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Abstract  For any graph G, "The out degree of u with 

respect to a dominating set D is denoted and defined as 

𝑜𝑑𝐷(𝑢) = |𝑁(u) ∩ (𝑉 − 𝐷)|". The subset D of V is referred

to be a dominating set and the induced sub graph <𝐷> 

doesn’t contain any isolated vertices. The total domination 

number is determined by the number of vertices of the 

minimal dominating set, which is denoted by 𝛾𝑡(𝐺). Based

on the above concept of out degree and total dominating set, 

we introduce a new domination called total 2 - out degree 

equitable domination (2 - ODED) number. A set D of V is 

referred to be total 2 – ODED set if D is a dominating set 

and induced sub graph < 𝐷 > that contains no isolated 

vertices also has the property  |𝑜𝑑𝐷(𝑢) − 𝑜𝑑𝐷(𝑤)| ≤ 2
where 𝑜𝑑𝐷(𝑢) = |𝑁(𝑢) ∩ (𝑉 − 𝐷)| for any two vertices

𝑢, 𝑤 ∈ 𝐷 . The minimum number of vertices of such 

dominating set is known as total 2 - ODED number. This 

paper is to investigate the proposed domination number for 

some general graphs like complete graph, star graph, path 

graph, cycle graph, double fan graph, bi star, fan graph, 

helm graph, crown graph, and triangular snake graph 

which are explained with examples. Finally, we discuss the 

application of total 2 – out degree equitable domination (2 

– ODED) number in real life.

Keywords  2 - Out Degree Domination Number, 

Isolated Vertices, Dominating Set, Equitable Domination 

Number, Total 2 - Out Degree Domination, Helm Graph 

1. Introduction

In this paper, we used the undirected and simple graphs 

[1]. A graph G = (V, E), contains a set of vertices V and a 

set of edges E. Here, p and q represent the cardinality of 

vertices and edges of a graph. The degree of any vertex u 

indicates the number of edges that are incident on a vertex, 

and it is represented by the symbol deg(u). u is referred to 

as an isolated vertex if deg(u) = 0. 

Ore [2] and C. Berge [3] were the first to propose the 

notion of domination number. A subset D of V is called the 

dominating set of G if every vertex of 𝑉 − 𝐷 is dominated 

by at least one vertex of D. A domination number is the 

number of vertices minimal dominating set, represented by 

𝛾(𝐺). Ali Sahal and V. Mathad [4] introduced the 2 - out 

degree equitable domination number. For any two vertices 

𝑢, 𝑤 ∈ 𝐷  such that |𝑜𝑑𝐷(𝑢) − 𝑜𝑑𝐷(𝑤)| ≤ 2  where

𝑜𝑑𝐷(𝑢) = |𝑁(𝑢) ∩ (𝑉 − 𝐷)|, then a dominating set D is

referred as a 2 - ODED set. The term "2 - out degree 

equitable domination number" refers to the cardinality 

minimum 2 - ODED set, denoted by 𝛾2𝑜𝑒(𝐺). Based on the

aforesaid domination number, Mahesh M.S, et al. [5,6,7,8] 

propose some new domination numbers. The notion of 

total domination number is proposed by Cokayne et al. [9]. 
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The subset D of V is referred to be a total dominating set 

if D is a dominating set and the induced subgraph <D> 

doesn't contain any isolated vertices. The total domination 

number is determined by the number of vertices of the 

minimal total dominating set, which is denoted by 𝛾𝑡(𝐺). 

Here we introduce a new domination parameter called total 

2 - out degree equitable domination (ODED) number. 

2. Total 2 - Out Degree Equitable 
Domination Number 

2.1. Definition 

A subset D of V is referred to be total 2 – ODED set if D 

is a dominating set and the induced sub graph < 𝐷 > 

containing no isolated vertices also has the 

property  |𝑜𝑑𝐷(𝑢) − 𝑜𝑑𝐷(𝑤)| ≤ 2  where 𝑜𝑑𝐷(𝑢) =
|𝑁(𝑢) ∩ (𝑉 − 𝐷)|  for any two vertices 𝑢, 𝑤 ∈ 𝐷 . The 

minimum number of vertices of such dominating set is 

known as total 2 - ODED number is represented 

as 𝛾𝑡2𝑜𝑒(𝐺). The minimum total 2 - ODED set is called 

𝛾𝑡2𝑜𝑒 −  𝑠𝑒𝑡. 

2.2. Example 

Consider the graph in Figure 1. 

 

Figure 1.  Example 

“Let us consider 

D = {𝑣1, 𝑣2, 𝑣5} 𝑎𝑛𝑑 𝑉 − 𝐷 =  {𝑣3, 𝑣4, 𝑣6, 𝑣7} 

𝑜𝑑𝐷(𝑣1) = |𝑁(𝑣1) ∩ (𝑉 − 𝐷)| 

= |{𝑣2, 𝑣5} ∩ {𝑣3, 𝑣4, 𝑣6, 𝑣7}| = |∅| = 0 

𝑜𝑑𝐷(𝑣2) = |𝑁(𝑣2) ∩ (𝑉 − 𝐷)| 

= |{𝑣1, 𝑣3, 𝑣7} ∩ {𝑣3, 𝑣4, 𝑣6, 𝑣7}| = |{𝑣3, 𝑣7}| = 2 

𝑜𝑑𝐷(𝑣5) = |𝑁(𝑣5) ∩ (𝑉 − 𝐷)| 

= |{𝑣1, 𝑣4, 𝑣6} ∩ {𝑣3, 𝑣4, 𝑣6, 𝑣7}| = |{𝑣4, 𝑣6}| = 2 

Then any u, w ∈ 𝐷, |𝑜𝑑𝐷(𝑢) − 𝑜𝑑𝐷(𝑤)| ≤ 2 

Now D = {𝑣1, 𝑣2, 𝑣5} form 2 – ODED set of 𝐺 and the 

induced subgraph <D> has no vertices of degree zero. So D 

is the minimum total 2 – ODED. 

Thus 𝛾𝑡2𝑜𝑒(𝐺) = 3”. 

3. Total 2 - ODED Number in Some 
General Graphs 

For various general graphs, we calculate the above 

defined domination number. 

3.1. Theorem 

For any complete graph 𝐾𝑝, 𝛾𝑡2𝑜𝑒(𝐾𝑝) = 2. 

Proof. 

Consider D ={u, w} G is complete, for all vertices u ∈ 

D, N (u) = 𝑉 − {𝑢}.  

Hence 𝑜𝑑𝐷(𝑢)= |N(u) ∩ (𝑉 − 𝐷)| = 𝑝 − 2. 
For any two vertices u, w  ∈  D, 𝑜𝑑𝐷(𝑢) = 𝑝 − 2 , 

𝑜𝑑𝐷(𝑤) = 𝑝 − 2. 

Hence |𝑜𝑑𝐷(𝑢) − 𝑜𝑑𝐷(𝑤)| = 0 ≤ 2 and D forms a 2 - 

ODED set. 

Since G is complete, D = {u, w} has no isolated vertices. 

Then D is a  𝛾𝑡2𝑜𝑒 −  𝑠𝑒𝑡 and 2  ≤ 𝛾𝑡2𝑜𝑒(𝐾𝑝) , 

𝛾𝑡2𝑜𝑒(𝐾𝑝) ≤  2. 

Hence 𝛾𝑡2𝑜𝑒(𝐾𝑝) = 2. 

3.2. Example 

For a complete Graph 𝐾6, as shown in Figure 2. 

 

Figure 2.  Complete Graph 𝐾6 

“Let us consider 

D = {𝑣1, 𝑣2} 𝑎𝑛𝑑 𝑉 − 𝐷 =  {𝑣3, 𝑣4, 𝑣5, 𝑣6} 

Now 𝑜𝑑𝐷(𝑣1) = |𝑁(𝑣1) ∩ (𝑉 − 𝐷)| 
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=|{𝑣2, 𝑣3, 𝑣4, 𝑣5, 𝑣6} ∩ {𝑣3, 𝑣4, 𝑣6, 𝑣7}| 

= |𝑣3, 𝑣4, 𝑣6, 𝑣7| = 4 

𝑜𝑑𝐷(𝑣2) = |𝑁(𝑣2) ∩ (𝑉 − 𝐷)| 

=|{𝑣1, 𝑣3, 𝑣4, 𝑣5, 𝑣6} ∩ {𝑣3, 𝑣4, 𝑣6, 𝑣7}| 

= |𝑣3, 𝑣4, 𝑣6, 𝑣7| = 4 

Now 

|𝑜𝑑𝐷(𝑣1) − 𝑜𝑑𝐷(𝑣2)| = 0 ≤ 2. 

Then D = {𝑣1, 𝑣2} form 2 – ODED set of 𝐺 and there 

are no vertices of degree zero in the induced subgraph. 

Hence D is total 2 - ODED set with minimum 

cardinality. 

Thus 𝛾𝑡2𝑜𝑒(𝐺) = 2” 

3.3. Theorem 

For a star graph  𝐾1,𝑝, 𝛾𝑡2𝑜𝑒(𝐾1,𝑝) = 𝑝 − 2. 

Proof. 

Let the set of vertices in 𝐾1,𝑝 be  

{𝑢,𝑤1,𝑤2,𝑤3,…., 𝑤𝑝}. 

Consider the set D ={𝑢 ,𝑤1 ,𝑤2 ,𝑤3,…… , 𝑤𝑝−2}  and   

𝑉 − 𝐷={𝑤𝑝−1,𝑤𝑝}. 

By the definition of star graph 𝐾1,𝑝, for any 𝑤𝑖 ∈ D, 

N(𝑤𝑖) = 𝑢 for 𝑖 = 1,2, … … , p and  

N(𝑤𝑖) ∩ (𝑉 − 𝐷) = ∅. 

Then 𝑜𝑑𝐷(𝑤𝑖) = |𝑁(𝑤𝑖) ∩ (𝑉 − 𝐷)| = 0. 

Now 𝑁 (𝑢) ={ 𝑤1 , 𝑤2 , 𝑤3, ……, 𝑤𝑝 } and 𝑉 − 𝐷 ⊆

𝑁(𝑢). 

Then N(u) ∩ (𝑉 − 𝐷) = 𝑉 − 𝐷.  

Therefore 𝑜𝑑𝐷(𝑢)= |𝑁(u) ∩ (𝑉 − 𝐷)| = |𝑉 − 𝐷| = 2 

and for any u, w ∈ D,|𝑜𝑑𝐷(𝑤𝑖) − 𝑜𝑑𝐷(𝑢)| = 2 ≤ 2. 

Hence D is a 𝛾𝑡2𝑜𝑒 −  𝑠𝑒𝑡 and its induced subgraph has 

no isolated vertices. 

Thus 𝛾𝑡2𝑜𝑒(𝐾1,𝑝) =𝑝 − 2. 

3.4. Example 

For a star graph 𝐾1,8, as shown in Figure 3. 

“Let us consider 

D = {𝑢, 𝑣1, 𝑣2, 𝑣3, 𝑣4, 𝑣5, 𝑣6} 𝑎𝑛𝑑 𝑉 − 𝐷 = {𝑣7, 𝑣8} 

Now 

𝑜𝑑𝐷(u) = |𝑁(u) ∩ (𝑉 − 𝐷)| 

=|{𝑣1, 𝑣2, 𝑣3, 𝑣4, 𝑣5, 𝑣6, 𝑣7, 𝑣8, } ∩ {𝑣7, 𝑣8}| 

= |𝑣7, 𝑣8| =  2 

𝑜𝑑𝐷(𝑣1) = |𝑁(𝑣1) ∩ (𝑉 − 𝐷)| 

=|{u} ∩ {𝑣7, 𝑣8}| = |∅| = 0 

𝑜𝑑𝐷(𝑣2) = |𝑁(𝑣2) ∩ (𝑉 − 𝐷)| 

=|{u} ∩ {𝑣7, 𝑣8}|   = |∅| = 0 

𝑜𝑑𝐷(𝑣3) = |𝑁(𝑣2) ∩ (𝑉 − 𝐷)| 

=|{u} ∩ {𝑣7, 𝑣8}| = |∅| = 0 

𝑜𝑑𝐷(𝑣4) = |𝑁(𝑣2) ∩ (𝑉 − 𝐷)| 

=|{u} ∩ {𝑣7, 𝑣8}| = |∅| =  0 

Now |𝑜𝑑𝐷(u) − 𝑜𝑑𝐷(𝑣i)| = 2 ≤ 2 and 

     |𝑜𝑑𝐷(𝑣i) − 𝑜𝑑𝐷(𝑣j)| = 2 ≤ 2. 

Then D = {𝑢, 𝑣
1
, 𝑣

2
, 𝑣3, 𝑣

4
, 𝑣5, 𝑣6} form 2 – ODED set 

of 𝐺  and there are no vertices of degree zero in the 

induced subgraph. Hence D is total 2 - ODED set with 

minimum cardinality. 

Thus 𝛾𝑡2𝑜𝑒(𝐺) = 7” 

 

Figure 3.  Star graph 𝐾1,8 
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3.5. Theorem 

For each Path 𝑃𝑝, 

𝛾𝑡2𝑜𝑒(𝑃𝑝) = {

𝑝

2
 𝑖𝑓 𝑝 ≡ 0(𝑚𝑜𝑑4)

⌊
𝑝

2
⌋ + 1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 .

 

Proof. 

Case 1 

If 𝑝 ≡ 0(𝑚𝑜𝑑4) 

D = {𝑤4𝑛+2, 𝑤4𝑛+3/ 𝑛 = 0,1, 2. . . } and 𝑉 − 𝐷 all the 

remaining vertices in D 

Clearly, D is a minimum dominating set and induced 

subgraph <D> has no isolated vertices and any vertex in D 

has an out degree of 1. 

Hence each total dominating set is a 𝛾𝑡2𝑜𝑒 −  𝑠𝑒𝑡. 

Therefore 𝛾𝑡2𝑜𝑒(𝑃𝑝) =  𝛾𝑡(𝑃𝑝) =
𝑝

2
. 

Case 2 

Otherwise, all the total dominating set is a 𝛾𝑡2𝑜𝑒 −  𝑠𝑒𝑡 

Hence 𝛾𝑡2𝑜𝑒(𝑃𝑝) =  ⌊
𝑝

2
⌋ + 1 

3.6. Example 

For a path 𝑃8, as shown in Figure 4 

 

Figure 4.  Path 𝑃8 

“Let us consider 

D = {𝑣2, 𝑣3, 𝑣6, 𝑣7} 𝑎𝑛𝑑 𝑉 − 𝐷 =  {𝑣1, 𝑣4, 𝑣5, 𝑣8} 

Now 

𝑜𝑑𝐷(𝑣2) = |𝑁(𝑣2) ∩ (𝑉 − 𝐷)| 

=|{𝑣1, 𝑣3} ∩ {𝑣1, 𝑣4, 𝑣5, 𝑣8}| = |{𝑣1}| = 1 

𝑜𝑑𝐷(𝑣3) = |𝑁(𝑣3) ∩ (𝑉 − 𝐷)| 

=|{𝑣2, 𝑣4} ∩ {𝑣1, 𝑣4, 𝑣5, 𝑣8}| = |{𝑣4}| = 1 

𝑜𝑑𝐷(𝑣6) = |𝑁(𝑣6) ∩ (𝑉 − 𝐷)| 

=|{𝑣5, 𝑣7} ∩ {𝑣1, 𝑣4, 𝑣5, 𝑣8}| = |{𝑣5}| = 1 

𝑜𝑑𝐷(𝑣7) = |𝑁(𝑣7) ∩ (𝑉 − 𝐷)| 

=|{𝑣6, 𝑣8} ∩ {𝑣1, 𝑣4, 𝑣5, 𝑣8}| = |{𝑣8}| = 1 

Now 

|𝑜𝑑𝐷(𝑣i) − 𝑜𝑑𝐷(𝑣j)| = 0 ≤ 2. 

Then D = {𝑣2, 𝑣3, 𝑣6, 𝑣7} form 2 – ODED set of 𝐺 and 

there are no vertices of degree zero in the induced subgraph. 

So D is total 2 - ODED set with minimum cardinality. 

Thus 𝛾𝑡2𝑜𝑒(𝑃8) = 4” 

3.7. Theorem 

For any Cycle 𝐶𝑝, 

𝛾𝑡2𝑜𝑒(𝑃𝑝) = {
⌊
𝑝

2
⌋  𝑖𝑓 𝑝 ≢ 2(𝑚𝑜𝑑4)

𝑝 + 2

2
 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

Proof. 

Let D be a minimum dominating set such that the 

induced subgraph <D> contains no isolated vertices, and 

every cycle within this subgraph is a 2-regular graph. Then 

the out degree of any vertices in D is 0 or 1. 

For any u, w ∈ 𝐷, |𝑜𝑑𝐷(𝑢) − 𝑜𝑑𝐷(𝑤)| ≤ 2. 

Hence D is 𝛾𝑡2𝑜𝑒 −  𝑠𝑒𝑡 

𝛾𝑡2𝑜𝑒(𝐶𝑝) =  𝛾𝑡(𝐶𝑝) 

= {
⌊
𝑝

2
⌋  𝑖𝑓 𝑝 ≢ 2(𝑚𝑜𝑑4)

𝑝 + 2

2
 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

3.8. Example 

For a cycle 𝐶6, as shown in Figure 5 

“Let us consider 

D = {𝑣2, 𝑣3, 𝑣5, 𝑣6} 𝑎𝑛𝑑 𝑉 − 𝐷 =  {𝑣1, 𝑣4} 

 

Figure 5.  Cycle 𝐶6 

Now 

𝑜𝑑𝐷(𝑣2) = |𝑁(𝑣2) ∩ (𝑉 − 𝐷)| 

= |{𝑣1, 𝑣3} ∩ {𝑣1, 𝑣4}| = |{𝑣1}| = 1 

𝑜𝑑𝐷(𝑣3) = |𝑁(𝑣3) ∩ (𝑉 − 𝐷)| 

= |{𝑣2, 𝑣4} ∩ {𝑣1, 𝑣4}| = |{𝑣4}| = 1 

𝑜𝑑𝐷(𝑣5) = |𝑁(𝑣5) ∩ (𝑉 − 𝐷)| 

= |{𝑣4, 𝑣6} ∩ {𝑣1, 𝑣4}| = |{𝑣4}| = 1 

𝑜𝑑𝐷(𝑣6) = |𝑁(𝑣6) ∩ (𝑉 − 𝐷)| 

= |{𝑣5, 𝑣1} ∩ {𝑣1, 𝑣4}| = |{𝑣1}| = 1 

Now 
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|𝑜𝑑𝐷(𝑣i) − 𝑜𝑑𝐷(𝑣j)| = 0 ≤ 2. 

Then D = {𝑣2, 𝑣3, 𝑣6, 𝑣7} form 2 – ODED set of 𝐺 and 

there are no vertices of degree zero in the induced subgraph. 

Hence D is total 2 - ODED set with minimum cardinality. 

Thus 𝛾𝑡2𝑜𝑒(𝐶6) = 4” 

3.9. Theorem 

For any double fan graph 

𝛾𝑡2𝑜𝑒(𝐷2(𝐹1,𝑛)) = 2𝑛 − 1 

Proof. 

Consider 

D= {𝑢, 𝑢1, 𝑢2, 𝑢3 … , 𝑢𝑛−1, 𝑢n+1, un+2, 𝑢n+3 … , 𝑢2𝑛−1} 

and 𝑉 − 𝐷 = {𝑢𝑛, 𝑢2𝑛}. 

Clearly the induced subgraph < 𝐷 > has no isolated 

vertices. 

Here 𝑜𝑑𝐷(𝑢) = 2 , 𝑜𝑑𝐷(𝑢𝑛−1) = 1 , 𝑜𝑑𝐷(𝑣𝑛−1) = 1 , 

𝑜𝑑𝐷(𝑢𝑖) = 0  for 𝑖 = 1,2,3 … 𝑛 − 2  and 𝑜𝑑𝐷(𝑣𝑖) = 0 

for 𝑖 = 1,2,3 … 𝑛 − 2.  

So, for any 𝑢, 𝑤 ∈ 𝐷, |𝑜𝑑𝐷(𝑢) − 𝑜𝑑𝐷(𝑤)| ≤ 2.  

Hence D is a 𝛾𝑡2𝑜𝑒 −  𝑠𝑒𝑡 and induced subgraph <
𝐷 > has no isolated vertices.  

Therefore 𝛾𝑡2𝑜𝑒(𝐷2(𝐹1,𝑛)) = 2𝑛 − 1. 

3.10. Example 

For a Double Fan 𝐷2(𝐹1,4), as shown in Figure 6 

 

Figure 6.  Double Fan 𝐷2(𝐹1,4) 

“Let us consider 

D = {𝑢, 𝑣1, 𝑣2, 𝑣3, 𝑣5, 𝑣6, 𝑣7} 𝑎𝑛𝑑 𝑉 − 𝐷 = {𝑣4, 𝑣8} 

Now 

𝑜𝑑𝐷(u) = |𝑁(u) ∩ (𝑉 − 𝐷)| 

= |{𝑣1, 𝑣2, 𝑣3, 𝑣4, 𝑣5, 𝑣6, 𝑣7, 𝑣8} ∩ {𝑣4, 𝑣8}| 

=  |{𝑣4, 𝑣8}| = 2 

𝑜𝑑𝐷(𝑣1) = |𝑁(𝑣1) ∩ (𝑉 − 𝐷)| 

= |{𝑢, 𝑣2} ∩ {𝑣4, 𝑣8}| = |∅| = 0 

𝑜𝑑𝐷(𝑣2) = |𝑁(𝑣2) ∩ (𝑉 − 𝐷)| 

= |{𝑢, 𝑣1, v3} ∩ {𝑣4, 𝑣8}| = |∅| = 0 

𝑜𝑑𝐷(𝑣3) = |𝑁(𝑣3) ∩ (𝑉 − 𝐷)| 

= |{𝑢, 𝑣2, v4} ∩ {𝑣4, 𝑣8}| = |{𝑣4}| = 1 

𝑜𝑑𝐷(𝑣5) = |𝑁(𝑣5) ∩ (𝑉 − 𝐷)| 

= |{𝑢, 𝑣6} ∩ {𝑣4, 𝑣8}| = |∅| = 0 

𝑜𝑑𝐷(𝑣6) = |𝑁(𝑣6) ∩ (𝑉 − 𝐷)| 

= |{𝑢, 𝑣5, 𝑣7} ∩ {𝑣4, 𝑣8}| = |∅| = 0 

𝑜𝑑𝐷(𝑣7) = |𝑁(𝑣7) ∩ (𝑉 − 𝐷)| 

= |{𝑢, 𝑣6, v8} ∩ {𝑣4, 𝑣8}| = |{𝑣8}| = 1 

Now 

|𝑜𝑑𝐷(𝑣i) − 𝑜𝑑𝐷(𝑣j)| = 0 ≤ 2. 

Then D = {𝑢, 𝑣1, 𝑣2, 𝑣3, 𝑣5, 𝑣6, 𝑣7} form 2 – ODED set 

of 𝐺 and there are no vertices of degree zero in the 

induced subgraph. Hence D is total 2 - ODED set with 

minimum cardinality. 

Thus 𝛾𝑡2𝑜𝑒(𝐷2(𝐹1,4)) = 7” 

3.11. Theorem 

For any bistar 𝛾𝑡2𝑜𝑒(𝐵𝑛,𝑛
2 ) = 2 

Proof. 

Let V = {𝑢, 𝑣, 𝑢i, 𝑣𝑖}, 1 ≤ 𝑖 ≤ 𝑛  where 𝑢𝑖 , 𝑣𝑖 are 

pendant vertices, u and v are support vertices. 

Let us take D = {𝑢, 𝑣}  and 𝑉 − 𝐷 =
{𝑢1, 𝑢2, 𝑢3 … , 𝑢𝑛, 𝑣1, 𝑣2, 𝑣3 … , 𝑣𝑛}. 

Clearly the induced subgraph < 𝐷 > has no isolated 

vertices. 

Here 𝑜𝑑𝐷(𝑢) = 2n and |𝑜𝑑𝐷(𝑢) − 𝑜𝑑𝐷(𝑣)| ≤ 2. 

Hence D is a 𝛾𝑡2𝑜𝑒 −  𝑠𝑒𝑡 and induced subgraph <
𝐷 > has no vertices of degree zero. 

Therefore 𝛾𝑡2𝑜𝑒(𝐵𝑛,𝑛
2 ) = 2 

3.12. Example 

For a bistar 𝐵4,4
2 , as shown in Figure 7. 
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Figure 7.  Bistar 𝐵4,4
2  

“Let us consider D = {𝑢, v} 𝑎𝑛𝑑 

𝑉 − 𝐷 = {𝑢1, 𝑢2, 𝑢3, 𝑢4, 𝑣1, 𝑣2, 𝑣3, 𝑣4} 

Now 

 𝑜𝑑𝐷(u) = |𝑁(u) ∩ (𝑉 − 𝐷)| 

=|{𝑢1, 𝑢2, 𝑢3, 𝑢4, 𝑣1, 𝑣2, 𝑣3, 𝑣4} ∩
 {𝑢1, 𝑢2, 𝑢3, 𝑢4, 𝑣1, 𝑣2, 𝑣3, 𝑣4}| 

= |{𝑢1, 𝑢2, 𝑢3, 𝑢4, 𝑣1, 𝑣2, 𝑣3, 𝑣4}| = 8 

𝑜𝑑𝐷(v) = |𝑁(v) ∩ (𝑉 − 𝐷)| 
=|{𝑢1, 𝑢2, 𝑢3, 𝑢4, 𝑣1, 𝑣2, 𝑣3, 𝑣4} ∩

 {𝑢1, 𝑢2, 𝑢3, 𝑢4, 𝑣1, 𝑣2, 𝑣3, 𝑣4}| 

= |{𝑢1, 𝑢2, 𝑢3, 𝑢4, 𝑣1, 𝑣2, 𝑣3, 𝑣4}| = 8 

Now 

|𝑜𝑑𝐷(u) − 𝑜𝑑𝐷( v)| = 0 ≤ 2. 

Then D = {𝑢, v} form 2 – ODED set of 𝐺 and there is 

no vertices of degree zero in the induced subgraph. 

Thus D is a total 2 - ODED set with minimum 

cardinality. 

Thus 𝛾𝑡2𝑜𝑒(𝐵4,4
2 )) = 2” 

3.13. Theorem 

For a double star 𝑆𝑟,𝑡, 

𝛾𝑡2𝑜𝑒(𝑆𝑟,𝑡) ={
2 𝑖𝑓 |𝑟 − 𝑡| ≤ 2

𝑛𝑜𝑡 𝑒𝑥𝑖𝑠𝑡 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 
 

Proof. 

By the definition of double star, 

V(𝑆𝑟,𝑡) =

 {𝑢, 𝑢1, 𝑢2, 𝑢3……….,𝑢𝑟 , 𝑤, 𝑤1, 𝑤2, 𝑤3, … … , 𝑤𝑡} 

Let D ={u, w}be a dominating set and induced subgraph   

<D> doesn’t have isolated vertices then by definition  

𝑁(𝑢) ∩ (𝑉 − 𝐷)={𝑢1, 𝑢2, 𝑢3 … … … , 𝑢𝑡}. 

Then 𝑜𝑑𝐷(𝑢)= |𝑁(𝑢) ∩ (𝑉 − 𝐷)| = t and  

𝑁(𝑤)  ∩ (𝑉 − 𝐷) = {𝑤1, 𝑤2, 𝑤3, … … … . , 𝑤𝑟}  and 

𝑜𝑑𝐷(𝑤)= |𝑁(𝑤) ∩ (𝑉 − 𝐷)| = r. 

Hence |𝑜𝑑𝐷(𝑢) − 𝑜𝑑𝐷(𝑤)| = |𝑟 − 𝑡| ≤ 2 

Therefore D ={u, w} is 𝛾𝑡2𝑜𝑒 −  𝑠𝑒𝑡 

Hence 𝛾𝑡2𝑜𝑒(𝑆𝑟,𝑡) = 2  𝑖𝑓 |𝑟 − 𝑡| ≤ 2. 

Clearly total 2 - out degree equitable dominating set not 

exists if |𝑟 − 𝑡| ≥ 2. 

3.14. Example 

For a double star 𝐵3,5, as shown in Figure 8 

 

Figure 8.  Double star 𝐵3,5 

“Let us consider D = {𝑢, v} 

𝑎𝑛𝑑 𝑉 − 𝐷 = {𝑢1, 𝑢2, 𝑢3, 𝑣1, 𝑣2, 𝑣3, 𝑣4, 𝑣5} 

Now 

𝑜𝑑𝐷(u) = |𝑁(u) ∩ (𝑉 − 𝐷)| 

= |{𝑢1, 𝑢2, 𝑢3} ∩ {𝑢1, 𝑢2, 𝑢3, 𝑣1, 𝑣2, 𝑣3, 𝑣4, 𝑣5}| 

=  |{𝑢1, 𝑢2, 𝑢3}| = 3 

𝑜𝑑𝐷(v) = |𝑁(v) ∩ (𝑉 − 𝐷)| 

= |{𝑣1, 𝑣2, 𝑣3, 𝑣4, 𝑣5} ∩ {𝑢1, 𝑢2, 𝑢3, 𝑣1, 𝑣2, 𝑣3, 𝑣4, 𝑣5}| 

= |{𝑣1, 𝑣2, 𝑣3, 𝑣4, 𝑣5}| = 5 

Now 

|𝑜𝑑𝐷(u) − 𝑜𝑑𝐷(v)| = 2 ≤ 2. 

Then D = {𝑢, v} form 2 – ODED set of 𝐺 and there are 

no vertices of degree zero in the induced subgraph. 

Thus D is total 2 - ODED set with minimum cardinality. 

Thus 𝛾𝑡2𝑜𝑒(𝐵3,5) = 2” 

3.15. Theorem 

For any helm graph 𝐻𝑛 of order p, 𝛾𝑡2𝑜𝑒(𝐻𝑛) = 𝑛 , 

where 𝑝 = 2𝑛 + 1. 

Proof. 

Let {𝑢1, 𝑢2, 𝑢3 … … … 𝑢𝑛+1, 𝑢𝑛+2 … … … . . 𝑢2𝑛+1} be the 

vertices of helm graph. Here  𝑢1  is the centre 

vertex {𝑢2, 𝑢3 … … … . 𝑢𝑛+1}  be the vertices of cycle. 

{𝑢𝑛+2, 𝑢𝑛+3 … … … 𝑢2𝑛+1} be the pendant vertices and 

these vertices are adjacent to 𝑢2, 𝑢3……,𝑢𝑛 respectively. 

Take D = {𝑢2, 𝑢3 … … … … . . 𝑢𝑛+1}  be a minimal 

dominating set and 𝑉 − 𝐷 =
{𝑢1, 𝑢𝑛+2, 𝑢𝑛+3 … … … , 𝑢2𝑛+1}. 
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Now for any 𝑢𝑖 ∈ 𝐷 then we get 

𝑜𝑑𝐷(𝑢𝑖) = |𝑁(𝑢𝑖) ∩ (𝑉 − 𝐷)| 

= {𝑢1, 𝑢𝑖−1, 𝑢𝑖+1, 𝑢𝑛+𝑖} ∩ {𝑢1, 𝑢𝑛+2, 𝑢𝑛+3 … … , 𝑢2𝑛+1} 

= |{𝑢1, 𝑢𝑛−1}| = 2. 

Then |𝑜𝑑𝐷(𝑢𝑖) − 𝑜𝑑𝐷(𝑢𝑗)| = 0 < 2 and D is a 

𝛾𝑡2𝑜𝑒 −  𝑠𝑒𝑡 and there are no vertices of degree zero in the 

induced subgraph <D>. Thus D is a  𝛾𝑡2𝑜𝑒 −  𝑠𝑒𝑡  and 

𝛾𝑡2𝑜𝑒(𝐻𝑛) = |𝐷|= 𝑛. 

3.16. Example 

For a helm graph 𝐻5, as shown in Figure 9 

 

Figure 9.  Helm graph 𝐻5 

“Let us consider D = {𝑢2, 𝑢3, 𝑢4, 𝑢5, 𝑢6} 𝑎𝑛𝑑 𝑉 − 𝐷 =
{𝑢1, 𝑢7, 𝑢8, 𝑢9, 𝑢10, 𝑢11} 

Now 

𝑜𝑑𝐷(𝑢2) = |𝑁(𝑢2) ∩ (𝑉 − 𝐷)| 

= |{𝑢1, 𝑢7} ∩ {𝑢1, 𝑢7, 𝑢8, 𝑢9, 𝑢10, 𝑢11}| = |{𝑢1, 𝑢7}| = 2 

𝑜𝑑𝐷(𝑢3) = |𝑁(𝑢3) ∩ (𝑉 − 𝐷)| 

= |{𝑢1, 𝑢8} ∩ {𝑢1, 𝑢7, 𝑢8, 𝑢9, 𝑢10, 𝑢11}| = |{𝑢1, 𝑢8}| = 2 

𝑜𝑑𝐷(𝑢4) = |𝑁(𝑢4) ∩ (𝑉 − 𝐷)| 

= |{𝑢1, 𝑢9} ∩ {𝑢1, 𝑢7, 𝑢8, 𝑢9, 𝑢10, 𝑢11}| = |{𝑢1, 𝑢9}| = 2 

𝑜𝑑𝐷(𝑢5) = |𝑁(𝑢5) ∩ (𝑉 − 𝐷)| 

= |{𝑢1, 𝑢10} ∩  {𝑢1, 𝑢7, 𝑢8, 𝑢9, 𝑢10, 𝑢11}| = |{𝑢1, 𝑢10}| =
2 

𝑜𝑑𝐷(𝑢6) = |𝑁(𝑢6) ∩ (𝑉 − 𝐷)| 

= |{𝑢1, 𝑢11} ∩ {𝑢1, 𝑢7, 𝑢8, 𝑢9, 𝑢10, 𝑢11}| = |{𝑢1, 𝑢11}| = 2 

Now 

|𝑜𝑑𝐷(𝑢i) − 𝑜𝑑𝐷(𝑢j)| = 0 ≤ 2. 

Then D = {𝑢2, 𝑢3, 𝑢4, 𝑢5, 𝑢6} form 2 – ODED set of  𝐺 

and there are no isolated vertices of degree zero in the 

induced subgraph. Thus D is total 2 - ODED set with 

minimum cardinality. 

Thus 𝛾𝑡2𝑜𝑒(𝐻5) = 2” 

3.17. Theorem 

For any crown graph 𝐶𝑝 
+  of order p, 𝛾𝑡2𝑜𝑒(𝐶𝑝

+) = 𝑝. 

Proof. 

Let 

 𝑉(𝐶𝑝
+) = {𝑤1, 𝑤2, … … … . 𝑤𝑝, 𝑤𝑝+1, 𝑤𝑝+2 … … … , 𝑤2𝑝}. 

Here {𝑤1, 𝑤2, 𝑤3, … … , 𝑤𝑝}  be the vertices of 

cycle  𝐶𝑝 𝑎𝑛𝑑 {𝑤𝑛+1, 𝑤𝑛+2, … … , 𝑤2𝑝}  be the pendant 

vertices which are adjacent to 𝑤1, 𝑤2, 𝑤3, ……… 𝑤𝑝 

respectively. 

Let D = {𝑤1, 𝑤2, … … . . 𝑤𝑝}. 

Clearly D is a minimal dominating set and 𝑉 − 𝐷 = 

{𝑤𝑝+1, 𝑤𝑝+2, . . . , 𝑤2𝑝}. 

Now 𝑜𝑑𝐷(𝑤𝑖) = |𝑁(𝑤𝑖) ∩ (𝑉 − 𝐷)| = 

|{𝑤𝑖−1, 𝑤𝑖+1, . . . , 𝑤𝑝𝑖} ∩ {𝑤𝑝+1, 𝑤𝑝+2, . . . , 𝑤2𝑝}| = 

|{𝑤𝑝𝑖}|=1. 

Then |𝑜𝑑𝐷(𝑤𝑖) − 𝑜𝑑𝐷(𝑤𝑗)| = 0 < 2 and D is a 

minimum 2 - ODED set and there are no vertices of degree 

zero in the induced subgraph <D>. 

So D is a 𝛾𝑡2𝑜𝑒 −  𝑠𝑒𝑡. 

Thus 𝛾𝑡2𝑜𝑒(𝐶𝑝
+) = |𝐷|= 𝑝. 

3.18. Example 

For a crown graph 𝐶5
+, as in Figure 10 

 

Figure 10.  Crown graph 𝐶5
+ 

“Let us consider D = {𝑤1, 𝑤2, 𝑤3, 𝑤4, 𝑤5} 𝑎𝑛𝑑 

𝑉 − 𝐷 = {𝑤6, 𝑤7, 𝑤8, 𝑤9, 𝑤10} 

Now 

𝑜𝑑𝐷(𝑤1) = |𝑁(𝑤1) ∩ (𝑉 − 𝐷)| 

= |{𝑤6} ∩ {𝑤6, 𝑤7, 𝑤8, 𝑤9, 𝑤10}| = |{𝑤6}| = 1 

𝑜𝑑𝐷(𝑤2) = |𝑁(𝑤2) ∩ (𝑉 − 𝐷)| 



  Mathematics and Statistics 13(1): 28-40, 2025 35 

 

= |{𝑤7} ∩ {𝑤6, 𝑤7, 𝑤8, 𝑤9, 𝑤10}| = |{𝑤7}| = 1 

𝑜𝑑𝐷(𝑤3) = |𝑁(𝑤3) ∩ (𝑉 − 𝐷)| 

= |{𝑤8} ∩ {𝑤6, 𝑤7, 𝑤8, 𝑤9, 𝑤10}| = |{𝑤8}| = 1 

𝑜𝑑𝐷(𝑤4) = |𝑁(𝑤4) ∩ (𝑉 − 𝐷)| 

= |{𝑤9} ∩ {𝑤6, 𝑤7, 𝑤8, 𝑤9, 𝑤10}| = |{𝑤9}| = 1 

𝑜𝑑𝐷(𝑤5) = |𝑁(𝑤5) ∩ (𝑉 − 𝐷)| 

= |{𝑤10} ∩ {𝑤6, 𝑤7, 𝑤8, 𝑤9, 𝑤10}| = |{𝑤10}| = 1 

Now |𝑜𝑑𝐷(𝑤i) − 𝑜𝑑𝐷(𝑤j)| = 0 ≤ 2. 

Then D = {𝑤1, 𝑤2, 𝑤3, 𝑤4, 𝑤5} form 2 – ODED set of 𝐺 

and there are no vertices of degree zero in the induced 

subgraph. So D is total 2 - ODED set with minimum 

cardinality. Thus 𝛾𝑡2𝑜𝑒(𝐶5
+) = 5” 

3.19. Theorem 

For any Fan graph, 

𝛾𝑡2𝑜𝑒(𝐹1,𝑝−1) = {
2     𝑖𝑓 𝑝 = 2,3
𝑝 − 2   𝑖𝑓 𝑝 ≥ 4

 

Proof. 

Let 𝑉(𝐹1,𝑝−1) ={𝑢, 𝑤1, 𝑤2, … … … … , 𝑤𝑝−1} 

Case 1 

For p = 2,3 

Clearly 𝛾𝑡2𝑜𝑒(𝐹1,1) = 2 for p = 2. 

If p = 3, 𝑉(𝐹1,2)  ={𝑢, 𝑤1, 𝑤2}. Consider D ={𝑢, 𝑤1}  

and 𝑉 − 𝐷 ={𝑤2} 

Then clearly 𝑜𝑑𝐷(𝑢) = 1 and 𝑜𝑑𝐷(𝑤1) = 1. 

Then |𝑜𝑑𝐷(𝑢) − 𝑜𝑑𝐷(𝑤1)| = 0 < 2  and <D> has no 

isolated vertices. 

Hence D is a 𝛾𝑡2𝑜𝑒 −  𝑠𝑒𝑡. 

Then  𝛾𝑡2o𝑒
𝑡2𝑜𝑒

(𝐹1,2) ≤ 2  and  2 ≤  𝛾𝑡2𝑜𝑒(𝐹1,2) 

Hence 𝛾𝑡2𝑜𝑒(𝐹1,2) = 2. 

Case 2 

For 𝑝 ≥ 4  

Let 𝑉(𝐹1,𝑝−1) ={𝑢, 𝑤1, 𝑤2, … … … … , 𝑤𝑝−1}. 

Let D = {𝑢, 𝑤1, 𝑤2, … … . , 𝑤𝑝−3}  and 𝑉 − 𝐷 

={𝑤𝑝−2, 𝑤𝑝−1}. 

Then 

𝑜𝑑𝐷(𝑢) = |𝑁(𝑢) ∩ (𝑉 − 𝐷)| 

=|{𝑤1, 𝑤2, 𝑤3, … … . , 𝑤𝑝−2, 𝑤𝑝−1} ∩ {𝑤𝑝−2, 𝑤𝑝−1}| 

= |{𝑤𝑝−2, 𝑤𝑝−1}| = 2. 

Now 

𝑜𝑑𝐷(𝑤1) = |𝑁(𝑤1) ∩ (𝑉 − 𝐷)| 

= |{𝑢, 𝑤2, } ∩ {𝑤𝑝−2, 𝑤𝑝−1}| = ∅ = 0. 

Also 

𝑜𝑑𝐷(𝑤𝑝−3) = |𝑁(𝑤𝑝−3) ∩ (𝑉 − 𝐷)| 

= |{𝑢, 𝑤𝑝−4, 𝑤𝑝−2} ∩ {𝑤𝑝−2, 𝑤𝑝−1}| = 1. 

For 2  ≤ 𝑖 ≤ 𝑝 − 4 , 𝑜𝑑𝐷(𝑤𝑖) = |𝑁(𝑤𝑖) ∩ (𝑉 − 𝐷)|  = 

|{𝑢, 𝑤𝑖−1, 𝑤𝑖+1} ∩ {𝑤𝑝−2, 𝑤𝑝−1}| = 0 

Then |𝑜𝑑𝐷(𝑢) − 𝑜𝑑𝐷(𝑤𝑖)| < 2, for any u,v ∈ 𝐷. 

Hence D is a 𝛾𝑡2𝑜𝑒 −  𝑠𝑒𝑡 and <D> has no isolated 

vertices. 

Thus γt2oe(F1,p−1) = p − 2. 

3.20. Example 

For a Fan graph 𝐹1,5, as in Figure 11 

 

Figure 11.  Fan graph 𝐹1,5 

“Let us consider D = {𝑣, 𝑤1, 𝑤2, 𝑤3} 𝑎𝑛𝑑 

𝑉 − 𝐷 = {𝑤4, 𝑤5} 

Now 

𝑜𝑑𝐷(v) = |𝑁(v) ∩ (𝑉 − 𝐷)| 

= |{𝑤1, 𝑤2, 𝑤3, 𝑤4, 𝑤5} ∩ {𝑤4, 𝑤5}| = |{𝑤4, 𝑤5}| = 2 

𝑜𝑑𝐷(𝑤1) = |𝑁(𝑤1) ∩ (𝑉 − 𝐷)| 

= |{𝑣, 𝑤2} ∩ {𝑤4, 𝑤5}| = |∅| = 0 

𝑜𝑑𝐷(𝑤2) = |𝑁(𝑤2) ∩ (𝑉 − 𝐷)| 

= |{𝑣, 𝑤1, 𝑤3} ∩ {𝑤4, 𝑤5}| = |∅| = 0 

𝑜𝑑𝐷(𝑤3) = |𝑁(𝑤3) ∩ (𝑉 − 𝐷)| 

= |{𝑣, 𝑤2, 𝑤4} ∩ {𝑤4, 𝑤5}| = |{𝑤4}| = 1 

Now 

|𝑜𝑑𝐷(v) − 𝑜𝑑𝐷(𝑤3)| = 1 ≤ 2 

|𝑜𝑑𝐷(𝑤2) − 𝑜𝑑𝐷(𝑤3)| = 1 ≤ 2 and 

|𝑜𝑑𝐷(v) − 𝑜𝑑𝐷(𝑤1)| = 2 ≤ 2 

Then D = {𝑣, 𝑤1, 𝑤2, 𝑤3} form 2 – ODED set of 𝐺 and 

there are no vertices of degree zero in the induced subgraph. 

So D is total 2 - ODED set with minimum cardinality. 

Thus 𝛾𝑡2𝑜𝑒(𝐹1,5) = 5” 
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3.21. Theorem 

For any triangular snake graph 𝛾𝑡2𝑜𝑒(𝑇𝑃
+) = 𝑝 − 2 

Proof. 

The graph G contains 2𝑝 − 1  vertices and 𝑝 − 1 

triangles. 

The upper vertices are labeled from 𝑤1  to 𝑤𝑝−1  and 

the lower vertices are labeled from 𝑤𝑝 to 𝑤2𝑝−1. 

Let 𝐷 = {𝑤𝑝+1, 𝑤𝑝+2, 𝑤𝑝+3 … … . . 𝑤2𝑝−3, 𝑤2𝑝−2} and 

𝑉 − 𝐷 = {𝑤1, 𝑤2, … … . . 𝑤𝑝, 𝑤2𝑝−1}. 

Now 𝑤𝑝+1 is adjacent to 𝑤1, 𝑤2, 𝑤𝑝and 𝑤𝑝+2. 

Also 𝑤𝑝+3 is adjacent to 𝑤3, 𝑤4, 𝑤𝑝+2and 𝑤𝑝+4. 

The vertex 𝑤2𝑝−2 is adjacent to 𝑤𝑝−2, 𝑤𝑝−1, 𝑤2𝑝+3 and 

𝑤2𝑝−1. 

Hence the set {𝑤𝑝+1, 𝑤𝑝+3, … … 𝑤2𝑝−2} is a minimum 

dominating set. 

Therefore, consider all 𝑤𝑖 is lying in the dominating set 

such that 𝑤𝑖 is adjacent to 𝑤𝑗. 

The set 𝐷 = {𝑤𝑝+1, 𝑤𝑝+2, 𝑤𝑝+3 … … … 𝑤2𝑝−3, 𝑤2𝑝−2} 

is a total dominating set. 

Now 

𝑜𝑑𝐷(𝑤𝑝+1) = |𝑁(𝑤𝑝+1) ∩ (𝑉 − 𝐷)| 

= |{𝑤1, 𝑤2, 𝑤𝑝}| = 3 

𝑜𝑑𝐷(𝑤2𝑝−2) = |𝑁(𝑤2𝑝−2) ∩ (𝑉 − 𝐷)| = 

|{𝑤𝑝−2, 𝑤𝑝−1, 𝑤2𝑝−1}| = 3. 

Now 𝑜𝑑𝐷(𝑤𝑖) = |𝑁(𝑤𝑖) ∩ (𝑉 − 𝐷)| 

= |{𝑤𝑗−1, 𝑤𝑗+1}| = 2 

for 𝑖 = 𝑝 + 2, 𝑝 + 3,…,2𝑝 − 3 

Hence |𝑜𝑑𝐷(𝑢) − 𝑜𝑑𝐷(𝑤)| ≤ 2 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑢, 𝑤 ∈ 𝐷 

and therefore, D is a 𝛾𝑡2𝑜𝑒 −  𝑠𝑒𝑡. 

Thus 𝛾𝑡2𝑜𝑒(𝑇𝑃
+) = 𝑝 − 2. 

3.22. Example 

For a triangular snake graph 𝑇6
+, as shown in Figure 12 

 

Figure 12.  Triangular snake graph 𝑇6
+ 

“Let us consider D = {𝑤7, 𝑤8, 𝑤9, 𝑤10} 𝑎𝑛𝑑 𝑉 − 𝐷 =
{𝑤1, 𝑤2, 𝑤3, 𝑤4, 𝑤5, 𝑤6, 𝑤11} 

Now 

𝑜𝑑𝐷(𝑤7) = |𝑁(𝑤7) ∩ (𝑉 − 𝐷)| 

=|{𝑤1, 𝑤2, 𝑤6, 𝑤8} ∩ {𝑤1, 𝑤2, 𝑤3, 𝑤4, 𝑤5, 𝑤6, 𝑤11}| 

= |{𝑤1, 𝑤2, 𝑤6}| = 3 

𝑜𝑑𝐷(𝑤8) = |𝑁(𝑤8) ∩ (𝑉 − 𝐷)| 

=|{𝑤2, 𝑤3, 𝑤7, 𝑤9} ∩ {𝑤1, 𝑤2, 𝑤3, 𝑤4, 𝑤5, 𝑤6, 𝑤11}| 

=  |{𝑤2, 𝑤3}| = 2 

𝑜𝑑𝐷(𝑤9) = |𝑁(𝑤9) ∩ (𝑉 − 𝐷)| 

= |{𝑤3, 𝑤4, 𝑤8, 𝑤10} ∩ {𝑤1, 𝑤2, 𝑤3, 𝑤4, 𝑤5, 𝑤6, 𝑤11}| 

= |{𝑤3, 𝑤4}| = 2 

𝑜𝑑𝐷(𝑤10) = |𝑁(𝑤10) ∩ (𝑉 − 𝐷)| 

= |{𝑤4, 𝑤5, 𝑤9, 𝑤11} ∩ {𝑤1, 𝑤2, 𝑤3, 𝑤4, 𝑤5, 𝑤6, 𝑤11}| 

= |{𝑤4, 𝑤5, 𝑤11}| = 3 

Now 

|𝑜𝑑𝐷(𝑤7) − 𝑜𝑑𝐷(𝑤8)| = 1 ≤ 2 

(𝑤7) − 𝑜𝑑𝐷(𝑤9)| = 1 ≤ 2 

|𝑜𝑑𝐷(𝑤7) − 𝑜𝑑𝐷(𝑤10)| = 0 ≤ 2 

|𝑜𝑑𝐷(𝑤8) − 𝑜𝑑𝐷(𝑤9)| =  0 ≤ 2 

|𝑜𝑑𝐷(𝑤8) − 𝑜𝑑𝐷(𝑤10)| = 1 ≤ 2 and 

|𝑜𝑑𝐷(𝑤9) − 𝑜𝑑𝐷(𝑤10)| = 1 ≤ 2 

Then D = {𝑤7, 𝑤8, 𝑤9, 𝑤10}  form 2 – ODED set of 

𝐺 and there are no vertices of degree zero in the induced 

subgraph. So D is a total 2 - ODED set with minimum 

cardinality. 

Thus 𝛾𝑡2𝑜𝑒(𝑇6
+) = 4”. 

3.23. Theorem 

For any double triangular snake graph, 

𝛾𝑡2𝑜𝑒(𝐷(𝑇𝑃
+)) = 𝑝 − 2 

Proof. 

The graph G contains 3𝑝 − 2  vertices and 𝑝 − 1 

triangles. 

The upper vertices are labeled {𝑤1, 𝑤2, … … . . , 𝑤𝑝−1} 

and the middle vertices are labeled {𝑤𝑝, 𝑤𝑝+1, … ,

𝑤2𝑝−1} and the lower vertices are labeled {𝑤2𝑝,

𝑤2𝑝+1, … … . . 𝑤3𝑝−2}. 

Take the set  

𝐷 = {𝑤𝑝+1, 𝑤𝑝+2, 𝑤𝑝+3 … … . . 𝑤2𝑝−3, 𝑤2𝑝−2} and 𝑉 −

𝐷 = {𝑤1, 𝑤2, … … . . 𝑤𝑝, 𝑤2𝑝−1}. 

The vertex 𝑤𝑝+1  is adjacent to 𝑤1, 𝑤2, 𝑤𝑝 ,𝑤𝑝+2, 𝑤2𝑝 , 

and 𝑤2𝑝+1. 

The vertex 𝑤𝑝+3 is adjacent to 𝑤3, 𝑤4, 𝑤𝑝+2,𝑤𝑝+4 and 

𝑤2𝑝+3. 

In similar manner, the vertex 𝑤2𝑝−2  is adjacent to 

𝑤𝑝−2, 𝑤𝑝−1, 𝑤2𝑝+3, 𝑤3𝑝−3 and 𝑤3𝑝−2. 

Hence the set {𝑤𝑝+1, 𝑤𝑝+3, … … . , 𝑤2𝑝−2} is a minimum 

dominating set but it is not a total dominating set. 

Now consider all 𝑤𝑖 is lying in the dominating set such 

that 𝑤𝑖 is adjacent to 𝑤𝑗. 

The set 𝐷 = {𝑤𝑝+1, 𝑤𝑝+2, 𝑤𝑝+3, … … . . , 𝑤2𝑝−3, 𝑤2𝑝−2} 

is a total dominating set. 

Now 
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 𝑜𝑑𝐷(𝑤𝑝+1) = |𝑁(𝑤𝑝+1) ∩ (𝑉 − 𝐷)| 

= |{𝑤1, 𝑤2, 𝑤𝑝, 𝑤2𝑝, 𝑤2𝑝+1}| = 5. 

𝑜𝑑𝐷(𝑤2𝑝−2) = |𝑁(𝑤2𝑝−2) ∩ (𝑉 − 𝐷)| 

= |{𝑤𝑝−2, 𝑤𝑝−1, 𝑤2𝑝−1, 𝑤3𝑝−3, 𝑤3𝑝−2}| = 5. 

𝑜𝑑𝐷(𝑤𝑖) = |𝑁(𝑤𝑖) ∩ (𝑉 − 𝐷)| 

= |{𝑤𝑖−𝑝, 𝑤𝑖−𝑝+1, 𝑤𝑖+𝑝, 𝑤𝑖+𝑝−1}| = 4  for 

𝑖 = 𝑝 + 2, 𝑝 + 3,…,2𝑝 − 3. 

Hence |𝑜𝑑𝐷(𝑢) − 𝑜𝑑𝐷(𝑤)| ≤ 2 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑢, 𝑤 ∈ 𝐷. 

Hence D is a 𝛾𝑡2𝑜𝑒 −  𝑠𝑒𝑡. 

Then 𝛾𝑡2𝑜𝑒(𝐺) = 𝑝 − 2. 

3.24. Example 

For a double triangular snake graph 𝐷(𝑇5
+), as shown 

in Figure 13 

 

Figure 13.  Double triangular snake graph 𝐷(𝑇5
+) 

“Let us consider D = {𝑤6, 𝑤7, 𝑤8} 𝑎𝑛𝑑 

𝑉 − 𝐷 = {𝑤1, 𝑤2, 𝑤3, 𝑤4, 𝑤5, 𝑤9, 𝑤10, 𝑤11, 𝑤12, 𝑤13} 

Now 

𝑜𝑑𝐷(𝑤6) = |𝑁(𝑤6) ∩ (𝑉 − 𝐷)|= 

|{𝑤1, 𝑤2, 𝑤5, 𝑤7,𝑤10, 𝑤11}

∩ {𝑤1, 𝑤2, 𝑤3, 𝑤4, 𝑤5, 𝑤9, 𝑤10, 𝑤11, 𝑤12, 𝑤13}| 

=  |{{𝑤1, 𝑤2, 𝑤5, 𝑤10, 𝑤11}}| = 5 

𝑜𝑑𝐷(𝑤7) = |𝑁(𝑤7) ∩ (𝑉 − 𝐷)|= 

|{𝑤2, 𝑤3, 𝑤6, 𝑤8, 𝑤11, 𝑤12, }
∩    {𝑤1, 𝑤2, 𝑤3, 𝑤4, 𝑤5, 𝑤9, 𝑤10, 𝑤11, 𝑤12, 𝑤13}| 

=  |{𝑤2, 𝑤3, 𝑤11, 𝑤12}| = 4 

𝑜𝑑𝐷(𝑤8) = |𝑁(𝑤8) ∩ (𝑉 − 𝐷)|= 

|{𝑤3, 𝑤4, 𝑤7, 𝑤9,𝑤12, 𝑤13}

∩  {𝑤1, 𝑤2, 𝑤3, 𝑤4, 𝑤5, 𝑤9, 𝑤10, 𝑤11, 𝑤12, 𝑤13}| 

= |{𝑤3, 𝑤4, 𝑤7, 𝑤9,𝑤12, 𝑤13}| = 5 

Now 

|𝑜𝑑𝐷(𝑤6) − 𝑜𝑑𝐷(𝑤7)| = 1 ≤ 2. 

(𝑤6) − 𝑜𝑑𝐷(𝑤8)| = 0 ≤ 2 

|𝑜𝑑𝐷(𝑤7) − 𝑜𝑑𝐷(𝑤8)| = 1 ≤ 2 

Then D = {𝑤6, 𝑤7, 𝑤8} form 2 – ODED set of 𝐺 and 

there are no vertices of degree zero in the induced 

subgraph. 

Hence D is a total 2 - ODED set with minimum 

cardinality. 

Thus 𝛾𝑡2𝑜𝑒(𝐷(𝑇5
+)) = 4”. 

3.25. Theorem 

For any path 𝛾𝑡2𝑜𝑒(𝑃2 × 𝑃𝑝) = 𝑝 for p ≥ 2. 

Proof. 

V(𝑃2 × 𝑃𝑝) = {
(𝑤1, 𝑤1), (𝑤1, 𝑤2), (𝑤1, 𝑤3), . . , (𝑤1, 𝑤𝑝)

(𝑤2, 𝑤1), (𝑤2, 𝑤2), . . , (𝑤2, 𝑤𝑝)
} 

containing 2p vertices. 

Consider a minimal dominating set 

D = {(𝑤1, 𝑤1), (𝑤1, 𝑤2), (𝑤1, 𝑤3), … … . . (𝑤1, 𝑤𝑝)} 

𝑉 − 𝐷 = {(𝑤2, 𝑤1), (𝑤2, 𝑤2), (𝑤2, 𝑤3), … … . . (𝑤2, 𝑤𝑝)}. 

Since <D> is a path, <D> has no isolated vertices. 

Let u = (𝑤1, 𝑤𝑗) ∈ D, j = 1,2,3, ……, p 

If u =(𝑤1, 𝑤1), then 

 𝑜𝑑𝐷(𝑤1, 𝑤1) = |𝑁(𝑤1, 𝑤1) ∩ (𝑉 − 𝐷)| 

= |(𝑤2, 𝑤1),(𝑤1, 𝑤2) ∩ (𝑉 − 𝐷)|= |(𝑤2, 𝑤1)| = 1. 

If u =(𝑤1, 𝑤𝑝),then 

𝑜𝑑𝐷(𝑤1, 𝑤𝑝) = |𝑁(𝑤1, 𝑤𝑝) ∩ (𝑉 − 𝐷)| 

= |(𝑤1, 𝑤𝑝−1), (𝑤2, 𝑤𝑝) ∩ (𝑉 − 𝐷)| 

=|(𝑤2, 𝑤𝑝)| = 1 

If u =(𝑤1, 𝑤𝑗),  j = 2,3. . . 𝑝 − 1 

Then 𝑜𝑑𝐷(𝑤1, 𝑤𝑗)= |(𝑤2, 𝑤𝑗)|=1. 

Then for any 𝑢, 𝑤 ∈ 𝐷, |𝑜𝑑𝐷(𝑢) − 𝑜𝑑𝐷(𝑤)| ≤ 2. 

Hence D is a 𝛾𝑡2𝑜𝑒 −  𝑠𝑒𝑡. 

Thus 𝛾𝑡2𝑜𝑒(𝑃2 × 𝑃𝑝) = 𝑝 for p ≥ 2. 

3.26. Example 

For any path (𝑃2 × 𝑃6), as shown in Figure 14. 

 

Figure 14.  Path (𝑃2 × 𝑃6) 

“Let us consider 

D={
(𝑤1, w1), (𝑤1, w2), (𝑤1, w3),
(𝑤1, w4), (𝑤1, w5), (𝑤1, w6)

} 𝑎𝑛𝑑  
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𝑉 − 𝐷 =  {
(𝑤2, w1), (𝑤2, w2), (𝑤2, w3),
(𝑤2, w4), (𝑤2, w5), (𝑤2, w6)

} 

Now 

𝑜𝑑𝐷((𝑤1, w1)) = |𝑁((𝑤1, w1)) ∩ (𝑉 − 𝐷)| 

= |{(𝑤1, w2)(𝑤2, w1)} ∩

 {
(𝑤2, w1), (𝑤2, w2), (𝑤2, w3),
(𝑤2, w4), (𝑤2, w5), (𝑤2, w6)

}| 

=  |{(𝑤2, w1)}| = 1 

Now 

𝑜𝑑𝐷((𝑤1, w2)) = |𝑁((𝑤1, w2)) ∩ (𝑉 − 𝐷)| 

= |{(𝑤1, w1), (𝑤1, w2)(𝑤2, w2)} ∩

 {
((𝑤2, w1), (𝑤2, w2), (𝑤2, w3),
(𝑤2, w4), (𝑤2, w5), (𝑤2, w6)

}| 

=  |{(𝑤2, w2)}| = 1 

Now 

𝑜𝑑𝐷((𝑤1, w3)) = |𝑁((𝑤1, w3)) ∩ (𝑉 − 𝐷)| = 

|{(𝑤1, w2), (𝑤1, w4)(𝑤2, w3)}

∩ {
(𝑤2, w1), (𝑤2, w2), (𝑤2, w3),
(𝑤2, w4), (𝑤2, w5), (𝑤2, w6)

}| 

= |{(𝑤2, w3)}| = 1 

Now 

𝑜𝑑𝐷((𝑤1, w4)) = |𝑁((𝑤1, w4)) ∩ (𝑉 − 𝐷)| = 

|{(𝑤1, w3), (𝑤1, w5)(𝑤2, w4)}

∩ {
(𝑤2, w1), (𝑤2, w2), (𝑤2, w3),
(𝑤2, w4), (𝑤2, w5), (𝑤2, w6)

}| 

= |{(𝑤2, w4)}| = 1 

Now 

𝑜𝑑𝐷((𝑤1, w5)) = |𝑁((𝑤1, w5)) ∩ (𝑉 − 𝐷)| = 

|{(𝑤1, w4), (𝑤1, w6)(𝑤2, w5)}

∩ {
(𝑤2, w1), (𝑤2, w2), (𝑤2, w3),
(𝑤2, w4), (𝑤2, w5), (𝑤2, w6)

}| 

= |{(𝑤2, w5)}| = 1 

Now 

𝑜𝑑𝐷((𝑤1, w6)) = |𝑁((𝑤1, w6)) ∩ (𝑉 − 𝐷)| = 

|{(𝑤1, w5), (𝑤2, w6)} ∩ {
(𝑤2, w1), (𝑤2, w2), (𝑤2, w3),
(𝑤2, w4), (𝑤2, w5), (𝑤2, w6)

}| 

= |{(𝑤2, w6)}| = 1 

Now 

|𝑜𝑑𝐷((w1, wi) − 𝑜𝑑𝐷((w1, wj))| = 0 ≤ 2. 

Then  

D = {(𝑤1, w1), (𝑤1, w2), (𝑤1, w3), (𝑤1, w4), (𝑤1, w5), 
(𝑤1, w6)}  form 2 – ODED set of 𝐺  and there are no 

isolated vertices in the induced subgraph. Hence D is a 

total 2 - ODED set with minimum cardinality. 

Thus  𝛾𝑡2𝑜𝑒(𝑃2 × 𝑃6) = 6”. 

3.27. Corollary 

For any path 𝛾𝑡2𝑜𝑒(𝑃3 × 𝑃𝑝) = p for p ≥ 3. 

3.28. Theorem 

For any combo graph 𝑃𝑛
+of order p, 𝛾𝑡2𝑜𝑒(𝑃𝑛

+) = 𝑛. 
Proof. 

Let {𝑤1, 𝑤2, … … , 𝑤𝑛, 𝑤𝑛+1, 𝑤𝑛+2, … … , 𝑤2𝑛}  be the 

vertices of combo graph of 𝑃𝑛
+.  

Here {𝑤1, 𝑤2, 𝑤3, … … , 𝑤𝑛}  be the vertices of 

path  𝑃𝑛 𝑎𝑛𝑑 {𝑤𝑛+1, 𝑤𝑛+2, … … , 𝑤𝑛}  be the pendant 

vertices which are adjacent to 𝑤1, 𝑤2, 𝑤3, ……, 𝑤𝑛 

respectively. 

Consider a minimal dominating set D= 

{𝑤1, 𝑤2, … … , 𝑤𝑛} and 𝑉 − 𝐷 = {𝑤𝑛+1, 𝑤𝑛+2, . . . . , 𝑤2𝑛}. 

Now we have 

 𝑜𝑑𝐷(𝑤𝑖)=|𝑁(𝑤𝑖) ∩ (𝑉 − 𝐷)| 

= |{𝑤𝑖−1, 𝑤𝑖+1, 𝑤𝑛𝑖} ∩ {𝑤𝑛+1, 𝑤𝑛+2, . . . , 𝑤2𝑛}| = 

|{𝑤𝑛𝑖}|=1. 

Then |𝑜𝑑𝐷(𝑤𝑖) − 𝑜𝑑𝐷(𝑤𝑗)| = 0 < 2 and D is a 

minimum 2 - ODED set. Clearly the induced subgraph <
𝐷 > has no isolated vertices. 

Hence D is a 𝛾𝑡2𝑜𝑒 −  𝑠𝑒𝑡 

Hence 𝛾𝑡2𝑜𝑒(𝑃𝑛
+) = |𝐷|= 𝑛. 

3.29. Example 

For combo graph 𝑃6
+, as shown in Figure 15. 

 

Figure 15.  Combo graph 𝑃6
+ 

“Let us consider D = {𝑤1, 𝑤2, 𝑤3, 𝑤4, 𝑤5, 𝑤6} 𝑎𝑛𝑑 𝑉 −
𝐷 = {𝑤7, 𝑤8, 𝑤9, 𝑤10, 𝑤11, 𝑤12}  

Now 

𝑜𝑑𝐷(𝑤1) = |𝑁(𝑤1) ∩ (𝑉 − 𝐷)| 

=|{𝑤2, 𝑤7} ∩ {𝑤7, 𝑤8, 𝑤9, 𝑤10, 𝑤11, 𝑤12}| 

= |{𝑤7}| = 1 

𝑜𝑑𝐷(𝑤2) = |𝑁(𝑤2) ∩ (𝑉 − 𝐷)| 

=|{𝑤1, 𝑤3, 𝑤8} ∩ {𝑤7, 𝑤8, 𝑤9, 𝑤10, 𝑤11, 𝑤12}| 

= |{𝑤8}| = 1 
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𝑜𝑑𝐷(𝑤3) = |𝑁(𝑤3) ∩ (𝑉 − 𝐷)| 

=|{𝑤2, 𝑤4, 𝑤9} ∩ {𝑤7, 𝑤8, 𝑤9, 𝑤10, 𝑤11, 𝑤12}| 

= |{𝑤9}| = 1 

𝑜𝑑𝐷(𝑤4) = |𝑁(𝑤4) ∩ (𝑉 − 𝐷)| 

=|{𝑤3, 𝑤5, 𝑤10} ∩ {𝑤7, 𝑤8, 𝑤9, 𝑤10, 𝑤11, 𝑤12}| 

= |{𝑤10}| = 1 

𝑜𝑑𝐷(𝑤5) = |𝑁(𝑤5) ∩ (𝑉 − 𝐷)| 

= |{𝑤4, 𝑤6, 𝑤11} ∩ {𝑤7, 𝑤8, 𝑤9, 𝑤10, 𝑤11, 𝑤12}| 

= |{𝑤11}| = 1 

𝑜𝑑𝐷(𝑤6) = |𝑁(𝑤6) ∩ (𝑉 − 𝐷)| 

=|{𝑤5, 𝑤12} ∩ {𝑤7, 𝑤8, 𝑤9, 𝑤10, 𝑤11, 𝑤12}| 

= |{𝑤12}|=1 

Now 

|𝑜𝑑𝐷(𝑤𝑖) − 𝑜𝑑𝐷(𝑤𝑗)| = 0 ≤ 2  for all D 

Then D = {𝑤6, 𝑤7, 𝑤8} form 2 – ODED set of 𝐺 and 

there are no vertices of degree zero in the induced subgraph. 

So D is a total 2 - ODED set with minimum cardinality. 

Thus 𝛾𝑡2𝑜𝑒(𝐷(𝑃6
+)) = 6”. 

3.30. Theorem 

For all combo graph 𝑃𝑛
+, 𝛾𝑡2𝑜𝑒(𝑇2(𝑃𝑛

+) = 𝑛. 

Proof. 

𝑉((𝑃𝑛
+)) = {𝑣1, 𝑣2 … . . , 𝑣𝑛, 𝑣1

′ , 𝑣2
′ , … 𝑣𝑛

′ } 

and 𝐸((𝑃𝑛
+)) = {𝑒1, 𝑒2 … . . , 𝑒2𝑛−1}. 

Then 𝑉(𝑇2(𝑃𝑛
+)) =

{𝑣1, 𝑣2 … . . , 𝑣𝑛, 𝑣1
′ , 𝑣2

′ , … 𝑣𝑛
′ , 𝑒1, 𝑒2 … . . , 𝑒2𝑛−1} is vertices 

of 𝑇2(𝑃3
+).  

Let us take 𝐷 = {𝑣1, 𝑣2 … . . , 𝑣𝑛}  and 𝑉 − 𝐷 =
{𝑣1

′ , 𝑣2
′ , … 𝑣𝑛

′ , 𝑒1, 𝑒2 … . . , 𝑒2𝑛−1} 

Clearly D is a dominating set.  

Also 𝑜𝑑𝐷(𝑣1) = 3 = 𝑜𝑑𝐷(𝑣𝑛) and 𝑜𝑑𝐷(𝑣𝑖) = 4 

Where i=2,3,4….., 𝑛 − 1.  

For any 𝑢, 𝑣 ∈ 𝐷, 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 |𝑜𝑑𝐷(𝑢) − 𝑜𝑑𝐷(𝑣)| ≤ 2.  

Hence D is a 2- out degree equitable dominating set and 

<D> has no isolated vertices. 

Thus 𝛾𝑡2𝑜𝑒(𝑇2(𝑃𝑛
+) = 𝑛. 

3.31. Theorem 

For all triangular snake graph, 

𝛾𝑡2𝑜𝑒(𝑇2(𝑇𝑛
+) = 2𝑛 − 1. 

Proof. 

Let 𝑉((𝑇𝑛
+)) = {𝑣1, 𝑣2 … , 𝑣𝑛, 𝑣𝑛+1, 𝑣𝑛+2 … . , 𝑣2𝑛−1} 

and 𝐸((𝑇𝑛
+)) = {𝑒1, 𝑒2 … . , 𝑒2𝑛+1} 

Then 𝑉(𝑇2(𝑇𝑛
+)) = 

{𝑣1, 𝑣2 … , 𝑣𝑛, 𝑣𝑛+1, 𝑣𝑛+2 … , 𝑣2𝑛−1, 𝑒1, 𝑒2 … , 𝑒2𝑛+1}  is 

vertices of 𝑇2(𝑇𝑛
+). 

Let us take 𝐷 =  {𝑣1, 𝑣2 … , 𝑣𝑛, 𝑣𝑛+1, 𝑣𝑛+2 … , 𝑣2𝑛−1} 

and 𝑉 − 𝐷 = {𝑒1, 𝑒2 … , 𝑒2𝑛+1} 

Clearly D is a dominating set. 

Also 𝑜𝑑𝐷(𝑣𝑖) = 2  for 𝑖 = 1, 𝑛, 𝑛 + 1 … . .2𝑛 − 1  and 

𝑜𝑑𝐷(𝑣𝑗) = 4 for 𝑗 = 2,3, … . . , 𝑛 − 1. 

For any ∈ 𝐷, 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 |𝑜𝑑𝐷(𝑢) − 𝑜𝑑𝐷(𝑣)| ≤ 2. 

Hence D is a 2 - out degree equitable dominating set and 

<D> has no isolated vertices. 

Thus 𝛾𝑡2𝑜𝑒(𝑇2(𝑇𝑛
+)) = 2𝑛 − 1. 

4. Application of Total 2 – ODED 
Number 

The concept of a total 2 – ODED set is useful for the 

formation of any committee. It is desirable that each 

committee member might feel comfortable knowing at 

least one member of the committee. In this situation, a total 

2 – out degree equitable domination is useful while there is 

no difference of opinion between any two members or they 

differ on at most one issue. In this situation, the concept of 

equitable domination is applicable. 

5. Conclusions 

In this paper, we introduce a new domination number 

called the total 2 – ODED number. Also, we investigate the 

proposed domination number for some general graphs. 

Finally, we discuss the real life application of the proposed 

domination number. We would like to extend our research 

work to include an additional set of graphs, as well as 

investigate the limitations of the total 2 - out degree 

equitable domination number. 
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