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a b s t r a c t 

Video prediction is essential for recreating absent frames in video sequences while maintaining 

temporal and spatial coherence. This procedure, known as video inpainting, seeks to reconstruct 

missing segments by utilizing data from available frames. Frame interpolation, a fundamental 

component of this methodology, detects and produces intermediary frames between input se- 

quences. The suggested methodology presents a Bidirectional Video Prediction Network (BVPN) 

for precisely forecasting absent frames that occur before, after, or between specified input frames. 

The BVPN framework incorporates temporal aggregation and recurrent propagation to improve 

forecast accuracy. Temporal aggregation employs a series of reference frames to generate absent 

content by harnessing existing spatial and temporal data, hence assuring seamless coherence. 

Recurrent propagation enhances temporal consistency by integrating pertinent information from 

prior time steps to progressively improve predictions. The timing of frames is constantly con- 

trolled through intermediate activations in the BVPN, allowing for accurate synchronization and 

improved temporal alignment. A fusion module integrates intermediate interpretations to gen- 

erate cohesive final outputs. Experimental assessments indicate that the suggested method sur- 

passes current state-of-the-art techniques in video inpainting and prediction, attaining enhanced 

smoothness and precision. Surveillance video datasets demonstrate substantial enhancements in 

predictive accuracy, highlighting the strength and efficacy of the suggested strategy in practical 

application. 

• The proposed method integrates bidirectional video prediction, temporal aggregation, and 

recurrent propagation to effectively reconstruct missing intermediate video frames with en- 

hanced accuracy. 

• Comparative analysis using the UCF-Crime dataset demonstrates higher PSNR and SSIM val- 

ues for the proposed method, indicating improved frame quality and temporal consistency 

over existing techniques. 

• This research provides a robust framework for future advancements in video frame prediction, 

contributing to applications in anomaly detection, surveillance, and video restoration. 
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Background 

The extensive implementation of video surveillance systems is essential for guaranteeing public safety and security, especially in 

the real-time monitoring and identification of anomalous behaviour. The gradual implementation of these technologies has led to 

an exponential increase in the volume of video data produced for societal surveillance [ 1 , 2 ]. Manually analysing this extensive data

set to detect suspicious activity is inefficient, time-consuming, and susceptible to human error. This topic has generated consider- 

able interest in the creation of automated algorithms that can identify odd behaviours in surveillance film. Nevertheless, delineating

and recognizing anomalies in surveillance footage is a challenging endeavour due to their intrinsically ambiguous characteristics and 

absence of clearly defined parameters [ 3 ]. The rare occurrence of abnormal occurrences complicates this approach, as obtaining repre-

sentative anomalous samples from large datasets is a significant problem. Conversely, acquiring standard examples from surveillance 

footage is rather simple, establishing a basis for algorithm development [ 4 ]. Semi-supervised learning approaches have developed as

a viable solution to the scarcity of aberrant data in training sets. These methods primarily utilize normal data to train models that

can identify deviations suggestive of abnormalities, therefore improving the efficiency and reliability of anomaly detection in video 

surveillance systems. 

Anomaly identification in video surveillance often entails examining regular patterns within training data and observing their 

temporal progression. Anomalies, characterized as deviations from standard patterns, are recognized upon their occurrence. Semi- 

supervised anomaly detection techniques are primarily classified into prediction-based and reconstruction-based methods, both of 

which are essential in the domain [ 5 ]. Historically, reconstruction-based methodologies depended on hand crafted appearance and 

motion attributes. These systems frequently employed dictionary learning to represent common events and encode them with minimal 

error. Anomalies in testing were deduced from substantial reconstruction mistakes of certain features [ 6 ]. Nonetheless, dictionary 

learning is constrained by its dependence on manually designed features and the computationally demanding task of calculating sparse 

coefficients, which diminishes efficiency and scalability for extensive datasets. The emergence of deep learning has revolutionized 

this paradigm, facilitating the automatic extraction of intricate features through deep neural networks, hence obviating the need 

for manual feature engineering [ 7 ]. Autoencoders have been utilized for the precise reconstruction of normal events, capitalizing

on their capacity to generalize effectively to standard data while emphasizing anomalies in atypical frames. Deep neural networks

excel in this field owing to their resilience and generalization abilities. Prediction-based methods have arisen as a supplementary 

approach, concentrating on simulating future normative events. These techniques seek to forecast subsequent frames in a series; 

substantial prediction errors signify the existence of anomalies, as unforeseen events disturb temporal coherence [ 8 ]. The suggested

video prediction algorithm utilizes a Fine-tuned Frame Predictor (FFP) to improve anomaly detection. The FFP employs a U-Net 

architecture to forecast future frames by examining temporal and spatial data from prior frames. A substantial divergence between

the anticipated and actual frames signifies anomalous occurrences, offering a dependable method for anomaly identification in video 

surveillance systems [ 9 ]. 

The proposed method demonstrates effective performance in anomaly detection when assessed on publically available datasets, 

accurately recognizing deviations from standard patterns [ 10 ]. Nonetheless, prediction-based methodologies encounter difficulties in 

consistently attaining minimal prediction errors for routine occurrences, notwithstanding their notable performance on benchmark 

datasets. Video Anomaly Detection (VAD) is a crucial element for the effective operation of video surveillance systems, as it facilitates

the detection of atypical events vital for ensuring public safety [ 11 ]. A significant obstacle in VAD is the lack of aberrant data

samples necessary for the proper training of machine learning models. This constraint frequently requires reinterpreting the issue as

a one-class classification problem. This method involves the model concentrating on understanding the distribution of normal data 
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to identify anomalies, depending solely on the statistical properties of typical occurrences [ 12 ]. This simplification facilitates the

reliable identification of anomalies by modeling standard distances, even without substantial aberrant training data, thus improving 

the system’s efficiency and relevance in practical situations. 

Variational Autoencoder (VAE) techniques have proven to be efficient for anomaly detection, especially in cases where a model

inadequately reconstructs or predicts particular data samples. These methods utilize the premise that normal data samples closely 

conform to a learnt normal distribution, leading to negligible reconstruction or prediction errors during inference. In contrast, anoma-

lies demonstrate markedly greater errors owing to their divergence from the established normal distribution [ 13 ]. For this assumption

to be valid, the model must have the representational capacity to accurately reflect the fundamental characteristics of normal data.

Modeling intricate and high-dimensional data, such as video, has distinct issues. Effectively capturing the essential elements of video

footage, such as visual characteristics, dynamic movements, and temporal sequences, necessitates sophisticated approaches capable 

of concurrently addressing these interconnected dimensions [ 14 ]. We propose a Bidirectional Video Prediction Network (BVPN) to 

accurately forecast missing frames in surveillance movies, addressing these problems. The BVPN framework utilizes temporal aggre- 

gation and recurrent propagation to harness information from prior and subsequent frames. Through the reutilization and synthesis 

of temporal data, the network attains precise inpainting of absent frames, guaranteeing temporal coherence and augmenting anomaly 

detection skills in video surveillance systems. 

Video anomaly detection methods 

Reconstruction 

Training methods for video anomaly identification seek to simulate the typical distribution of video data to facilitate high-quality

reconstructions. A substantial reconstruction error during inference signifies a divergence from the acquired normal distribution, 

implying the existence of anomalies [ 15 ]. Convolutional autoencoders have been extensively advocated for reconstructing input 

frames due to their versatility and efficacy in capturing spatial and temporal characteristics. Recent improvements have investigated 

multiple extensions of convolutional autoencoders, such as parametric density estimators, memory-augmented autoencoders, and 

two-stream recurrent frameworks, to improve performance [ 16 ]. Reconstruction-based methods emphasize the reconstruction of 

frames from the foundation, utilizing the encoded understanding of standard patterns. Nonetheless, these methodologies encounter 

significant obstacles, including the failure to adequately reconstruct abnormal occurrences, precisely distinguish between normal and 

anomalous data, and alleviate overfitting. These constraints underscore the necessity for more resilient architectures that can tackle 

the intrinsic complexity of video anomaly detection while ensuring generalization and scalability. 

Prediction 

Anomaly identification in movies often use prediction-based methods, where future frames are forecasted based on the temporal 

information of prior frames. The fundamental concept asserts that predictable events conform to established patterns, whereas anoma- 

lies diverge unpredictably from these standards [ 17 ]. Prior research has established a basis for standardizing prediction tasks through

the integration of consistency metrics. Venkatesh et al. [ 18 ] Introduced a method that utilizes gradient and intensity limitations to

enhance the precision of frequent event predictions. This method standardizes projected outcomes by juxtaposing pixel values of the 

forecasted frames with their actual equivalents, hence improving prediction accuracy. Alongside conventional single-modality restric- 

tions, modern methodologies have investigated the amalgamation of intricate modality memory pools to enhance the representation 

of the coherence between appearance and motion data [ 19 ]. By integrating characteristics from many modalities, these approaches

produce a more resilient representation of predominant occurrences, enhancing anomaly identification and predictive accuracy. A 

unique prediction paradigm emphasizes utilizing temporal information in movies to recover omitted segments of events removed 

from the sequence [ 20 ]. This approach frequently overlooks the complex link between optical flow and video frames, depending

exclusively on pixel-wise limitations. In contrast to conventional methods that focus on individual video anomalies, contemporary 

prediction tasks seek to evaluate and derive extensive insights from video data as a whole, regardless of its temporal sequence or

format [ 21 ]. This transition highlights the increasing emphasis on optimizing the use of all accessible information to improve anomaly

detection and predictive abilities. 

Traditional methods used in anomaly detection 

Historically, feature spaces for anomaly detection have been created using either manually crafted features or features derived 

from conventional machine learning techniques. These methods utilize domain-specific expertise or statistical tools to discern patterns 

in the data [ 22 ]. Subsequent to feature generation, the distributions of normal and anomalous cases are examined to locate outliers or

identify clusters that significantly diverge from standard patterns within the dataset [ 23 ]. Although these techniques are fundamental,

they frequently encounter constraints in representing intricate, high-dimensional relationships present in video data, prompting the 

need for the investigation of more sophisticated and automated feature extraction methods. 

Statistical model methods 

The dynamic trajectory features of objects are frequently utilized as a fundamental method in research that employs statistical

models to illustrate typical motion patterns. This mechanism has proven crucial in independently acquiring motion behaviours. A 

significant work introduced a technique for anomaly identification by online trajectory clustering, which combines clustering with 
3 
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data acquisition via a tracking system. Nonetheless, the trajectory aspects of object tracking exhibit diminished dependability in 

intricate settings, especially in scenarios characterized by high object density or occlusions, resulting in performance decline [ 24 ].

To tackle these issues, low-level spatiotemporal characteristics have arisen as a formidable substitute for trajectory-based features 

in improving anomaly identification. Methods like Histograms of Oriented Gradients (HOGs) and Histograms of Oriented Flows 

(HOFs) have been extensively utilized to represent spatiotemporal features. Wang et al. [ 25 ] investigated the application of low-

level spatiotemporal characteristics in conjunction with local histograms of light fluxes across diverse spatial regions. The data were

analysed utilizing a Gaussian Mixture Model (GMM), subsequently enhanced by the integration of Mixture of Dynamic Textures 

(MDTs) [ 26 ], thus augmenting anomaly identification in intricate and dynamic video contexts. 

Sparse coding methods 

Initial methodologies employing sparse coding for anomaly identification depended on the acquisition of dictionaries based on 

manually crafted characteristics. These approaches sought to precisely reconstruct normal events with minimal inaccuracies, clas- 

sifying occurrences with substantial reconstruction mistakes as aberrant [ 27 ]. Sparse Reconstruction Cost (SRC) was established as 

a criterion to assess the congruence of test samples with a specified standard dictionary. An unsupervised dynamic sparse coding

method was developed to improve anomaly detection, facilitating the identification of atypical events in movies by online sparse re-

construction of query signals using an atomically learnt event dictionary [ 28 ]. Additionally, an efficient Sparse Combination Learning

(SCL) framework was developed to tackle the computing difficulties linked to optimizing sparse coefficients, hence expediting testing 

and training procedures [ 29 ]. Although conventional sparse coding methods have demonstrated efficacy in particular contexts, they 

encounter difficulties in complex situations owing to their restricted capacity to encode complicated aspects. Moreover, the compu- 

tational complexity of these traditional methods frequently obstructs real-time anomaly identification in movies, hence complicating 

their practical implementation [ 30 ]. 

Deep learning-methods 

Methods based on deep learning have exhibited exceptional efficacy in multiple fields, such as picture classification, object iden- 

tification, and video retrieval. These achievements have facilitated various deep learning methodologies for video anomaly detection 

[ 31 ]. These techniques are generally classified into prediction-based and reconstruction-based methods. Reconstruction-based meth- 

ods have substantial parallels to sparse coding techniques; however, recent developments utilizing deep features in reconstruction 

have markedly surpassed previous methods dependent on hand-crafted features [ 32 ]. A two-stream neural network was presented to

improve the extraction of spatial-temporal fusion features (STFF), enabling a strong integration of spatial and temporal data. The STFF

was actively utilized alongside a fast sparse coding network (FSCN) to produce a standard dictionary in real-time. An autoencoder,

trained on fully connected neural networks, was employed to decode temporal patterns in video data, utilizing extracted features

as input [ 33 ]. Irregularities were detected by calculating a regularity score based on reconstruction errors. Nevertheless, the con-

straints of 2D convolution rendered motion data extraction unachievable within this framework, underscoring a potential area for 

improvement [ 34 ]. 

Deep neural networks demonstrate negligible variations in reconstruction error rates when differentiating between typical and 

atypical events. This problem stems from their substantial capacity, generalizability, and sophisticated feature extraction skills. To 

mitigate this constraint, researchers have suggested diminishing the capacity of convolutional neural networks (CNNs) for data en- 

coding, supplemented by the incorporation of a memory module to retain archetypal input patterns [ 35 ]. Recent years have witnessed

substantial advancements in video prediction methodologies, utilizing extensive quantities of unlabelled data to acquire internal video 

representations. These strategies possess several applications, encompassing video comprehension, autonomous driving, and robotic 

decision-making. Video prediction entails anticipating subsequent frames by the analysis of prior ones [ 36 ]. An adversarial training

multi-scale network was presented to improve frame forecasting, facilitating the production of future frames given an input sequence. 

Yin et al. [ 37 ] developed a recurrent autoencoder utilizing long short-term memory (LSTM) networks to record temporal correlations

among patches derived from sequential input frames, aimed at video forgery detection. These video prediction frameworks have a

notable capacity to recognize routine events. Nevertheless, when confronted with infrequent and unpredictable events, frequently 

classified as anomalies, their precision declines, highlighting the necessity for more enhancements in anomaly detection [ 38 ]. 

The primary application of video prediction was in visual anomaly detection, founded on the notion that prediction errors could

signify irregularities. A Long Short-Term Memory (LSTM) model with convolutional feature representations was developed to fore- 

cast mistakes, which were then used to detect anomalies in robotics applications. A Conv-LSTM network, an end-to-end trainable

composite architecture, was proposed to predict the future trajectory of video sequences in various contexts [ 39 ]. Expanding upon

this basis, an alternative method utilized the U-Net architecture to forecast anomalies in videos through predictive analysis. This

approach integrated adversarial loss, optical flow, and the discrepancy between expected and actual frames to enhance network per- 

formance for superior anomaly identification. A predictive coding network was presented, incorporating an error refinement module 

and a predictive coding module to improve anomaly detection skills. A novel method integrates forward, backward and retrospective 

prediction techniques to comprehensively investigate bidirectional mapping relationships in video frame sequences. The implemen- 

tation of a three-dimensional convolutional neural network (3D-CNN) sequence discriminator improved the temporal consistency of 

anticipated frames, hence augmenting anomaly detection efficacy. The amalgamation of predictive coding and sophisticated neural 

architectures represents a notable progression in visual anomaly detection techniques 
4 
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Method details 

The suggested methodology seeks to reconstruct absent video sequences by utilizing information from prior and subsequent frames 

to attain seamless and visually cohesive outcomes through sophisticated video inpainting techniques. A deep neural network archi- 

tecture is presented to optimize and approximate the intricate functions associated with video inpainting. In contrast to traditional

methods that directly correlate the sequence of prior and subsequent frames to the missing segment, the suggested methodology

utilizes a modular architecture, partitioning the issue into two separate elements: a bidirectional video prediction network and a

temporal aggregation module. The bidirectional prediction network records temporal relationships between consecutive frame se- 

quences, while the temporal aggregation module employs recurrent propagation core functions to consolidate temporal information 

and maintain continuity. This systematic and modular methodology improves the accuracy and realism of the reconstructed video 

sequences, exceeding the constraints of conventional approaches. 

Architecture of the proposed system 

Fig. 1 depicts the architecture of the proposed system, engineered for efficient video frame reconstruction. The procedure com-

mences with the identification of a target frame from a video clip, which acts as input for the temporal aggregation module. This

module consists of three essential components: an encoder, an aggregator, and a decoder. The encoder converts the target frame into

a binary format, enabling computer processing. The temporal aggregation methods utilized encompass average calculation, cluster 

creation, and heuristic strategies. Average determination is employed for video downsampling by computing temporal averages to 

minimize redundancy while maintaining critical information. Cluster creation categorizes temporal slices into separate groups within 

a multidimensional space, with each group defined by the average of its time steps. This approach accepts varying durations, offering

flexibility and adaptability in processing varied video inputs. 

The suggested recurrent system combines temporal aggregation and feedback methods to rebuild video frames. The encoder, 

upon receiving input from the prior phase, recognizes the target image and processes the impaired area using three-dimensional

convolution operations. The encoder’s output is transmitted to the aggregator, which does an element-wise summation to combine 

temporal characteristics. The combined output functions as input for the decoder, which utilizes two-dimensional convolution to 

recreate the frame. The reconstructed frame is evaluated against the original reference frame to determine correctness. Subsequently, 

a deception frame is presented to the decoder, and its output is relayed back to the aggregator, facilitating iterative enhancement

via temporal aggregation and recurrent propagation. This cyclical method guarantees the efficient restoration of absent or impaired 

video parts. 
Fig. 1. Architecture of the proposed system. 

5 
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Temporal aggregation 

The bidirectional video prediction network aims to approximate and reconstruct intermediate sequences by utilizing the temporal 

coherence of prior and subsequent frames. This network utilizes sampled frames as reference points to deduce and finish the target

frame, emphasizing visible parts within the sequence to maintain continuity and structural integrity. The framework improves the 

precision of sequence approximation and effectively reconstructs intermediate frames by synthesizing information in both directions, 

maintaining temporal and spatial consistency. 

Recurrent propagation 

Temporal consistency is attained by efficiently utilizing existing spatiotemporal data, in which the temporal coordinates of in- 

dividual frames are recorded via intermediate activations inside the bidirectional video prediction network. This network combines 

temporal advancement with improved time intervals to guarantee a coherent sequence reconstruction. The frames processed by 

the bidirectional video prediction network are enhanced and unified using a fusion module that dynamically integrates spatial and

temporal data to preserve structural and contextual coherence across successive frames. 

Bidirectional video prediction network 

Two distinct varieties of middle predictions are produced by bidirectional video prediction. They are denoted by Nu and Gu. Nu

denotes the middle sequence and depends on the prior sequence. Gu denotes the following sequence. 

The prediction in the forward direction is given by 

𝑁̂
𝑄 

𝑈 
=
{ 

𝑈
𝑄 

𝑞+1 , ........𝑈
𝑄 
𝑞+ 𝑚 

} 

(1) 

The prediction in the reverse direction is given by 

𝑁̂
𝑄 

𝑈 
=
{ 

𝑈
𝑄 

𝑞+1 , ........𝑈
𝑄 
𝑞+ 𝑚 

} 

(2) 

By restricting the forward and backward sequences with conditions, we obtain 

𝑁̂
𝑄 

𝑈 
= 𝜃𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 

(
𝑄𝑢 

)
(3) 

𝑁̂
𝑄 

𝑈 
= 𝜃𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 

(
𝑄𝑢 

)
(4) 

R denotes the backward operation function. The same parametric values are used for the prediction of the forward and backward

interpretations. The bidirectional video prediction network generates one frame sequentially. The prior frames are conditioned during 

the frame production. During forward interpretation, 𝑢̃𝑄 
𝑡 1 will be ut if t belongs to {1….q} or 𝑢̃𝑄 

𝑡 1 if ut belongs to { q + 1……q + n }.

The inputs to the interpolation network are the activations saved from the bidirectional video prediction network. 

𝑢̂
𝑄 

𝐿 +1 = 𝜃𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 
{
𝑢̃ 𝑄1 , 𝑢̃ 𝑄2 , 𝑢̃ 𝑄3 , .......𝑢̃ 𝑄𝐿 

}
(5) 

Frame interpolation and temporal aggregation 

This technique blends the frames provided by the bidirectional video prediction network. The final prediction is produced after

this step. The middle activations are leveraged and the temporal space are denoted by the enhanced time steps. 

Frame interpolation produces the final frame by combining ̂
𝑁𝑢 

𝑄 and ̂
𝑁𝑢 

𝑄 . It uses the same time step. Combining ̂𝑢𝑢 
𝑄 and ̂𝑢𝑢 

𝑄 is

tedious because there are still problems that do not match. Another reason for the combination difficulty is that they are not reliable.

𝑢̂𝑇 = 𝜃𝑏𝑙𝑒𝑛𝑑 

(
𝑢̂
𝑄 

𝑇 
, 𝑢̂𝐺 

𝑇 

)
(6) 

𝑢̂𝑇 = 𝜃𝑏𝑙𝑒𝑛𝑑 

(
𝑢̂
𝑄 

𝑇 
, 𝑢̂𝐺 

𝑇 

)
(7) 

For combining the frames in a more accurate manner, the proposed method uses two other data. Apart from the frames to be

combined, the interpretation is performed based on the received time steps and the activations received from the bidirectional video

prediction network. 

𝑢̂𝑇 = 𝜃𝑏𝑙𝑒𝑛𝑑 

(
𝑢̂
𝑄 

𝑇 
, 𝑢̂𝐺 

𝑇 

)
(8) 

𝑢̂𝑇 = (𝜃𝑡𝑒𝑚𝑝int 𝑒𝑟𝑝𝑜𝑙𝑎𝑡𝑖𝑜𝑛 
(
𝑢̂
𝑄 

𝑇 
, 𝑓

𝑄 

𝑇 
, 𝑢̂𝐺 

𝑇 
, 𝑓𝐺 

𝑇 
, 𝑤𝑇 

)
(9) 

In temporal aggregation, a two-dimensional kernel is applied to every area. The final image can be obtained by adding the pixels.

A model based on an encoder and decoder is used for the production of these adjustable kernels. 𝑓𝑄 

𝑇 
and 𝑓𝑄 

𝑇 
are the enhancement

steps of time. 𝐿𝑇 
𝑄 , 𝐿𝑇 

𝐺 corresponds to how high and wide the resolution of the frame is. The enhancement time step is scaled into

one of the decoder’s hidden layer outputs. The adjustable kernels are applied to the inputs and are added by means of the pixels to

determine the final image. 

𝐿𝑇 
𝑄 , 𝐿𝑇 

𝐺 = 𝜃𝑏𝑙𝑒𝑛𝑑 
𝑒𝑛𝑐𝑜𝑑 𝑒𝑟𝑑 𝑒𝑐𝑜𝑑 𝑒𝑟 

(
𝑢̂𝐹 
𝑇 
, 𝑓𝐹 

𝑇 
, 𝑤𝑇 

)
(10) 

𝑄 𝐺 
𝑢̂ ( 𝑎, 𝑏 ) = 𝐿𝑇 ( 𝑎, 𝑏 ) ∗ 𝑄𝑞( 𝑎, 𝑏 ) + 𝐿𝑇 ( 𝐴, 𝑏 ) ∗ 𝑃𝐺 ( 𝑎, 𝑏 ) (11) 
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Method validation 

Dataset and training details 

The suggested prediction method was executed in Python 3, utilizing the PyTorch and OpenCV libraries for deep learning model

training and image processing. Experiments utilized the UCF-Crime dataset, an extensive compilation of authentic surveillance 

footage, consisting of 1900 unedited movies across 13 distinct categories of abnormal events. This dataset has 1610 training videos

and 180 test videos. The proposed model was assessed by categorizing video clips from both the dataset and those generated by

the model using a binary classification method based on convolutional neural networks (CNNs). The bidirectional video prediction 

network (BVPN) underwent training for 10,000 epochs with a batch size of 32, utilizing the Adam optimizer to provide effective

feature extraction and precise anomaly identification. 

Technical details 

The video frame inpainting model employs trained reconstruction and adversarial objective functions to improve interpretative 

precision. Fig. 2 illustrates the bidirectional video prediction network, wherein video sequences are initially transformed into indi- 

vidual frames via FFmpeg, succeeded by picture augmentation to improve resilience. A motion control network is utilized to examine

spatial and temporal encodings, facilitating the recognition of temporal history via intermediate activations and scaled time intervals. 

The intermediate frames are then inpainted via temporal aggregation, enabled by a U-Net encoder-decoder architecture. The recur- 

rent stream is facilitated by a patch encoder functioning as a discriminator, ensuring precise reconstruction and preserving temporal

consistency throughout the video frames. 

𝐿ℎ = 𝛼[𝐿𝑖𝑚𝑎𝑔𝑒 

(
𝑁̂𝑄 

𝑢 
, 𝑁𝑢 

)
+ 𝐿𝑖𝑚𝑎𝑔𝑒 

(
𝑁̂𝐺 

𝑢 
, 𝑁𝑢 

)
+ 𝐿𝑖𝑚𝑎𝑔𝑒 

(
𝑁̂𝑢 , 𝑁𝑢 

)
+ 𝛽𝐿𝑎𝑑𝑣_𝑙𝑜𝑠𝑠 

(
𝑁̂𝑢 

)
(12) 

𝐿𝑎𝑑𝑣_𝑙𝑜𝑠𝑠 

(
𝑁̂𝑢 

)
= − log 𝐷

([
𝑄𝑢 , 𝑁̂𝑢 , 𝐹𝑢 

])
(13) 

𝐿𝑖𝑚𝑎𝑔𝑒 

(
𝑁̂𝑢 

( .) 
, 𝑁𝑢 

)
= 𝐿2 

(
𝑁̂𝑢 

( .) 
, 𝑁𝑢 

)
+ 𝐿𝑔𝑟𝑑_𝑑𝑖𝑓 𝑓 _𝑙𝑜𝑠𝑠 

(
𝑁̂𝑢 

( .) 
, 𝑁𝑢 

)
(14) 

The generator and discriminator are updated one by one in an alternating fashion. The structure loss can be minimized by using

the following expression 

𝐿2 

(
𝑁̂𝑢 

( .) 
, 𝑁𝑢 

)
= |2 2 (15) 

𝐿𝑔𝑟𝑑𝑑𝑖𝑓𝑓𝑙𝑜𝑠𝑠 

(
𝑁𝑢 

( .) , 𝑁𝑢 

)
=

𝑄 + 𝑛 ∑
𝑇= 𝑄 +1 

𝑤,ℎ ∑
𝑗,𝑖 

( ||𝑢𝑇 ( 𝑗, 𝑖 ) − 𝑢𝑇 ( 𝑗 − 1 , 𝑖 ) || − |𝑢𝑇 ( .) ( 𝑗, 𝑖 ) − 𝑢𝑇 
( .) ( 𝑗 − 1 , 𝑖 ) |) + 

(||𝑢𝑇 ( 𝑗, 𝑖 − 1 ) − 𝑢𝑇 ( 𝑗, 𝑖 − 1 ) ||) − 𝑢𝑇 
( .) ( 𝑗, 𝑖 ) − 𝑢𝑇 

( .) ( 𝑗, 𝑖 − 1 ) |) (16) 
Fig. 2. Network details of BVPN. 
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Fig. 3. Flow diagram of the framework with the two core functions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In the aforementioned formula, alpha and beta represent the reconstructive loss and the combative loss, respectively. The inter-

mediate interpretations and the resultant interpretations are concurrently tracked here. The Limage comprises the squared mismatch 

error and the gradient difference mismatch. The precision in the peripheries of the images can be enhanced by detecting and correcting

these deficiencies. 

Fig. 3 depicts the flow diagram of the proposed framework, which functions based on two fundamental operations. The procedure

commences with the initialization of parameters, succeeded by the initialization of hidden layer values. The pre-processed data are

subsequently entered into the network to calculate the values of the hidden layer. At time T, the output from the hidden layers is

ascertained and preserved for subsequent processing. The inaccuracy is subsequently computed based on the fundamental functions. 

The output value at time T is subsequently calculated. The subsequent phase entails ascertaining whether epoch training has been

finalized. Upon completion of training, precision is computed, and the procedure concludes. If training is incomplete, the local gradient

value is calculated based on the error, followed by the updating of weights and thresholds. This cycle persists with the re-initialization

of the hidden layer values, guaranteeing the iterative enhancement of the model. 

Fig. 4 illustrates the temporal recurrent propagation process, comprising three distinct layers: input, hidden, and output. Every 

node in the hidden layer is entirely connected to each node in the input layer, enabling the transmission of information. The output

layer is connected to the hidden layer, with the produced output routed to a configurable kernel. The weighted parameters are

subsequently refined iteratively to reduce the loss function. Forward propagation entails the transmission of information from the 

input layer through the hidden layers to the output layer, whilst reverse propagation denotes the transmission of information from

the kernel back via the hidden and input layers, facilitating the optimization of network parameters. This iterative method guarantees

the effective learning and enhancement of the model. 

Table 1 provides a detailed comparison of the Peak Signal-to-Noise Ratio (PSNR) between the proposed method and current 

methodologies. At the initial time step, the PSNR values for the repeat_P, repeat_F, SA_PFF, and TW_P_F techniques are 31, 25, 28,

and 31, respectively. Conversely, the PSNR values for MC_Net, bi_SA, bi_TW, and the suggested BVPN_TA_RP technique are 34, 33,
8 
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Fig. 4. Temporal recurrent propagation unit. 

Table 1 

PSNR comparison of the proposed method with the existing methods. 

Time steps PSNR 

Repeat_P Repeat_F SA_P_F TW_P_F MC_Net bi_SA bi_TW BVPN_TA_RP 

1 31 25 28 31 34 33 35 37 

2 28 25 27 28 31 28 33 34 

3 27 25 27 27 29 27 32 33 

4 26 25 26 26 27 26 30 32 

5 25 25 26 26 26 26 30 31 

6 25 25 25 26 25 26 30 31 

7 25 26 25 26 25 27 30 32 

8 25 27 25 26 25 28 32 33 

9 25 29 26 29 25 32 33 34 

10 25 32 27 32 25 33 35 37 

 

 

 

 

 

 

 

 

 

 

 

35, and 37, respectively, demonstrating the latter’s superior performance. The PSNR values for successive time steps are calculated

and reported, further illustrating the improved efficacy of the suggested method throughout different stages of the video sequence. 

Fig. 5 illustrates the PSNR values, contrasting the efficacy of the existing methods with the newly proposed strategy. The graph

effectively illustrates the enhanced performance of the suggested method at different time intervals, distinctly showcasing its elevated 

PSNR values compared to previous methods. This visual comparison highlights the efficacy of the proposed method for video frame

quality reconstruction. 

Table 2 illustrates a comparison of the SSIM values between the suggested approach and the established methods. Fig. 6 illustrates

the SSIM values for both the established approaches and the newly proposed strategy, offering a clear graphical depiction of their

performance. The comparison underscores the enhancement in structural similarity attained by the suggested method, demonstrating 

its superior capacity to preserve the structural integrity of video frames relative to previous methodologies. 

Fig. 7 displays images from the video interpolation tasks, illustrating the efficacy of the suggested method in inpainting video

frames. In contrast to current video inpainting methods, which frequently encounter difficulties in achieving seamless frame re- 

construction, our technique successfully retrieves whole and continuous frames. Unlike frame interpolation and video prediction 

techniques that depend on projecting future frames based on previous information, our approach forecasts the desired sequence by

employing several frames that are simultaneously present before and after the absent frames. Fig. 7 illustrates that the frames pre-

ceding (0, 1) and following (8, 9, 10) the missing sequence are utilized to rebuild the interpolated frames, which are presumably

absent (2, 3, 4, 5, 6, 7). Table 3 demonstrates the fluctuation in PSNR values for varying quantities of input frames, emphasizing the

influence of many frames on the efficacy of the video inpainting procedure. 

Fig. 8 shows the inpainted interpolated frame, showcasing the efficacy of the suggested method in flawlessly reconstructing 

absent frames. Table 4 illustrates the fluctuation in SSIM values corresponding to different quantities of input frames, emphasizing
9 
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Fig. 5. Graphical representation of the PSNRs values of the existing methods and the proposed method. 

Fig. 6. Graphical representation of SSIM values of the existing methods and the proposed method. 

 

 

the influence of supplementary input frames on the structural similarity between the original and predicted frames. Fig. 9 illustrates

the correlation between PSNR and the quantity of input frames, indicating that an increase in PSNR corresponds to enhanced image

quality. The bidirectional video prediction network (BVPN_TA_RP), employing temporal aggregation and recurrent propagation with 

five input frames, attains exceptional performance. Furthermore, Fig. 10 illustrates the fluctuation in SSIM values corresponding 

to varying quantities of input frames, so highlighting the enhanced performance of the BVPN_TA_RP model regarding structural 

similarity. 
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Fig. 7. Previous, Following and Interpolated frames of a video sequence. 

Table 2 

SSIM comparison of the proposed method with the existing methods. 

Time steps SSIM 

RepeatP Repeat_F SA_P_F TW_P_F MC_Net bi_SA bi_TW BVPN_TA_RP 

1 0.94 0.80 0.86 0.93 0.94 0.93 0.95 0.96 

2 0.89 0.80 0.85 0.89 0.93 0.88 0.93 0.90 

3 0.86 0.80 0.84 0.86 0.87 0.86 0.90 0.93 

4 0.83 0.80 0.83 0.84 0.86 0.84 0.89 0.92 

5 0.82 0.80 0.83 0.84 0.82 0.80 0.88 0.91 

6 0.80 0.81 0.83 0.84 0.81 0.80 0.88 0.91 

7 0.80 0.83 0.83 0.84 0.80 0.84 0.90 0.92 

8 0.80 0.86 0.84 0.86 0.80 0.86 0.92 0.93 

9 0.80 0.89 0.85 0.89 0.80 0.87 0.91 0.90 

10 0.80 0.92 0.86 0.93 0.80 0.91 0.90 0.96 

Table 3 

Variation in the PSNR with different numbers of input frames. 

Time Steps PSNR 

BVPN_TA_RP with 2 input 

frames 

BVPN_TA_RP with 3 input 

frames 

BVPN_TA_RP with 4 input 

frames 

BVPN_TA_RP with 5 input 

frames 

1 35.3 35.5 36.6 36.7 

2 32.1 32.3 33.4 33.6 

3 30.2 30.6 31.7 31.9 

4 29.1 29.4 30.5 30.6 

5 28.3 28.6 29.7 29.9 

6 29.4 29.5 30.5 30.8 

7 29.8 29.9 30.1 30.3 

8 31.2 31.5 32.6 33.8 

9 32.2 32.6 33.7 33.9 

10 35.3 35.6 36.6 36.8 
11 
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Table 4 

Variation in SSIM with different numbers of input frames. 

Time Steps SSIM 

BVPN_TA_RP with 2 input 

frames 

BVPN_TA_RP with 3 input 

frames 

BVPN_TA_RP with 4 input 

frames 

BVPN_TA_RP with 5 input 

frames 

1 0.962 0.971 0.982 0.988 

2 0.934 0.943 0.952 0.964 

3 0.916 0.925 0.934 0.938 

4 0.905 0.914 0.926 0.929 

5 0.892 0.898 0.901 0.916 

6 0.892 0.898 0.901 0.916 

7 0.905 0.916 0.924 0.928 

8 0.916 0.927 0.936 0.939 

9 0.934 0.943 0.952 0.968 

10 0.962 0.971 0.983 0.992 

Fig. 8. Inpainted frame. 

Fig. 9. Graphical representation of the variation in PSNR with different numbers of input frames. 
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Fig. 10. Graphical representation of the variation in SSIM with different numbers of input frame. 

 

 

 

 

Conclusion 

The suggested technique efficiently reconstructs absent chunks of a video by utilizing the available frames. It utilizes a bidirectional

video prediction network, temporal aggregation, and recurrent propagation to analyse and forecast the absent intermediate frames 

between the existing input frames. The bidirectional video prediction network interprets intermediate frames, temporal aggregation 

employs available information to generate the goal frame, and recurrent propagation preserves temporal consistency by reusing prior 

data. The comparative comparison with existing methods indicates that the suggested model surpasses others, as seen by the elevated

PSNR and SSIM values achieved for the UCF-Crime dataset, which are displayed in both tabular and graphical formats. This research

offers significant insights for enhancing frame prediction approaches across diverse video applications, establishing a basis for further 

investigation in this field. 
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