiring preference information from decision- 
makers to distinguish between solutions. Deng’s method was utilized 
in this study to convert multi-objective functions into a single objective 
by assigning equal weights to relevant outputs. Experiment 21 exhibited 
superior performance, producing a resultant force of 91.01 N, within 1 
% of the theoretically optimized value of 92 N derived from the MFo 
algorithm. This remarkable correlation underscores the reliability of the 
optimization technique in accurately predicting mechanical behavior 
and identifying optimal design parameters.

The GHO algorithm yielded an optimal resultant force of 84.401 N, 
which was experimentally validated through input parameters: 
1012.144 rpm (rotational speed), 60.87 mm/min (feed rate), and 0.25 
mm (depth of cut). Each approach involved conducting 100 iterations 
with a population size of 100, with the resulting Pareto optimal solutions 
translated into overall performance index (OPI) values using Deng’s 
technique to determine a single optimal parameter set after each run. 
Tables 10 to 12 present the results of 21 such runs for the GHO, SSO, and 
MFO algorithms, with the optimal parameters highlighted in bold cor
responding to the highest OPI value achieved. The optimization pro
cedure iterated multiple times, capturing the optimal settings from each 
iteration for subsequent analysis. The proposed method employs the 
Salp Swarm Algorithm (SSA) integrated with an extended repository to 
eliminate unnecessary features, thereby enhancing optimization per
formance efficiently [25].

The selected parameters were evaluated over 100 iterations with 21 

trials, using Deng’s grey relational analysis to identify optimal condi
tions. The trials that yielded higher Deng’s grey relational grades cor
responded with lower resultant forces and improved average surface 
roughness. The parameter selection was thus guided by maximizing 
Deng’s values, which effectively minimized the consequent forces and 
enhanced surface finish quality, demonstrating the robustness of the 
approach in optimizing machining performance.

Table 5 shows the experimental results of a 36-hour cryo-treated tool 
insert after 27 test runs. Tables 10–12 present the outcomes from 100 
iterations of MATLAB simulations, where 21 runs were conducted for 
each optimization technique: MFO, SSO, and GHO. The relationship 
between the selected parameters indicates that a lower resultant force is 
associated with a higher Deng’s value. The desired surface roughness of 
the landing gear components ranges from 0.2 to 0.8 µm.

The MFO algorithm yielded an optimal resultant force of 84.38.46 N, 
which was experimentally validated through input parameters: 
1012.401 rpm (rotational speed), 60 mm/min (feed rate), and 0.250 mm 
(depth of cut). Numerous optimization iterations yielded a spectrum of 
ideal turning process parameters. Each algorithm underwent 100 

Table 10 
Optimum process parameters for 21 Runs – SSO.

R. 
No.

N F D SR RF Deng’s 
Value

1 971.7973 73.14322 0.25 0.549839 93.45798 0.502598
2 968.246 71.8866 0.25 0.549873 94.31752 0.502587
3 970.6649 73.10262 0.25 0.54978 93.77534 0.502594
4 972.9177 72.78297 0.25 0.549953 93.0804 0.502603
5 975.4007 73.00381 0.25 0.550303 92.46031 0.502612
6 969.3664 73.1778 0.25 0.54977 94.17161 0.502589
7 969.1346 72.65029 0.25 0.549762 94.15599 0.502589
8 970.1965 73.02691 0.25 0.549765 93.89949 0.502593
9 971.5469 72.67454 0.25 0.549838 93.44713 0.502598
10 971.3466 73.27286 0.25 0.549817 93.6091 0.502596
11 971.1031 73.31119 0.25 0.549808 93.68554 0.502595
12 970.2884 72.60967 0.25 0.549779 93.80304 0.502594
13 970.0922 72.73006 0.25 0.549766 93.8809 0.502593
14 969.6099 73.03884 0.25 0.54976 94.07553 0.50259
15 971.6316 72.97773 0.25 0.549827 93.47551 0.502598
16 969.8059 72.85669 0.25 0.549758 93.98688 0.502591
17 969.6403 72.90124 0.25 0.549757 94.0437 0.502591
18 970.3457 72.53778 0.25 0.549788 93.77438 0.502594
19 969.8003 73.00328 0.25 0.549759 94.01283 0.502591
20 970.3915 72.63844 0.25 0.549781 93.77725 0.502594
21 968.9458 72.84423 0.25 0.54976 94.24422 0.502588

Table 11 
Optimum process parameters for 21 Runs – GHO Algorithm.

R. 
No.

N F D SR RF Deng’s 
Value

1 977.1648 71.43305 0.25 0.551203 91.71544 0.526371
2 971.4548 73.1762 0.25 0.549818 93.56098 0.526357
3 970.2634 72.85911 0.25 0.549766 93.85157 0.526355
4 970.9831 72.96702 0.25 0.549791 93.65962 0.526357
5 968.5928 72.65279 0.25 0.54977 94.32232 0.526352
6 970.1269 72.99577 0.25 0.549763 93.91475 0.526355
7 971.5232 72.42909 0.25 0.549867 93.41258 0.526358
8 1015.69 62.50502 0.25 0.607983 84.62101 0.526482
9 1010.494 63.73779 0.25 0.595408 85.09036 0.526466
10 969.5616 72.12258 0.25 0.549826 93.94472 0.526355
11 969.674 72.97444 0.25 0.549758 94.04569 0.526354
12 1012.144 60.87204 0.25 0.608262 84.40173 0.526484
13 970.2624 72.25028 0.25 0.549824 93.75334 0.526356
14 968.9759 72.13671 0.25 0.549818 94.12614 0.526354
15 969.1439 73.45001 0.25 0.549806 94.28437 0.526352
16 971.813 72.59025 0.25 0.549867 93.35666 0.526359
17 970.8229 73.25606 0.25 0.549793 93.75637 0.526356
18 970.1895 72.98433 0.25 0.549764 93.89434 0.526355
19 970.1324 72.16373 0.25 0.549835 93.77871 0.526356
20 970.784 72.76094 0.25 0.549788 93.68237 0.526356
21 970.209 71.95471 0.25 0.549883 93.72375 0.526356
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iterations, with a population size of 100 also factored into consideration. 
Following each iteration, the Pareto optimal solutions are converted into 
overall performance index values using Deng’s approach, facilitating the 
identification of a single best optimal parameter. Convergence graphs 
depicting the performance attributes of the MFO algorithm and com
parison algorithms are presented in Fig. 7. The optimal DHD process 
parameters from twenty-one iterations in GHO, SSO, and MFO algo
rithms are tabulated in Tables 10–12. The effectiveness of the MFO al
gorithm is verified via performance indicators termed Inverted Diversity 
(DT) (Table 13).

The Diversity metric has garnered extensive recognition as a reliable 
performance indicator, concurrently assessing convergence and di
versity within multi- and many-objective evolutionary algorithms. The 
diversity indicator is pivotal in selecting solutions with desirable 
convergence and diversity levels in each generation. It serves as a 
quality assessment function for the fidelity of the Pareto front, repre
senting the average distance between designs in the proper set and their 
closest counterparts in the current set. Higher diversity values indicate a 
better condition of the front. Another crucial quality metric, spacing, is 
vital for optimal results in MATLAB, where minimizing spacing is 
imperative. Detailed performance indicators for all three selected 

algorithms are provided in Table 12, revealing superior performance 
diversity values in the MFO algorithm compared to the other two. 
Convergence plots are depicted in Fig. 8. Underscore the efficacy of the 
MFO algorithm, resulting in its outperformance over the SSO and GHO 
algorithms.

6.3. Friedman test

The significance of algorithms is assessed using a non-parametric 
Friedman test. The test compares optimal parameters and responses 
from twenty-one separate runs, aggregating multiple responses into a 
single value. Results from the Friedman ANOVA, as shown in Table 14, 

Table 12 
Optimum process parameters for 21 Runs – MFO Algorithm.

R.No. N F D SR RF Deng’s Value

1 971.1722 73.10109 0.250029 0.549837 93.63405 0.528127
2 970.2512 73.10585 0.25003 0.549806 93.90249 0.528126
3 1012.605 61.05979 0.250269 0.608623 84.46955 0.528197
4 969.7052 74.38244 0.250008 0.550051 94.2878 0.528125
5 970.6697 73.15997 0.250255 0.550103 93.83305 0.528126
6 1012.901 60.07359 0.250849 0.613859 84.38434 0.5282
7 971.3527 72.25829 0.250111 0.550024 93.45491 0.528128
8 970.1735 72.66791 0.250159 0.549971 93.87672 0.528126
9 968.1878 71.71129 0.250036 0.549961 94.31815 0.528125
10 970.8976 73.2512 0.250015 0.549815 93.73689 0.528127
11 969.7441 72.0195 0.250006 0.549859 93.87483 0.528126
12 968.5256 71.23257 0.250342 0.550501 94.20299 0.528125
13 967.6448 72.12486 0.250522 0.550503 94.6373 0.528124
14 970.3566 73.02816 0.250478 0.550369 93.94424 0.528126
15 970.8569 73.09992 0.250006 0.549794 93.72028 0.528127
16 1011.273 60 0.25 0.610388 84.29531 0.528198
17 970.0935 72.29313 0.250177 0.550034 93.84391 0.528126
18 971.0923 72.34982 0.25 0.549849 93.52443 0.528127
19 969.2316 71.55826 0.250462 0.550544 94.04892 0.528126
20 969.0799 72.43035 0.250347 0.550214 94.20355 0.528125
21 968.8777 73.51111 0.25021 0.550086 94.41497 0.528124

Fig. 7. Convergence plot for resultant force.

Table 13 
Performance indicators of GHO, MFO, and SSO 
Algorithm.

Algorithm Diversity (Max)

GHO 1.857217
MFO 10.34219
SSO 9.920762

Fig. 8. Convergence plot for surface roughness.
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reveal distinct optimal response values for each algorithm, indicating 
that the choice of algorithm significantly influences parameter deter
mination. Notably, the MFO algorithm exhibits a lower sum than other 
algorithms in the Friedman test, as shown in Table 16, suggesting its 
optimal parameters closely approximate the global optimum. The 
Friedman test results affirm the superiority of the selected MFO algo
rithm over the alternative algorithms, thereby corroborating its 
enhanced efficacy (Table 15).

The mean rank analysis unequivocally indicates that the MFO algo
rithm surpasses other optimization techniques, yielding superior solu
tions with consistently higher numerical values, thereby substantiating 
its efficacy in achieving optimal machining performance.

Table 16 delineates the optimal outcomes derived from all three al
gorithms. Consequently, the MFO algorithm surpassed its counterparts, 
yielding optimal turning process parameters with improved surface 
roughness at 0.613859 µm and resultant force at 84.38434 N. A vali
dation experiment was also conducted utilizing the MFO algorithm and 
a predetermined set of optimal turning machining parameters. The 
outcomes of the experiment, along with the corresponding percentage 
deviations relative to the MFO algorithm, are presented in Table 17.

7. Conclusion

This study employs both experimental and numerical analyses to 
evaluate the performance of tungsten carbide inserts in orthogonal 
cutting of UNS S45000 alloy steel under varying conditions, including 
coated and cryogenically treated inserts. The experimental findings 
strongly correlated with the results obtained from optimization algo
rithms. Based on the comprehensive investigation, the following con
clusions are drawn. 

• The study highlights a significant enhancement in tool hardness 
through the combination of TiAlSiN coating and a 36-hour deep 
cryogenic treatment. The coated insert showed a hardness of 54 
RHN, while the cryogenically treated insert reached 79 RHN, a 68 % 
increase.

• A complete factorial design was conducted with three factors at three 
levels using a 36-hour cryogenic-treated tool, achieving optimal 
performance at 0.25 m/min cutting speed, 60 mm/rev feed, and 
1050 rpm. The resultant force was recorded as 91.05 N, with a sur
face roughness of 0.5 µm. Lower surface roughness corresponded to 
reduced resultant force, enhancing machining efficiency.

• The SEM analysis confirms that 36-hour cryogenically treated tool 
inserts exhibit lower wear than coated inserts due to improved 
microstructure and heat dissipation. Efficient heat dissipation re
duces thermal stress, enhancing tool life. These improvements make 
cryo-treated inserts more durable and reliable for machining.

• A multi-objective optimization was performed using the Moth Flame 
Optimization (MFO) algorithm to enhance machining performance. 
The optimized cutting parameters were determined as a cutting 
speed of 1012.901 m/min, a feed rate of 60.07353 mm/min, and a 
depth of cut of 0.25080 mm. These optimized values improved 
machining efficiency by minimizing cutting forces and enhancing 
surface quality.

• The MFO algorithm identified the optimal values for machining 
performance, with a resultant force of 84.384 N and a surface 
roughness of 0.6138 µm.

• Friedman’s test confirmed that the proposed MFO algorithm out
performed the GHO and SSO algorithms in predicting significant 
turning process parameters.

• The confirmation experiment resulted in values of 81.35 N for 
resultant force and 0.625 µm for surface roughness, with percentage 
deviations of − 3.73 % and 1.92 %, respectively, compared to the 
outcomes predicted by the MFO algorithm.

• The optimized machining parameters for UNS S45000 steel enhance 
surface integrity, extend tool life, and reduce machining costs. Its 

superior wear resistance and thermal stability improve precision and 
efficiency in aerospace applications. Comparative analysis confirms 
its advantage over SS 304 for landing gear valve components, 
ensuring better performance under demanding conditions.

• The selected optimum parameters from the optimization techniques 
are highly beneficial for industries machining high-strength mate
rials. These parameters enable improved surface finish, reduced 
resultant force, and extended tool insert life, enhancing overall 
machining efficiency and cost-effectiveness.
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