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Abstract- Cognitive Radio Network (CRN) includes Secondary Users (SUs) and Primary 

Users (PUs) to perform better communication. The SUs present in the CRN observe the 

spectrum band to obtain the white space opportunistically. Employing the white spaces 

supports to enrich the effectiveness of the spectrum. Because of the promising learning 

capacity of Deep Learning (DL)  and Machine Learning (ML) models, various experiments in 
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the previous years have been utilized the deep or shallow multi-layer perceptron mechanism. 

However, these mechanisms do not apply to the time series data because of the memory 

element’s absence. One of the primary issues in spectrum sensing is to model the test 

statistic. Conventional mechanisms normally employ the model-aided attributes as a test 

statistic, including Eigenvalues and energies. But, these attributes cannot be precisely 

characterized in the real world. Hence, a deep learning-assisted hybrid spectrum sensing 

technique in the CRN is implemented. At first, the data is gathered from appropriate 

databases. Further, an Adaptive and Attentive Multi-stacked Network (AAMNet) is 

developed for the hybrid spectrum sensing process. The AAMNet is developed by combining 

three different deep networks like Convolutional Neural Network (CNN), Long Short-Term 

Memory (LSTM) , and Autoencoder. The spectrum sensing process by the proposed 

AAMNet is enhanced further using the Random parameter Improved Duck Swarm Algorithm 

(RIDSA) for parameter optimization. The availability of spectrum is identified for better 

spectrum utilization with the help of the developed hybrid spectrum sensing process. 

Throughout the analysis of the proposed method is checked by evaluating the resultant 

outcomes with various heuristic approaches and deep learning methods. 
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1. Introduction 

The CR is a well-known network because of the spectrum sensing approaches. Wireless 

Sensor Network (WSN) is employed in the spectrum sensing context employing deep 

learning [1]. The WSNs are networks of linked sensor nodes that perform in groups to 



collect, evaluate, and send the Radio Frequency (RF) spectrum information. When integrated 

with the deep learning strategies, the WSNs become an efficient component for enhancing the 

spectrum sensing accuracy and efficacy [2]. To automatically recognize and classify signals 

in the RF spectrum, these sensor nodes collect information that is further given to the deep 

learning approaches. This integration makes it possible to monitor the spectrum very 

dynamically and effectively which makes as a significant module of CR devices with the 

requirement of constant spectrum usage [3]. The previous spectrum sensing approaches led 

the path for the generation of CR. These approaches concentrated on estimating if significant 

or main candidates are absent or present with particular frequency bands [4]. Initially, the 

spectrum is recognized by employing energy identification and connecting the filtering 

approaches of conventional techniques. But, these techniques had problems concerning 

accuracy and robustness. A significant part of CR devices is dynamic spectrum access [5]. 

According to the real-time spectrum sensing results, the CRs select and employ the frequency 

bands adaptively [6]. The technology of CR is developed as a potential outcome to balance 

the spectrum availability and its enhancing growth. 

The radio spectrum has an important role in everyday life in distinct real-time programs. It 

employs a range of wireless data transmission through Wi-Fi, laptops, smartphones, and radio 

broadcasting for critical communication approaches, radar, Global Positioning System (GPS), 

and baby monitors [7]. Numerous applications are on the basis of spectrum availability thus it 

plays a primary role in daily life. Spectrum security highly grows when enhanced data 

transmission, quick communication, and rapid multimedia applications employ vast spectrum 

resources [8]. The primary concept of CR is spectrum reuse which enables the SUs to employ 

the authorized spectrum band when the PUs is idle [9]. To obtain this, the SUs are needed to 

continuously perform the spectrum sensing task that recognizes the spectrum job's state of the 

PUs [10]. Thus, spectrum sensing is a primary process of CR innovation that can attain deep 



attention from both industry and academia. The requirement for extra spectrum resources are 

enhancing highly as many wireless services that are helped and shined the implementation of 

new rapid data network innovations [11]. 

Nowadays, machine learning approaches for spectrum sensing have attained much 

attention. Reinforcement learning and deep learning are the two higher models of machine 

learning approaches that relatively enhance the flexibility and precision of spectrum sensing 

[12]. The Recurrent Neural Network (RNN) supports tracking the data regarding the overall 

input sequence and employing it to produce the outcomes and create predictions. The RNN 

approach handles diverse input sequences and obtains the temporal connections that exist in 

the data [13]. It is complex to recognize the long-term connections employing RNNs because 

of the expanding or disappearing gradient problem in that the gradients either enhance or 

vanish highly over time. The primary limitation of spectrum sensing is to develop the 

experiment statistic to attain better detection probability [14]. The energy identification-aided 

cooperative spectrum sensing is considered because of its flexible development, short sensing 

period, low power usage, and low computing complexity. Especially, in the poor PU signal 

pattern knowledge, the energy identification is displayed to be very efficient [15]. But, 

because of the existence of some suspicious SUs, the existing spectrum sensing can be 

susceptible to misleading the sensing results. Certain problems in the CRNs are named 

Spectrum Sensing Data Falsification (SSDF) threats. The CNN and Artificial Neural Network 

(ANN)-aided approaches have deep or shallow multilayer perceptron framework [16]. One of 

the issues of the deep or shallow multilayer perceptron framework is its poor ability to store 

data because of the memory element's absence [17]. Thus, the multilayer perceptron models 

are not applicable for time series and temporal modeling data. 

The designed hybrid spectrum sensing in CRN contains the below contributions. 



 To present a new hybrid spectrum sensing system in CRN by utilizing the multi-stack 

deep network that automatically improves the accuracy of the data transmissions and 

minimizes the network complexities. 

 To construct the new AAMNet by utilizing three distinct deep networks such as 

autoencoder, CNN, and LSTM that support to perform along with attention 

mechanism for achieving the spectrum sensing accurately. Here, the RIDSA approach 

is employed to tune the network parameters. 

 To suggest a new RIDSA approach by concentrating on the requisite features of 

existing DSA and an adaptive idea that increases the performance rates of the hybrid 

spectrum sensing system in CRN. 

  To evaluate the developed hybrid spectrum sensing system in CRN by utilizing 

traditional algorithms and methods that guarantees the superior solutions of the 

designed system. 

Followed by the introduction section, the forthcoming sections are given below. Part II 

elaborates on the conventional works of hybrid spectrum sensing mechanisms. Part III 

explains the development of an efficient CRN with hybrid spectrum sensing using a deep 

learning approach. Part IV elaborates on the parameter optimization using RIDSA and the 

proposed model description. Part V depicts the hybrid spectrum sensing using AAMNet with 

an objective function. Part VI elucidates the results and discussions of the implemented 

hybrid spectrum sensing mechanism. Part VII explains the conclusion of the designed hybrid 

spectrum sensing mechanism in CRN. 

 



2. Existing Works 

2.1 Related Works 

In 2019, Liu et al. [18] have recommended DNN to perform the data-driver experiment 

statistic. At first, the DNN was derived to ensure the implemented test statistic's optimality. 

Further, the sample covariance matrix was employed and recommended a Covariance Matrix 

(CM)-aware CNN-aided spectrum sensing approach that enhanced the functionality. Finally, 

the simulation findings illustrated that the functionality of the designed framework was close 

to the optimal detector. 

In 2020, Xie et al. [19] have suggested a CNN-LSTM detector that employed the CNN to 

draw out the features of energy-correlation. The consideration of sensing information and 

energy-correlation attributes related to various sensing times was given to LSTM. Hence, the 

activity pattern of PU could be learned. With enough experiments, the supremacy of the 

CNN-LSTM model was proved in situations without and with noise uncertainty. 

In 2020, Soni et al. [20] have recommended an LSTM-aided spectrum sensing model that 

learned the necessary features from the spectrum data. Additionally, the CR devices have 

exploited the activity statistics of PU using spectrum sensing to improve the sensing 

functionality. The suggested sensing mechanisms were experimented on the spectrum 

information of numerous radio technologies. The authors monitored the maximized 

framework rates of the developed approach. 

In 2023, Kannan et al. [21] have combined the two optimization algorithms to improve the 

efficient energy usage ability of the spectrum hoes by focusing on distinct sensing situations. 

The primary objective of the suggested system was to tune distinct attributes such as sensing 

bandwidth, transmission power, and so on. While estimating the recommended system, the 

suggested model provided improved solutions. 



In 2023, Vijay and Aparna [22] have implemented a new spectrum sensing mechanism. 

The model employed the recurrent connections to obtain the temporal dependencies. To 

develop a spectrum sensing approach, this work cascaded distinct deep networks. The 

evaluation results provides that the designed method attained higher performance and lower 

sensing error percentage. 

In 2023, Paul and Choi [23] have presented a reliable and single model for the CS users. 

The suggested work employed the time series evaluation via a DL-aided LSTM method for 

indexing the PU channels. In the end, the authors designed a complex framework and 

rectified employing a value-iteration-aided approach. The simulation solutions displayed the 

efficacy of the presented work over the related works. 

In 2021, Nasser et al. [24] have employed ANN for performing the spectrum sensing. The 

authors employed cutting-edge mechanisms in the deep learning sector to obtain accurate 

solutions. The ANN model was trained to differentiate among two hypotheses. The research 

outcomes have displayed the efficacy of the presented work, as it performed better than the 

conventional ANN-aided energy detector. 

In 2023, Rani and Prashanth [25] have explored a deep learning mechanism and presented 

an innovative spectrum identification mechanism for CR networks. The integrated feature 

vector was performed via a reinforcement approach. In the end, these features were employed 

to train the DL method that engaged the residual blocks. The solutions of the method were 

contrasted with other deep learning-aided models and displayed the robustness of the 

presented work. 

In 2024, M. Pravin et al. [26] have developed an efficient Oppositional Function based 

Chimp Optimization Algorithm (OFCOA) for effectively managing the energy and resource 

allocation in CRN. Here, the OFCOA model was performed to evaluate the optimal solution 

using an oppositional function. This developed method was validated using the MATLAB 



platform using several metrics like delay, energy consumption, and so on. The comparative 

performance was evaluated with existing methods to provide better performance.  In 2024, 

Liu et al. [27] have proposed a hybrid Cooperative Spectrum Sensing (CSS) mechanism with 

the help of a deep learning method. Further, the energy allocation has been calculated among 

transmitting of packet and spectrum sensing. Also, the issues of Average Age of Information 

(AoI) have been resolved using the developed model. In 2024, Shrote et al. [28] have 

implemented a hybrid algorithm spectrum sensing mechanism in CRN to recognize the 

availability in the channel. The process of feature extraction was performed with the help of 

the received signal whereas; the spectrum sensing availability was highly detected utilizing 

the designed approach. The resultant simulation of the implemented MIMO method has 

reached a high performance of extreme flexibility to detection performance. In 2024, 

Prabhavathi et al. [29] have developed a resource optimization framework with a priority 

pricing technique. With consideration of different primary user states, the Hybrid-Cognitive 

Radio Networks (H-CRN) have been detected. Here, the higher priority of the primary user 

and secondary user were applied in spectral resources using a deep learning model. In 2024 

Khaf et al. [30] have investigated a hybridized model along with a deep reinforcement 

learning model in CRN to maximize energy efficiency.  Also, the performance of the 

developed method has obtained effective performance. In 2024, Jain et al. [31] have 

implemented an ANN model with a Wireless Regional Area Network (WRAN). For the 

experimentation, the 2048 samples were taken in the experimental analysis to provide reliable 

performance. The experimental findings of the proposed method have shown maximized 

performance than the conventional methods.  

 In 2024, Ge et al. [32] have developed a Reconfigurable Intelligent Surface (RIS) 

framework to maximize Cooperative Spectrum Sensing (CSS) performance within fixed 

sensing time. Phase Shift Matrix (PSM) optimization mechanism was implemented to 



enhance the cooperative detection probability. Fata fusion and decision fusion schemes of 

CSS could have the ability to remove high tolerance false alarm issues on PSM.  The 

simulation outcomes of the designed framework have demonstrated a better performance 

compared to other existing approaches. 

In 2024, Wu et al. [33] have developed a novel blind spectrum sensing using one-bit 

Analog-to-Digital Converters (ADCs) to minimize power consumption and hardware costs. 

The theoretical calculation of simulation outcomes of this developed model has shown better 

performance. In 2024, Taherpour et al. [34] have developed and derived several detectors 

based on linear spectral statistics from random matrix theory. Gaussian distribution has been 

combined with these detectors using the central limit theorem. Performance validation of the 

designed model has illustrated the effectiveness of the developed detectors in different real-

world applications to minimize the average SNR and enhance detection probability. 

In 2024, Ezhilarasi et al. [35] have proposed a novel technique with the help of 

Blockchain-based technology to detect and prevent several criminal activities using a 

spectrum sensing mechanism. The iron-out phase and block updation phase were involved in 

the detection strategy. The simulation outcomes of the developed model were illustrated 

3.125%, 6.5%, and 8.8%  at -5 dB SNR in the appearance of malicious users. 

In 2024, Vlădeanu et al. [36] have developed a novel Energy Detection (ED) model for SS 

which contains binary activity for detecting the signal to enhance detection performance. The 

proposed method has been validated with statistical analysis and derives the expressions 

using diverse methods. The theoretical findings of this model have outperformed better 

detection outcomes. 

In 2024, Hongning et al. [37] have developed a cryptonym array-based privacy-preserving 

aggregation approach and data confusion-based privacy-preserving model for SS in cognitive 



vehicular networks. The implemented method can accurately transmit the confused data in 

the aggregation process. 

 

2.2 Research Gaps and Challenges 

 The conventional spectrum sensing methods mostly concentrate on the feature-retrieving 

process. However, this procedure takes more time to elaborate all the sensing data. Sensitivity 

to noise, inefficiency, and signal representation are some of the issues presented in existing 

spectrum sensing approaches. Some of the techniques are vulnerable to noise that affects the 

detection process of spectrums. Table 1 presents the features and challenges of existing 

spectrum sensing approaches in CR networks using deep learning. CM-CNN [18] has the 

ability to retrieve test static-based features and it rectified the spectrum sensing problem of 

multi-antennas. However, it does not solve the spectrum scarcity problems and lots of time is 

needed for the training process. CNN-LSTM [19] helps to retrieve correlation features from 

the sensing data and it effectively learns the activity patterns of primary users. Yet, the 

sensing period is high. LSTM-SS [20] achieved high classification accuracy at low signal-to-

noise ratio regimes. It learns the implicit features efficiently with the help of employed 

memory elements. It does not work well on multiple numbers of Pus and SUs. The execution 

time for sensing the spectrum is high. GWO-CS [21] attained high throughput by maintaining 

the spectrum holes and it solves the radio spectrum shortage issues. Yet, it is affected by 

channel congestion and interference problems and the convergence is low.  RNN-BIRNN-

LSTM [22] effectively categorizes the sensing data. But, Training each network requires a lot 

of time and it has degradation problems. DRL [23] solves the channel shortage problems and 

it reduces the sensing overload issue. But, it suffers from hidden noise issues. ANN [24] 

utilizes only one detector for the training process. However, retrieving energy-related features 

is difficult. DRLNet [25] retrieves energy correlation features for an efficient spectrum 



detection process. It has the capability to capture time-shifted signal correlation. But, the 

communication of the system is not effective and it suffers from security and power control 

issues. Therefore, a hybrid spectrum sensing method in a CRN using deep learning will be 

implemented. 

 

Table 1. Features and challenges of conventional spectrum sensing techniques in cognitive 

radio network using deep learning 

Author 

[citation] 

Methodolo

gy 

Advantages Disadvantages 

Liu et al. 

[18] 

CM-CNN  It can retrieve test 

static-based features. 

 It rectified the 

spectrum sensing problem 

of multi-antennas. 

 It does not solve the 

spectrum scarcity problems. 

 Lots of time is needed 

for the training process. 

Xie et al. 

[19] 

CNN-

LSTM 
 It helps to retrieve 

correlation features from the 

sensing data. 

 It effectively learns 

the activity patterns of 

primary users. 

 The sensing period is 

high. 

 

Soni et 

al. [20] 

LSTM-SS  It achieved high 

accuracy. 

 It learns the implicit 

features efficiently with the 

help of employed memory 

elements. 

 It does not work well 

on multiple numbers of Pus 

and SUs. 

 The execution time for 

sensing the spectrum is high. 

 

Kannan 

et al. [21] 

GWO-CS  It attained high 

throughput by maintaining 

the spectrum holes. 

 It solves the radio 

spectrum shortage issues. 

 It is affected by 

channel congestion and 

interference problems. 

 Convergence is low. 

Vijay 

and Aparna 

[22] 

RNN-

BIRNN-LSTM 
 It effectively 

categorizes the sensing data. 

 

 Training each network 

requires a lot of time. 

 It has degradation 

problems. 

Paul and 

Choi [23] 

DRL  It solves the channel 

shortage problems. 

 It reduces the 

sensing overload issue. 

 It suffers from hidden 

noise issues. 

Nasser et 

al. [24] 

ANN  It utilizes only one 

detector for the training 

process. 

 Retrieving energy-

related features is difficult. 



Rani and 

Prashanth 

[25] 

DRLNet  It retrieves energy 

correlation features for an 

efficient spectrum detection 

process. 

 It has the capability 

to capture time-shifted 

signal correlation. 

 The communication of 

the system is not effective. 

 It suffers from security 

and power control issues. 

 

3. Developing an efficient CRN with Hybrid Spectrum Sensing using Deep 

learning approach 

3.1 Cognitive Radio Network: System Model 

The system model of CRN is explained here. Here, a normal multi-antenna CR [18] 

framework is offered. The terminal CR employs an N  –factor antenna device to do the 

spectrum sensing on the basis of M  observation attributes. Consider,  

         1,...,1,0,,...,, 21  Mmmymymymy
U

N  and specify the observation attribute, where the 

variable  my j  specifies the thm  discrete time sample at the CR terminal’s thj  antenna. Hence, 

the spectrum sensing issue at the multi-antenna CR terminal is derived as a binary hypothesis 

testing issue as given in Eq. (1). 

     
   mvmyJ

mvmdmyJ





:

,:

0

1             (1)  

Here, the variable   1 NFmd  specifies the signal vector  md  that troubles with channel 

fading and path loss. Commonly, it is not possible to achieve the previous PUs knowledge at 

the CR terminal hence, the signal vector is considered to be an identically and independently 

distributed Circular Symmetric Complex Gaussian (CSCG) factor with covariance 

matrix     mdmdAS V

d   and zero mean. A variable   1 NFmx  indicates the noise factor and it 

is considered as a CSCG arbitrary factor with covariance matrix      Nx

V

x JmxmxAS 2  and 

zero mean, whereas a variable 2

x indicates the noise variance. Moreover, the 

attributes 01 VandV  indicate the hypotheses that PUs is absent and present correspondingly.  



According to the observation factors, the test statistic U  is developed to make the 

decisions: if the condition U  is met, then the PUs is present; or else the PUs are absent. 

Here, the threshold value is indicated as  . Based on the Neyman-Pearson (NP) scenario, the 

primary concept of spectrum sensing is to develop a test statistic to enhance the detection 

probability for the provided Probability of False Alarm (PFA) that is derived in Eq. (2). 

 

  











dttgQts

dttgQ

VUg

VUc
U

0

1

|

|

.

max
             (2) 

In this, the test statistic formulated from the observation factors is denoted asU . The 

attributes    10 || VUQQandVUQQ cg    indicate the PFA and PD accordingly. The 

variable jV| indicates the experiment statistic under the hypothesis jV .  The factor
jVUg |  

indicates the jVU | ‘s probability density function. Further, the variable  specifies the needed 

PFA and the specific detection threshold is given as  .  Fig.1 displays the system model of 

CRN for the recommended hybrid spectrum sensing mechanism. 
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Fig 1. System model of CRN for suggested hybrid spectrum sensing mechanism 

 

3.2 Input Data Details 

The recommended hybrid spectrum sensing mechanism’s input details are collected from the 

link as “https://github.com/caiotavares/spectrum-sensing: access date:2024-06-08”. This is a 

synthetic dataset. This dataset includes the overall data size as (70000, 3) and the overall 

target size as (70000, 1).  And, the collected information is specified as DdhereSd ,..,2,1,  , 

and the overall data is indicated as D . 

 

3.3 Motivation and Significance for Hybrid Spectrum Sensing 

In the present day, the utilization of wireless systems and its service has been enhanced 

highly but it leads to spectrum scarcity. The regulatory authority policies utilize the static 

spectrum allocation techniques and allocate new spectrum bands for providing new 

https://github.com/caiotavares/spectrum-sensing:%20access%20date:2024-06-08


categories of services to the candidates. These techniques result in small usage of available 

spectrum bands. The CR [38] offers better outcomes for these issues and it relatively 

concentrates on the effective usage of available spectrum bands. 

Significance of hybrid spectrum sensing: The idea of CR has developed to minimize the 

issue of spectrum scarcity. In the modern days, it has been reported that the spectrum can be 

reutilized by employing CR [39] technology from television or cellular bands. In the CR, the 

unauthorized candidates, often considered SUs, sense and purposely use the radio spectrum 

while confirming that the interference to the PU is below several acceptable thresholds. The 

interference in the PU highly occurs when the SU stops to recognize the activity of the PU as 

an authorized band. Thus, effective and accurate hybrid spectrum sensing is a significant 

problem in the CRNs.  

Motivation for hybrid spectrum sensing: The wireless communication system’s 

performance could be enhanced by employing the CUs features without affecting PU’s 

performance. Numerous techniques were recommended using experts for the spectrum 

management function such as estimating spectrum sensing and determining the spectrum for 

CUs. In CRN [40], the sensing platform includes distinct components with low-powered 

sensors. Thus, an issue occurs in the spectrum sensing and it minimizes the functionality of 

the method. In the conventional mechanisms, some experts have been concentrated on 

spectrum sensing to enhance the sensing accuracy. In both mechanisms, the accuracy is 

minimal. In order to enhance the sensing accuracy, a hybrid spectrum sensing was 

implemented in the recommended work that chooses the suitable spectrum band for the CUs. 



4. Parameter optimization using Random parameters Improved DSA and Proposed 

Model Description 

4.1 Proposed Conceptual View of CRN with HSS 

In the present day, an ever-enhancing requirement for larger data values demands high 

spectrum resources. The conventional static spectrum allocation only enables the particular 

PUs to employ the licensed spectrum, while the SUs are restricted. To enhance the spectrum 

efficacy, the CR mechanism was recommended. The primary concept of CR is spectrum 

reuse which enables the SUs to employ the authorized spectrum band when the PUs is idle. 

To attain this, the SUs are required to perform the spectrum sensing process that recognizes 

the PU's spectrum occupation state. Thus, spectrum sensing is a primary operation of CR 

innovation that has focused intense attention from both industry and academia. The important 

issue of spectrum sensing is to develop the test statistic to attain higher detection likelihood. 

In the past years, numerous model-driven spectrum sensing techniques have been 

implemented. However, the noise uncertainty issue varies with time causing the degradation 

of detection performance. To minimize the noise uncertainty issue, the totally-blind 

techniques have been implemented. But, the performance of these techniques is worse than 

that of the other techniques. Considering the traditional method-aided techniques, deep 

learning strategy can highly draw out the features of distinct platforms and enhance the 

performance of traditional communication devices. Although the conventional deep learning-

aided techniques enhance the detection functionality, these features drawn from the 

conventional techniques are susceptible to noise uncertainty. To rectify the conventional 

technique’s limitations, an effective hybrid spectrum sensing framework is important. Fig.2 

displays the implemented hybrid spectrum sensing framework. 
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Fig 2. The architecture of the implemented hybrid spectrum sensing system for CRN 

 

An effective hybrid spectrum sensing system is constructed in this work for CRN that 

improves the spectrum efficiency. Firstly, the data attributes are fetched from the available 

resources. Further, the hybrid spectrum sensing process is carried out with the support of 

AAMNet. This network is the integration of CNN, LSTM, and autoencoder. The spectrum 

sensing approach by the recommended AAMNet is improved by the RIDSA-aided parameter 

optimization process. Here, the recommended RIDSA optimally tunes the parameters of the 

AAMNet hence enhancing the spectrum sensing process. The spectrum availability is 

recognized for better utilization of spectrum by the recommended hybrid spectrum sensing 



process. The effectiveness of the implemented method is evaluated by determining the 

outcomes with several deep learning and heuristic approaches. 

 

4.2 Conventional Approach: DSA 

The existing DSA [41] is a swarm intelligence-aided approach motivated by the foraging and 

searching behaviors of the duck swarm. The mathematical process of the DSA is explained 

here. The DSA includes the following stages. 

 Duck swarm’s positions after queuing (Initialization of population) 

 Food source searching (Exploration) 

 Foraging in groups (Exploitation) 

Population initialization: Consider the derivation of randomly produced starting place in 

the D-dimensional search area as given in Eq. (3). 

 vCXCP rrrm .               (3) 

Here, the thm duck’s Fm ,...,2,1  spatial region is specified as mP  in the duck group, and the 

population size number is given as F . The search region’s lower and upper regions are 

considered as rr XandC  appropriate. The arbitrary integer matrix among 0 and 1 is provided 

as v . 

Exploration: After the duck swarm’s queuing process, the ducks come to the region with 

much food. Each duck moderately disperses and initiates food searching. This operation is 

explained in Eq. (4). 

 
   







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rdBPPYYPPYYP

rdBvsignPP
C

a

m

a

d

a

m

a

leader

a

m

a

m

a

ma

m
..

,5.0..

21

1 
                       (4) 

Here, the term sign  has an impact on the task of exploring for food, and it is set either 1 or 

-1 and the variable   indicates the global search’s control parameter. The exploration stage’s 

search conversion probability is specified as B . The competition and cooperation coefficient 



between ducks in the search region is indicated as 12 YYandYY accordingly. The present 

historical value’s best duck region is indicated as a

leaderP  at the tha iteration. The variable a

dP  

specifies the agents around a

mP  in exploring for food by the group of ducks in the tha iteration. 

The variable rd  is the updated arbitrary integer using Eq. (9) for enhancing the performance 

rates. Eq. (5) determines the variable   and Eq. (6) estimates the variable L . 













 


max

1
.

a

a
L                          (5) 

  1.2sin  rdL                          (6) 

Exploitation: After discovering the duck swarm’s food, that is, sufficient food can satisfy 

the duck’s foraging. This operation is relatively related to each place of duck’s fitness and 

derived in Eq. (7). 
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Here, the variable   indicates the global search’s control parameter in the exploitation 

stage. The competition and cooperation coefficient between ducks in the search region is 

indicated as 12 ZZandZZ accordingly in the exploitation stage. The present historical value’s 

best duck region is indicated as a

leaderP  at the tha iteration. The variables a

u

a

d PandP  specify the 

agents around a

mP in foraging of a group of ducks in the tha iteration, where du  . 

Considering the parameter values 1212 ,, ZZandZZYYYY  are all in the limit of 0 and 2 also, 

the evaluation formula is provided in Eq. (8). 

 2,1,
1

 mrd
QQ

ZZorYY mm                 (8) 

Here, the variable QQ  is constant, it is set to 0.618. The pseudo-code of the existing DSA 

is represented in Algorithm 1. 

 Algorithm 1: Conventional DSA 

Initial duck swarm positions, population number F , objective 



function, and parameter value setting 

Estimate the initial region’s fitness values and choose the 

leader agent place leaderP and best value ming and population 

candidate  

For max1 atoa   

 Upgrade the  parameter value employing Eq.(5) and 

upgrade the attributes. 1212 ,,, ZZandZZYYYYB  

 For Ftom 1  

  Upgrade the duck swarm places employing Eq. (4) 

(Exploration) 

  Estimate the new place and fitness value newg  

  Upgrade the leader place leaderP  and fitness value 

  Upgrade the duck swarm to new places employing Eq. 

(7) (Exploitation) 

  Estimate the fitness value 

  If fitnessgnew   

   Upgrade the place of individual and fitness 

value 

  End if 

   Upgrade the place of leader leaderP  and fitness 

value 

 End for 

 Save the solution of the best individual 

End for 

Output fitness value and best place 

 

4.3 Proposed Approach: RIDSA 

Numerous researches are explored by analyzing the performance of optimization algorithms. 

Also, the consideration of existing optimization algorithms faces several challenges that do 

not effectively work in our research work. On considering the existing POA algorithm, it 

restricts the amount of validators, which helps to limit and select the transactions to control in 

the network. In WOA, it fails by local optima issues during complex optimization processes. 

Thus, it has a minimal speed of convergence and accuracy. Also, it has less capability of the 

exploitation phase. To solve these issues in existing optimization algorithms, the research 

work adopts an improved algorithm, named as RIDSA. The RIDSA is implemented for 

performing the optimization process with the support of the existing DSA mechanism.  



 Purpose: The RIDSA is the integration of conventional DSA with an adaptive concept. 

The RIDSA is employed in the AAMNet-based hybrid spectrum sensing process. The 

AAMNet is the integration of three deep networks such as autoencoder, CNN, and LSTM. In 

these techniques, the important parameters such as hidden neurons need to be optimized to 

minimize the computational burden. For performing the optimization of the hidden neuron 

counts in the mentioned techniques, the RIDSA is implemented. 

Novelty: As mentioned earlier, the RIDSA is developed for optimizing the hidden neuron 

counts in techniques such as autoencoder, CNN, and LSTM. This helps to maximize the 

performance of the hybrid spectrum sensing process and minimize the computational 

burdens. The RIDSA is developed from conventional DSA. The DSA has better accuracy 

value compared to conventional algorithms and also it provides the solutions quickly. 

However, a random integer from the range of 0 and 1 is involved in the conventional DSA for 

performing both exploitation and exploration. The involvement of this random integer leads 

to low convergence when increasing the iteration counts. Also, because of this random 

integer, there is a possibility that the DSA falls into the local optima issue. In order to 

mitigate these issues, a new random integer is constructed with the assistance of fitness rates. 

With the support of this newly designed random integer, the limitations mentioned in the 

DSA are prevented, and increased the performance and convergence rates. Thus, the RIDSA 

approach is constructed in this work and employed in the hybrid spectrum sensing process. 

Eq. (9) derives the newly developed random integer. 

 22 wffbff

cff
rd


              (9) 

Here, the newly invented random integer is taken as rd and it is employed in Eq. (4), Eq. 

(6), and Eq. (8) for improving both exploitation and exploration tasks. Additionally, the 

variables wffandbffcff ,  specify the current fitness, best fitness, and worst fitness. 



Algorithm 2 shows the pseudo-code of RIDSA and Fig.3 depicts the flowchart of 

implemented RIDSA. 

Algorithm 2: Developed RIDSA 

Initial duck swarm positions, population number F , objective 

function, and parameter value setting 

Estimate the initial region’s fitness values and choose the 

leader agent place leaderP and best value ming and population 

candidate  

For max1 atoa   

 Upgrade the  parameter value employing Eq.(5) and 

upgrade the attributes 1212 ,,, ZZandZZYYYYB  

 For Ftom 1  

  Derivation of a new random integer rd  by Eq.(9) 

  Upgrade the duck swarm places employing Eq. (4) 

(Exploration) 

  Estimate the new place and fitness value newg  

  Upgrade the leader place leaderP  and fitness value 

  Upgrade the duck swarm to new places employing Eq. 

(7) (Exploitation) 

  Estimate the fitness value 

  If fitnessgnew   

   Upgrade the place of individual and fitness value 

  End if 

   Upgrade the place of leader leaderP  and fitness 

value 

 End for 

 Save the solution of the best individual 

End for 

Output fitness value and best place 
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Fig 3. Flowchart of implemented RIDSA for improving hybrid spectrum sensing process 

 

5. Hybrid Spectrum Sensing using Adaptive and Attentive Multi-stacked 

Network with objective function 

5.1 Models Utilized in Multi-stacked Network 

The MNet is implemented in this work for performing the hybrid spectrum sensing process 

for CRN. The MNet is the integration of three deep networks such as autoencoder, CNN, and 



LSTM. These techniques show better performances in the domain of CRN and thus employed 

in the hybrid spectrum sensing process. These three techniques are explained as follows. 

Autoencoder [42]: It is an unsupervised learning approach that is employed to minimize 

the input data’s dimensionality and regenerate the real data from the compressed format. The 

autoencoder includes three significant parts such as decoder, latent space, and encoder. The 

encoder is employed for minimizing the input data’s dimension and producing an input data’s 

compressed version. The layers of encoding contain a set of layers with a minimized amount 

of nodes.  

If the variable y denotes an original number’s S  vector of dimension e , eSy further the 

result of the encoder module i is provided in Eq. (10). 

 cXygi               (10) 

Here, the factors Xandc  are the related bias unit and the weight matrix of the encoding 

layer accordingly. The activation function is specified as g . The compressed data generated 

is i  indicated by the latent space. It is also named code space. Finally, the decoder regenerates 

the input data from the compressed data to be as near to the real data as possible. 

If the variable y specified as the reconstructed solution, the compressed data’s mapping i  

to y  be given in Eq. (11). 

 ''' cyXgy              (11) 

Here, the variables '' Xandc  are considered as the decoding layer’s bias unit and the 

weight matrix. Further, the activation function is specified as 'g . The objective of the 

autoencoder is to reduce the reconstruction faults while the backpropagation approach is 

employed to reduce the errors. The loss function among the input and reconstructed data is 

determined by employing functions such as binary cross entropy and mean square error. 



CNN [43]: It has been employed in numerous applications. It contains three significant 

layers such as pooling layers, convolutional layers, and Fully Connected (FC) layers. A 

convolutional layer includes a kernel named filters each of which contains a receptive field. 

Due to the shared files and the local connectivity, the convolutional layers can handle multi-

dimensional data by translation invariance. The convolution task is formulated in Eq. (12). 
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Here, the feature representation is given as b  , and the convolutional kernel’s weight is 

specified as x . The bias offset is taken as c  and the variables NandM specify the kernel 

height and width respectively. The position indices are taken as   mknj   and the activation 

function is specified as  g . 

Normally, the pooling layer is utilized after some convolutional layers. It offers a 

nonlinear downsampling form of the input and concentrates on minimizing the parameter 

count in the network. The pooling layer’s output is estimated in Eq. (13). 

 'bq               (13) 

Here, the term q denotes the output of the pooling layer and  'b denotes the input of the 

pooling layer. The down-sampling task over the receptive field is indicated as   .  

After the tasks of convolution and pooling, the diverse feature maps are collected and 

employed as the input to the FC layer. The FC layer’s derivation is given in Eq. (14). 

 ooo cbxgb  10             (14) 

Here the FC layer’s index is represented as o  and the output and input of the layer are 

specified as 1oo bandb  accordingly. 

LSTM [44]: It is the improvement of the Recurrent Neural Network (RNN). The RNN 

offered the short-term memory ability that enabled the utilization of the conventional data to 



be employed for the current work. The output gates, cell, forget gate, and input gate are 

presented in normal LSTM.  

Forget gate: The primary objective of this gate is to decide which cell gate bits are 

supported to provide the new input data and the conventional hidden state. The network’s 

forget gate is trained hence results close to zero when an input component is not relevant or 

else closer to one when it is related. The forget gate tfo  is modelled in Eq. (15). 

  gttgt biinhiwefo   ,1            (15) 

Here, the activation function is indicated as . The variables gg weandbi denotes the 

forget gate’s bias and weight. The variables 1tt hiandin  refer to the integration of present 

input and hidden state accordingly.  

Input gate: The primary goal of this gate is two-fold. The initial one is to validate if the 

new data is relevant to keep in the cell stage. One operation includes producing a new 

memory update attribute specified as tD
~

, by integrating the new input data and conventional 

hidden state. The operation is formulated in Eq. (16). 

  dttdt biinhiweD   ,tanh
~

1            (16) 

Here, the variable dd weandbi denotes the input gate’s bias and weight. The term tanh is an 

activation function, which is employed to produce the memory update vector’s elements. 

Same as the forget fate, the input gate is trained to result a value vectors in [0, 1] employing 

the sigmoid activation function. This operation is provided in Eq. (17). 

  yyttyyt biinhiweyy   ,1            (17) 

Here, the terms yywe  and yybi denotes the input gate’s weight bias.  

Further, these two tasks are point-wise multiplied. The resulting integrated vector is 

further added to the cell state as given in Eq. (18). 

ttttt DyyDgD
~

1             (18) 



Output gate: The primary objective of this gate is calculated in the new hidden stage. The 

output gate employs three distinct data including new input data, the conventional hidden 

state, and the newly updated cell state.  

It initially employs the conventional hidden state and presents input data via the sigmoid-

activated network to attain the filter vector tou  as given in Eq. (19). 

  outtout biinhiweou   ,1            (19) 

Here, the variables oooo weandbi  denoted as the output gate’s bias and weight. The cell 

state is given to the activation function tanh to manage the values into the bound [-1, 1] to 

generate the compressed cell state that is employed to the filter vector with point-wise 

multiplication. Along with the new cell state tD , a new hidden state thi is generated, and 

results as given in Eq. (20). 

 ttt Douhi tanh             (20) 

The new cell stage tD  becomes the conventional cell state 1tD  to the subsequent LSTM 

module while the new hidden state thi  changes into the conventional hidden state 1thi  to the 

upcoming LSTM module.  

Thus, by considering these three techniques improved performance rates, the MNet is 

constructed for performing the hybrid spectrum sensing process.  

Parameter optimization process 

The parameter optimization process helps to select the best set of hyperparameters in the ML 

approaches. For initiating the optimization process, the population of the duck swarm can be 

randomly generated with the help of prior knowledge. With the help of the objective function 

in Eq. (22), the hidden neurons in the Autoencoder, LSTM, and CNN model gets tuned using 

the developed RIDSA algorithm to reaches the convergence criteria to make sure better 

robust performance. Hence in each population of duck, the required parameters are to be 

encoded and processed over the iteration. At the end of the iteration, the better value is 



attained for such parameters that are used in the AAMNet model. Thus, it helps to achieve 

accurate outcomes in the developed model. 

 

5.2 Attention Mechanism 

Nowadays, the attention mechanism [45] is applied in numerous tasks such as object 

identification, classification, image generation, and so on since it exponentially increases the 

network performance rates. In this hybrid spectrum sensing process, the attention mechanism 

is integrated. This attention mechanism is inserted into the network layers that help the 

network to concentrate on the more necessary features and disregard the inappropriate 

features and the noise. Moreover, this mechanism supports to concentrate on the important 

part that has an important effect on the solutions. Eq. (21) shows the attention function, which 

is composed of a mapping query and a pair of keys and values. This function determined the 

alignment score among the factors from the two modules. 

    yrtxsoftytrAttention Tmax,,           (21) 

The variables  yandt  denote the key and value matrices. The query matrix is 

represented as r . 

 

5.3 Recommended AAMNet for Spectrum Sensing 

In the hybrid spectrum sensing process, the AAMNet is constructed in this work. This is a 

very effective technique since it is developed using deep learning techniques. The AAMNet 

includes three deep networks such as autoencoder, CNN, and LSTM. The consideration of 

these networks provides better outcomes, yet these have several challenges that are 

mentioned below. Autoencoder is more sensitive, it does not performed in noisy input data. 

The tuning of several layers in the neural network is complex and it consumes more time. On 

the other hand, the CNN needs more labeled data; this is expensive and also it causes 



overfitting issues. In LSTM model, it requires further memory and large-time, which can 

make huge computational complexity. In order to resolve these problems, the attention 

mechanism is integrated into autoencoder, CNN, and LSTM for improving the hybrid 

spectrum sensing process in CRN. The advantages of integrating the attention mechanism in 

autoencoder, CNN, and LSTM are shown below. 

Attention-based Autoencoder: The autoencoder can capture the difficult and complex 

features from the input data. However, when executing more input data, the autoencoder 

trouble to capture the complex features. Autoencoder contains an attention mechanism, it is 

used to choose the features effectively. Moreover, it can enhance the performance of the 

technique. 

Attention-based CNN: The CNN minimizes the computation process and also extracts the 

significant features and eliminates the outliers. However, the CNN fails to produce the 

maximum accuracy when processing small datasets. To maximize the accuracy of the CNN, 

the attention mechanism is included. This attention mechanism effectively reduces the 

computational complexities and enhances the performance rates. 

Attention-based LSTM: The LSTM can remember the previous data and thus increase 

efficiency. It minimizes the gradient issues also. However, the LSTM faces overfitting issues 

when the input data increases. Hence, the attention mechanism is included in this network 

that minimizes the overfitting issues, and enhances the efficiency of the LSTM network. 

Thus, the AMNet is constructed with the outstanding features of these techniques. This 

AMNet technique can provide the desired solutions for the hybrid spectrum sensing process. 

Though the suggested AMNet can provide the desired solutions, the network attributes like 

hidden neurons in the CNN, LSTM, and autoencoder may cause a computational burden. In 

order to mitigate this problem, the AAMNet is constructed, where the RIDSA technique 

helps to tune the hidden neuron count of autoencoder, CNN, and LSTM. Thus, the AAMNet 



is suggested for performing the hybrid spectrum sensing process. This network highly 

increases the performance rates and also spectrum efficiency than the other conventional 

models. The efficiency function of the RIDSA-based parameter tuning is mentioned in Eq. 

(22). 

 
 Aob

LSTMCNNAE hnhnhn ,,

maxarg            (22) 

Here, AEhn refers to the hidden neuron count in the autoencoder is varying from 5 to 255. 

CNNhn represents the hidden neuron count in CNN that ranges from 5 to 255. 

LSTMhn represents the hidden neuron count in LSTM that varies from 5 to 255. Further, the 

accuracy is indicated as A  , and it is maximized by this process. This factor is explained as 

follows. 

Accuracy: It is a performance measure that is utilized to define how the method performs 

the operation. It is shown in Eq. (23). 

mmbbccxx

ccxx
A




            (23) 

Here, the terms mm  and cc denotes the true positive and true negative rates. Also, bb  and 

xx  represents the false positive and false negative rates.  

Thus, the AAMNet is constructed for performing the hybrid spectrum sensing for CRN. 

The functionality of the AAMNet is explained as follows. 

AAMNet: The AAMNet is implemented for performing hybrid spectrum sensing. This 

network includes three deep networks such as autoencoder, CNN, and LSTM. Initially, the 

original data dS  is given as input for the autoencoder technique. The autoencoder extracts the 

complex, requisite, and difficult characteristics in the raw data. Further, the obtained features 

are given to the CNN method. This approach effectively extracts the optimal features and 

removes the unnecessary features. After that, the necessary features are forwarded to the 

LSTM technique. Here, the attention mechanism is integrated to improve the accuracy and 



performance rates. Moreover, to minimize the computational burdens, the RIDSA algorithm 

is utilized for tuning the hidden neuron count in the autoencoder, LSTM, and CNN 

techniques. Thus, a novel hybrid spectrum sensing process is performed for CRN that 

increases the accuracy and spectrum efficiency than the conventional techniques. The 

functional diagram of the AAMNet-based hybrid spectrum sensing process is shown in Fig.4. 
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Fig 4. Functional diagram of AAMNet-based hybrid spectrum sensing process for CRN 

 

6. Experimental findings 

6.1 Experimental setting 

The developed hybrid spectrum sensing system in CRN was implemented in the Python 

platform. On this platform, satisfactory solutions were reached. The proposed RIDSA 



model’s chromosome length was taken as 3, maximum iteration was considered as 50, and 

total population was taken as 10. In order to prove the designed hybrid spectrum sensing 

system’s effectiveness, the performance analysis was conducted by utilizing the traditional 

algorithms and classifiers such as Red Deer Algorithm (RDA) [46], Ebola Optimization 

Algorithm (EOA) [47], Squid Game Optimizer (SGO) [48], DSA [41], Autoencoder [42], 

CNN [43], LSTM [44], and AMNet [42] [43] [44] [45]. Table 2 shows the network 

parameters of the developed CRN and also, the details of system requirements are mentioned 

in Table 3. 

Table 2. Network parameters of CRN 

Parameter Value range 

Area size 1000m×1000m 

Number of channels 1 

PU interference range (m) 125 

Frequency (GHz) 2.4 

PU idle time (ms) 10, 20, 40, 80, 160, 320 

Effective bandwidth (Mbps) 2 

Initial energy (J) 2, 4, 6, 8, 10 

SU transmission range (m) 125 

Data rate (Kbps) 100 

Packet size (KB) 1.5 

Number of active connections 1, 2, 3, 4, 5 

Running time (s) 200 

 

Table 3. System Requirements in CRN 

RAM 16.0 GB 

Interpreter MATLAB R2020a 

Processor Intel (R) Core(TM) i3-1005G1 

OS Windows 

Development Environment Matlab 

Version Windows 11 pro 

CPU 1.20GHz - 1.19 GHz 

System Type 64-bit operating system, 

 x64-based processor 

 

 

6.2 Performance measures 

The following approach metrics are used for determining the performance of the designed 

hybrid spectrum sensing framework.  



Accuracy: It is derived in Eq. (23).  

Sensitivity: It is mentioned in Eq. (24). 

ccxx
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             (24) 

Specificity: It is shown in Eq. (25). 
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Precision: It is calculated in Eq. (26). 
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             (26) 

FPR: It is denoted in Eq. (27). 

xxbb
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
             (27) 

FNR: It is calculated in Eq. (28). 

mmxx
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
             (28) 

NPV: It is derived in Eq. (29). 

mmxx
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
             (29) 

FDR: It is derived in Eq. (30). 

bbxx
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
             (30) 

F1-score: It is determined in Eq. (31). 
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
 21            (31) 

MCC: It is derived in Eq. (32). 
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6.3 Designed RIDSA model’s convergence analysis 

The convergence analysis of the RIDSA approach is given in Fig.5. By comparing the 

RIDSA method with conventional algorithms, this experiment is carried out whereas; the 

parameters are effectively tuned to maximize the convergence value. In the convergence 

analysis graph, the X-axis shows the varying number of iterations, like 10, 20, 30, 40, and 50. 

On considering the traditional RDA-AAMNet, it shows low convergence that arise parameter 

issues. Our proposed algorithm shows good convergence by tuning the necessary parameters 

using an iteration and population. Based on this evaluation, the optimal solution is reached by 

considering a predefined value.  Thus, it has been reported that the designed RIDSA model 

obtained a minimum cost function and hence attained higher value convergence than the 

conventional algorithms. For the 30th iteration, the RIDSA model’s cost function is relatively 

reduced by 7.31% of RDA-AAMNet, 6.58% of EOA-AAMNet, 4.8% of SGO-AAMNet, and 

5.12% of DSA-AAMNet accordingly. Additionally, it has been guaranteed that the 

implemented RIDSA helps to enhance the accuracy rates of the hybrid spectrum sensing 

approach.  

 
Fig 5. Convergence analysis of the designed RIDSA method over conventional algorithms 



6.4 Designed RIDSA model’s statistical analysis 

The designed RIDSA method’s statistical analysis is offered in Table 4. In this statistical 

analysis, it helps to visualize and analyze complicated patterns to provide better performance. 

It supports the implemented system can handle effectively works in all types of data. Also, it 

reduces the scalability problem in the implemented method to enhance the accuracy. By 

comparing the RIDSA model over related other algorithms.  The RIDSA model is improved 

than the other algorithms by 4.68% of RDA-AAMNet, 4.65% of EOA-AAMNet, 3.22% of 

SGO-AAMNet, and 3.9% of DSA-AAMNet respectively when considering the best factor. 

Thus, it has been explained that the developed RIDSA approach helps to determine the 

optimal solutions than the other techniques. Also, it has been clearly indicated that the 

designed RIDSA increases the accuracy of the hybrid spectrum sensing approach. 

 

Table 4. Statistical report of implemented RIDSA model over conventional algorithms 

Terms RDA-

AAMNet 

[46] 

EOA-

AAMNet 

[47] 

SGO-

AAMNet 

[48] 

DSA-

AAMNet 

[41] 

RIDSA-

AAMNet 

Median 4.6135 4.3152 4.2566 4.2843 4.123 

  Best 4.3168 4.3152 4.2566 4.2843 4.123 

Standard             

Deviation 0.27249 0.32921 0.25813 0.26649 0.41261 

Mean 4.5609 4.4264 4.3527 4.3552 4.257 

Worst 5.2476 5.9631 5.1582 5.6276 5.763 

 

6.5 Implemented hybrid spectrum sensing system’s performance  analysis 

The developed hybrid spectrum sensing system’s performance is verified by employing other 

recent algorithms and techniques. This experiment is graphically given in Fig.6 and Fig.7.  In 

Fig.6 (a), the developed hybrid spectrum sensing system accuracy is improved by 2.54% of 

RDA-AAMNet, 1.8% of EOA-AAMNet, 1.27% of SGO-AAMNet, and 1.06% of DSA-

AAMNet appropriately for softmax activation function. Considering Fig.6 (h), the precision 

analysis is focused to show a positive outcome in the CRN model. So, this analysis helps to 



minimize the false positive and false negative errors. The developed RIDSA-AAMNet model 

reaches maximum precision. In Fig. 7(d), the FNR metric shows a higher error rate in the 

traditional Autoencoder model, yet it affects overall performance in CRN. This causes 

communication issues while transmitting the data. In the developed method, accurate 

performance is attained by decreasing the error rate. Moreover, when considering the ReLU 

activation function in Fig.7 (c), the designed hybrid spectrum sensing system’s FDR is 

minimized by 25.57% of Autoencoder, 21.42% of CNN, 14.28% of LSTM, and 14.28% of 

AMNet respectively. When focussing on other performance measures, the developed 

approach produced more effective and superior solutions.  
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Fig 6. Performance evaluation of implemented hybrid spectrum sensing system over 

conventional algorithms in terms of  (a) Accuracy, (b) F1-score,(c) FDR,(d) FNR, (e) FPR, 

(f) MCC, (g) NPV, (h) Precision, (i) Sensitivity, and (j) Specificity  
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Fig 7. Performance evaluation of implemented hybrid spectrum sensing system over 

traditional classifiers in terms of  (a) Accuracy, (b) F1-score,(c) FDR,(d) FNR, (e) FPR, (f) 

MCC, (g) NPV, (h) Precision, (i) Sensitivity, and (j) Specificity  

 

6.6 Implemented hybrid spectrum sensing system’s overall comparative  analysis 

The implemented hybrid spectrum sensing system’s overall comparative estimation is given 

in Table 5 and Table 6 over existing methods and models. In Table 5, the error value of FDR 

in the RDA-AAMNet algorithm is 7.3027 which seems to represent a high error when 

compared with other techniques.  Our developed RIDSA-AAMNet algorithm attains 4.7322 

and provides effective performance. In Table 6, while considering the developed RIDSA-

AAMNet, the accuracy achieves 95.446 in CRN. The designed hybrid spectrum sensing 

mechanism’s precision is enhanced by 2.33% of Autoencoder, 1.31% of CNN, 0.46% of 



LSTM, and 0.98% of AMNet respectively when considering Table 6. Similarly, when 

considering Table 5, the designed hybrid spectrum sensing approach’s specificity is 

maximized by 2.73% of RDA-AAMNet, 2.01% of EOA-AAMNet, 0.83% of SGO-AAMNet, 

and 1.09% of DSA-AAMNet accordingly. Thus, it has been ensured that the implemented 

hybrid spectrum sensing system in CRN reaches high satisfactory solutions compared to the 

traditional model. 

 

Table 5. Overall comparative estimation of the designed hybrid spectrum sensing system in 

CRN over conventional algorithms 

Terms RDA-

AAMNet 

[46] 

EOA-

AAMNet 

[47] 

SGO-

AAMNet 

[48] 

DSA-

AAMNet 

[41] 

RIDSA-

AAMNet 

Accuracy 93.101 93.853 94.74 94.63 95.446 

Sensitivity 93.544 94.348 95.01 95.03 95.622 

Specificity 92.661 93.359 94.471 94.232 95.27 

Precision 92.697 93.399 94.48 94.255 95.268 

FPR 7.3392 6.6406 5.5286 5.7681 4.7303 

FNR 6.4561 5.6516 4.9903 4.9702 4.3776 

NPV 92.661 93.359 94.471 94.232 95.27 

FDR 7.3027 6.6009 5.5204 5.7447 4.7322 

F1_score 93.119 93.871 94.744 94.641 95.445 

MCC 86.207 87.71 89.481 89.263 90.892 

 

Table 6. Overall comparative estimation of the designed hybrid spectrum sensing system in 

CRN over conventional classifiers 

Terms Autoenco

der [42] 

CNN  

[43] 

LSTM 

[44] 

AMNet 

[42][43] [44] 

[45] 

RIDSA-

AAMNet 

Accuracy 93.503 94.263 95.099 94.703 95.446 

Sensitivity 94.005 94.523 95.385 95.101 95.622 

Specificity 93.003 94.004 94.814 94.306 95.27 

Precision 93.046 94.012 94.823 94.329 95.268 

FPR 6.997 5.9962 5.1865 5.694 4.7303 

FNR 5.9952 5.477 4.6152 4.8986 4.3776 

NPV 93.003 94.004 94.814 94.306 95.27 

FDR 6.9542 5.9884 5.1772 5.671 4.7322 

F1_score 93.523 94.267 95.103 94.714 95.445 



MCC 87.011 88.527 90.199 89.409 90.892 

 

6.7 Comparative analysis of the developed model 

The comparative analysis of the implemented method is provided in Table 7. In conventional 

methods, timely detection is not sufficient this may affect the spectrum sensing performance. 

Considering Table 7, the developed RIDSA-AAMNet spectrum sensing mechanism of 

precision is enhanced by 18.50% of CM-CNN, 1.57 % of CNN-LSTM, 17.54% of LSTM-SS, 

3.01% of RNN-BIRNN-LSTM and 1.57% of DRLNet. In developed RIDSA-AAMNet 

model, it shows a high precision value than the existing models thus, it provides better 

communications without any interference in CRN. It effectively enhances spectrum sensing 

performance in CRN. In FDR, the performance of the implemented approach shows less error 

rate when compared with 7.5% of CM-CNN, 2.3% of CNN-LSTM, 7.5% of LSTM-SS, 3.7% 

of RNN-BIRNN-LSTM, and 2.3% of DRLNet. The traditional method raises a high error rate 

that can lead to harmful interference and maximize the disruption of transmitting data. 

However, the developed model has a low error rate, the minimal error rate is crucial for CRN. 

It can effectively enhance the accurate detection performance and minimize false alarms 

without any harmful interference. It has been ensured that the implemented hybrid spectrum 

sensing method in CRN reaches more satisfactory solutions than the traditional models. In 

Table 5, the existing CM-CNN approach gives minimal accuracy rate of 80.48 which can 

degrade the spectrum sensing framework in CRN. The implemented method shows 95.45 

better accuracy value compared to other existing approaches. This comparative analysis in 

the designed approach helps to handle memory usage and minimize the higher duration of the 

detection process. 

 

 

 

 

 



Table 7. Comparative analysis of the implemented method 

 

Terms CM-

CNN[18] 

CNN-

LSTM[19] 

LSTM-

SS[20] 

RNN-

BIRNN-

LSTM[22] 

DRLNet[25] RIDSA-

AAMNet 

Accuracy 80.48 93.44 81.12 92.00 93.76 95.45 

Sensitivity 79.87 92.88 80.52 91.29 93.49 95.62 

Specificity 81.07 93.99 81.70 92.70 94.03 95.27 

Precision 80.39 93.79 81.05 92.48 93.79 95.27 

FPR 18.93 6.01 18.30 7.30 5.97 4.73 

FNR 20.13 7.12 19.48 8.71 6.51 4.38 

NPV 80.56 93.10 81.19 91.54 93.73 95.27 

FDR 19.61 6.21 18.95 7.52 6.21 4.73 

F1-

SCORE 80.13 93.33 80.78 91.88 93.64 95.45 

MCC 60.95 86.88 62.23 84.00 87.52 90.89 

 

 

7. Discussion 

Fig. 5 represents the convergence analysis of the proposed method. This analysis helps to 

enhance decision-making process and reduce the processing time. Fig. 6 represents the 

performance evaluation of the implemented hybrid spectrum sensing system with traditional 

models. Here, diverse performance metrics are utilized to validate the algorithmic analysis 

process. It can minimize the optimization process and processing time to detect spectrum 

sensing in CRN. Fig. 7 shows the comparision analysis of the traditional and proposed 

method detection approaches using diverse measures like FDR, F1-score, Accuracy, FNR, 

FPR, NPV NPV, precision , NPV, sensitivity, and specificity. From Fig. 7(h), the precision 

value of the existing Autoencoder method shows a very low value. However, the developed 

method shows a better rate compared to other methods. This high precision rate can 

effectively transmit the data without any communication issues. In Table 5, the developed 

RIDSA-AAMNet method shows a better accuracy value of 95.446 than the traditional 

frameworks. It helps to effectively enhance the accurate detection and protect the primary 

user operations. Also, it has the ability to minimize the misclassification and identification 

process. Based on this evaluation, the designed approach facilitates handling errors in the 



system. The specificity value of the proposed method can attain 95.62, this high specificity 

rate can improve the timely detection and maximize SS in CRN. 

 

8. Conclusion 

An intelligent hybrid spectrum sensing framework has been recommended in this work for 

improving the spectrum efficiency in the CRN. In the beginning, from the available 

resources, the necessary data attributes were aggregated. Further, the hybrid spectrum sensing 

mechanism was performed by the suggested AAMNet. This network was composed of 

autoencoder, CNN, and LSTM techniques. In order to maximize the AAMNet-based hybrid 

spectrum sensing process, the parameters of AAMNet were optimized. For performing the 

parameter optimization in AAMNet mode, the RIDSA was utilized due to its better 

performance rates. The availability of the spectrum was recognized for effective spectrum use 

with the support of a hybrid spectrum sensing mechanism. The efficacy of the designed 

mechanism was estimated by estimating the outcomes with conventional techniques. When 

considering the sigmoid activation function, the implemented hybrid spectrum sensing 

system’s accuracy was enhanced by 4.21% of Autoencoder, 3.15% of CNN, 2.10% of LSTM, 

and 1.05% of AMNet respectively. From this research findings, it has been revealed that the 

implemented hybrid spectrum sensing mechanism was more effective and robust than the 

other related techniques. 

 

Practical Implications: 

The consideration of CRN helps to find sensitive information about patients and also, it 

prevents from malicious activities in the medical sector. CRN can be used for emergency 

situations and efficiently provides public safety communications. In real-world applications, 

it is common to effectively detect errors through network nodes. It is highly utilized for 



identifying interference in spectrum sensing.  Also, it is used in several applications like 

navigation, military, and public safety. Spectrum sensing helps to prevent unauthorized 

spectrum usage and improve network security in military based applications. It can 

effectively handle low-power transmissions; also it is highly suitable for managing large 

numbers of IoT devices with restricted spectrum requirements. Considering the CRN 

networks in this applications, it facilitates to maximize the quality of service by reducing the 

noise present in the signal whereas it can also accommodate more users on the same network. 

Thus, the CRN networks have the ability to work in numerous applications, including 

emergency networks, disaster relief, medical, weather forecasting, and traffic control for 

increasing communications among the networks in rural areas. 

 

Limitations and future work of the developed Model: 

 Processing the raw data directly into the AAMNet may cause dimensionality and complexity 

issues in CRN. Thus it occurs noisy interference in the developed model. Due to the presence 

of weak signals, the CRN gets easily affected by the threats, thus it might affect the security. 

The estimation of the sparsity level of the wideband signal is critical in the developed model. 

 These issues will be rectified in future work. Modern pre-processing methods will be 

implemented to extract the essential information without any information loss. In future 

work, the transformer-based model will be considered to improve the spectrum efficiency by 

analyzing the delay and throughput in the CRN network. Time-domain method will be 

introduced to solve the issues of computational problems to enhance the CRN performance.  
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