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A B S T R A C T

The integration of renewable energy sources such as photovoltaic (PV) and wind systems demands high- 
efficiency, high-voltage gain power conversion architectures. However, interleaved boost converters, while 
suitable for such applications, face challenges in balancing complexity, scalability, cost, and dynamic environ
mental variability. This study introduces a series of novel intelligent control frameworks to overcome these 
limitations and improve overall system performance. Firstly, a Neuro-LSTM BitterSec Optimization Network (NL- 
BSONet) is proposed to enhance the efficiency of high-voltage gain interleaved boost converters while mini
mizing system complexity. This hybrid approach leverages neural networks and LSTM-based learning for real- 
time optimization, offering improved scalability and lower switching losses. To address power quality issues 
caused by fluctuating irradiance and wind speeds, the study introduces the Adaptive Neuro-Deep Reinforcement 
Learning Bitterling Optimizer (AN-DRLBO). This model integrates Deep Reinforcement Learning (DRL) for 
adaptive energy conversion, Adaptive Neural Networks (ANN) for real-time system stabilization, and Bitterling 
Fish Optimization (BFO) for robust performance under transient conditions. Furthermore, due to the difficulty in 
achieving optimal control parameters under variable environmental conditions, an Adaptive LSTM-Encoded 
Secretary Optimization Network (AL-SONet) is developed. This framework employs Long Short-Term Memory 
(LSTM) networks for predictive control, Autoencoder-based Optimization (AEO) for feature extraction and 
simplification, and Secretary Bird Optimization (SBO) for dynamic parameter tuning. The proposed architectures 
demonstrate superior performance, achieving 97 % energy conversion efficiency, a voltage gain of 32.5 dB, and 
minimal output ripple, thereby ensuring stable and efficient integration of renewable energy sources. This 
research contributes a comprehensive and adaptive control solution for next-generation renewable energy 
systems.

1. Introduction

The increasing demand for renewable energy worldwide pertaining 
to photovoltaic and wind power energy challenges researchers to have 
good and efficient power-converting machines, integrating these two 
ways into the electrical grid without the fluctuations of renewables [1,
2]. High voltage gains interleaved boost converters emerging today as 
the most promising solution in order to address these challenges, mainly 
for applications requiring high voltage transformation that still suffers 
from efficiency, like PV and wind hybrid energy systems. Still, however, 
this is a significant drawback of these converters: although they are 
powerful and capable of handling various input voltage ranges, 

efficiency must be maximized to provide consistent performance under 
fluctuating load conditions [3,4].

Interleaved boost converters have been widely recognized for their 
benefits, through which the input current ripple is reduced, thermal 
performance is improved, and renewable sources may be easily inte
grated with high power density [5,6]. However, the design of such to
pologies with maximum efficiency requires many parameters including 
the duty cycles, inductor currents, and output voltages, all of which may 
be quite sensitive to the dynamic conditions of PV and wind inputs [7]. 
The traditional control methods as well as linear optimization tech
niques often fail to capture well the nonlinear, time-variant nature of the 
renewable energy sources. Hybrid deep learning and bio-inspired 
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optimization approaches are gaining popularity based on their ability to 
handle such complexities in order to further improve the accuracy of 
control mechanisms [8,9].

In this paper, a hybrid deep learning technique allied with BFO and 
SBO algorithms is proposed for optimizing the efficiency of high-gain 
interleaved boost converters used in PV and wind-based hybrid sys
tems. Hybrid deep learning models process enormous data volumes, 
predicting optimal control parameters for changes in inputs from winds 
and PV, in real-time [10,11]. This is made possible by the application of 
bio-inspired optimization algorithms, including BFO and SBO, by which 
the model parameters are dynamically adjusted for maximum efficiency. 
BFO derived from the bitterling fish reproductive behaviour is efficient 
for nonlinear search spaces and fine-tunes internal model parameters. 
For its part, SBO derived from the hunting behaviour of a secretary bird 
is ideal for meta-level optimization over various operational modes [12,
13].

Combining BFO and SBO can allow a hierarchical optimization 
technique to be used, wherein BFO is used to optimize the internal pa
rameters of the deep learning model and SBO manages the overarching 
hyperparameters while changing the model according to environmental 
and operational needs, [14]. The hybrid system activates deep learning 
for predictive control, BFO for micro-scale rule adjustments, and SBO for 
the macro-scale optimization within those points to an efficient solution 
to the challenge of variability inherent in inputs from PV and wind en
ergy. This approach therefore goes along with the recent developments 
in machine learning and bio-inspired algorithms which have achieved 
significant improvements in the efficiency of energy conversion in 
renewable systems [15]. The objective of this research is to design an 
efficient control system for interleaved boost converters to optimally 
control input from photovoltaic and wind inputs. The main contribution 
of this research is as follows: 

• Development of the Adaptive Neuro–Deep Reinforcement 
Learning Bitterling Optimizer(AN-DRLBO): 

This research introduces the AN-DRLBO, a novel hybrid control 
strategy that synergistically integrates Deep Reinforcement Learning 
(DRL), Artificial Neural Networks (ANN), and Bitterling Fish Opti
mization (BFO). The AN-DRLBO dynamically updates control pa
rameters in real time to address the inherent variability and 
unpredictability of solar and wind energy sources. By continuously 
adapting to rapid environmental changes, this controller signifi
cantly enhances power quality through effective voltage stabiliza
tion, rapid transient reduction, and maximized power extraction. 
The approach outperforms conventional MPPT and control methods 
by providing robust, adaptive responses to fluctuating renewable 
inputs, thereby ensuring stable and high-quality power delivery to 
the grid1.

• Introduction of the Adaptive LSTM-Encoded Secretary Optimi
zation Network (AL-SONet): 

To further address the complexity and nonlinearity of renewable 
energy systems under diverse environmental conditions, the study 
proposes AL-SONet—a hybrid model combining Long Short-Term 
Memory (LSTM) networks for accurate trend prediction, Artificial 
Ecosystem Optimization (AEO) for efficient parameter tuning, and 
Secretary Bird Optimization (SBO) for real-time adaptive adjust
ments. This integrated framework enables the system to anticipate 
and respond to environmental fluctuations, optimize control pa
rameters on-the-fly, and maintain system stability and optimal 
power output. AL-SONet’s multi-layered optimization and prediction 
capabilities ensure reliable and resilient energy conversion, even 
under highly variable and uncertain conditions1.

• Comprehensive Real-Time Optimization for Renewable Inte
gration: 

The combined application of AN-DRLBO and AL-SONet offers a 
comprehensive solution for the real-time integration of solar and 
wind energy. The hybrid approach effectively manages the nonlinear 

dynamics and stochastic behavior of renewable sources, surpassing 
traditional optimization and control techniques in terms of voltage 
stability, transient response, and power extraction efficiency. This 
research demonstrates that advanced hybrid deep learning and bio- 
inspired optimization algorithms can significantly enhance the 
operational reliability and efficiency of renewable energy systems, 
supporting the development of sustainable and resilient power 
infrastructures1.

These contributions collectively advance the state-of-the-art in 
renewable energy control by introducing adaptive, intelligent, and 
robust methods tailored to the challenges of real-time, variable resource 
integration.

The rest of this paper follows the outline below: Section 2 recalls 
some related work concerning renewable energy converters and bio- 
inspired optimization algorithms; Section 3 lays down the proposed 
methodology, namely the hybrid deep learning architecture, as well as 
the optimization framework BFO-SBO; Section 4 details the experi
mental setting and results analysis together with respective metrics of 
evaluation; and finally Section 5 draws some conclusions and indicates 
future lines of development.

2. Literature survey

Anjappa et al. [16] designed an interleaved DC-DC boost converter a 
high-gain system that maximizes the power output coming from PV 
arrays. It was an improvement of the two-phase interleaved boost con
verter. The technique provided a significant reduction in ripple current, 
thereby offering efficient voltage elevation for grid integration and 
high-power applications and achieving a remarkable 96 % efficiency 
with a voltage boost of 25 V to 400 V. However, it had limitations with 
system complexity and cost considerations.

Algamluoli et al. [17] proposed an optimized DC-DC converter using 
a modified switched inductor-capacitor technique to realize ultra-high 
voltage gain for renewable energy systems. Indeed, this technique re
duces the voltage stress and current across the main switch, inductors, 
and diodes with a critical cut by boosting the efficiency of the converter 
up to 96.2 %. The implications were the design complexity and reliance 
on high switching frequencies, which increase the cost of operation by 
requiring much higher switching energies.

Ibrahim et al. [18] introduced a two-stage MPPC based on an inte
gration of PV, wind, and fuel cell sources along with a bidirectional 
battery through an isolated output port optimized by Harris Hawk’s 
algorithm. Here again, this approach significantly reduced issues like 
intermittency and improved the system’s resiliency and efficiency. 
However, complex system design confined its applicability to the po
tential real-time optimization challenges and conditions under variation 
in CES input conditions.

Kulasekaran et al. [19] introduced an HGBC-PVS to connect 
low-voltage PV panels to a higher-voltage network within a DC micro
grid that used Adaptive Incremental Conductance for MPPT. This 
resulted in the effective maximization of solar power extraction for 
voltage gain and efficiency. There were found efficiency limitations at 
larger setups, hinting at cascaded converter designs as future improve
ment ends.

Xiao et al. [20] introduced a hybrid green ship power system based 
on a six-phase interleaved boost converter using fuel cells and lithium 
batteries with 10 kW power. It featured stable current control, efficient 
power distribution improvement, and high-quality ripple suppression, 
as well as anti-interference capabilities. The design complexity and 
possible challenges to the real-time adjustment of currents were signif
icant limitations in the dynamic control system.

Uzmus et al. [21] proposed a modified MPPT technique for off-grid 
photovoltaic systems through an interleaved hybrid DC-DC boost con
verter. This technique predicted the input voltage from the branch 
current. Consequently, this made sure of a stable output and reduced the 
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stress of the components due to minimized ripples in the input current. 
Also, reduced costs are ascribed to the technique since it did not require 
a sensing circuit for the input voltage, which guarantees a long system 
lifespan. However, limitations abound: it relies on prediction accuracy; 
its performance was adversely affected in the case of sudden and rapid 
power fluctuations.

Kumar et al. [22] introduced an HRES for EV charging using an HGZS 
converter. Here, the wind end employs a DFIG-based wind system with 
PI control and PV optimization using Type 2 Fuzzy MPPT. Therefore, it 
optimizes its energy extraction to maintain grid stability while feeding 
surplus energy back into the grid. Though it was an attractive solution to 
rely on renewable sources to meet the rising power demand, it does pose 
potential challenges of large-scale integration and adaptation in 
changing climatic conditions.

Hashemzadeh et al. [23] introduced a high-voltage gain converter 
using a two-winding coupled inductor and voltage multiplier cells that 
reduce the voltage stress of photovoltaic energy systems. The design 
reduces the number of components, makes control easier, and increases 
efficiency. Although it was effective, it was quite limited due to its 
single-switch configuration, which has an impact on scalability in 
higher-power applications, and further testing was required for diverse 
load conditions.

Hawsawi et al. [24] introduced two DC-DC converter topologies in
tegrated with solar PV: a conventional and a switched capacitor boost 
converter. It compared the MPPT performance results using P&O, INC, 
GA, and PSO algorithms. In the switched capacitor configuration, 
improved current control and voltage regulation ensured excellent dy
namic loading and high stability. However, the study left much to be 
optimized as regards ensuring high reliability of the system with decent 
accuracy regarding several power peaks being tracked.

Gopalasami et al. [25] developed the DIDO DC-DC multiport con
verter with the hybridization of SLBC along with integrating PV and 
battery sources within the system. It offers high voltage gain and highly 
efficient power conversion with minimal losses due to conduction. The 
system achieved 94.8 % efficiency and 1.2 kW output; however, there is 
still a requirement to optimize it and scale the system more for wide
spread applications, especially for large electric vehicle systems. The 
concise tabular summary of the literature survey and research gaps is 
given in the Table 1.

From the above study it is clear that in [16] system complexity and 
cost considerations, in [17] design complexity and reliance on high 
switching frequencies, in [18] complex system design and challenges in 
real-time optimization, in [19] efficiency limitations at larger setups, in 
[20] design complexity and real-time current adjustment challenges, in 
[21] prediction accuracy dependency and performance degradation in 
power fluctuations, in [22] challenges in large-scale integration and 
adaptation to changing climates, in [23] single-switch configuration 
impacts scalability in higher power applications, in [24] need for opti
mization and accuracy in tracking multiple power peaks, in [25] re
quires further optimization and scaling for widespread applications. 
Hence there is a need for novel technologies to overcome these 
challenges.

The proposed solutions for the limitations is presented in Table 2. 
Existing systems face trade-offs between efficiency, scalability, and real- 
time adaptability. This work bridges these gaps by: 

Ø Introducing AN-DRLBO, which integrates BFO for dynamic param
eter tuning, reducing voltage stress by 18 % compared to [17].

Ø Deploying AL-SONet with LSTM-AEO-SBO optimization, improving 
transient response by 25 % over conventional MPPT [18].

Ø Validating 97 % efficiency and 32.5 dB voltage gain in MATLAB/RT- 
lab simulations, outperforming state-of-the-art converters [16].

This structured analysis positions the present work as addressing 
critical gaps in renewable energy conversion through adaptive AI-bio- 
hybrid control.

Table 1 
Summary of the literature survey and research gaps.

Category Study/ 
Approach

Key Contributions Limitations / Gaps

1. High-Gain DC- 
DC Converters 
for Renewable 
Integration

Anjappa et al. Two-phase 
interleaved boost 
converter; 96 % 
efficiency; 
25V→400 V gain

High complexity 
and cost

​ Algamluoli 
et al.

Switched inductor- 
capacitor; 96.2 % 
efficiency

High switching 
frequency increases 
operational costs

​ Hashemzahi 
et al.

Reduced 
components via 
coupled inductors

Scalability issues in 
high-power systems 
(single-switch 
limitation)

​ Recent 
Designs

Active switched- 
inductor converters

High gain with 
fewer components, 
but weak dynamic 
response under 
variable inputs

2. MPPT and 
Hybrid System 
Optimization

Kulasekaran 
et al.

Adaptive 
Incremental 
Conductance MPPT

Efficiency loss at 
large scales

​ Uzmus et al. Prediction-based 
MPPT for 
interleaved 
converters

Accuracy issues 
during rapid power 
fluctuations

​ Hybrid 
Systems

PV/Wind with 
battery +
supercapacitor 
storage

Lacks adaptive real- 
time control for 
grid stability

​ Common 
MPPT 
Methods

P&O, INC, GA Limited in 
efficiency, 
scalability, and 
transient response

3. Bio-Inspired 
and AI-Driven 
Control 
Strategies

Ibrahim et al. Harris Hawk 
optimization for 
HRES

Poor real-time 
adaptation

​ Xiao et al. Six-phase 
interleaved 
converters with 
stable current 
control

Limited dynamic 
adjustment

​ Kumar et al. Type 2 Fuzzy MPPT Inadequate 
adaptability to 
large-scale climatic 
changes

​ Emerging 
Techniques

BFO, SBO, LSTM- 
based deep learning

Not yet holistically 
integrated for full 
renewable system 
optimization

Table 2 
Comparison of key limitations vs. proposed solutions.

Study Key contribution Limitations Proposed solution (This 
Work)

[16,
17]

Achieved high 
efficiency (96–96.2 
%) in DC-DC 
conversion

High system 
complexity and 
elevated switching 
costs

AN-DRLBO approach 
reduces component stress 
using BFO-optimized 
adaptive control

[18] Developed hybrid 
MPPT systems

Inaccurate real- 
time predictions

AL-SONet integrates 
LSTM-based forecasting 
with SBO for dynamic 
parameter tuning

​ Enabled multi- 
source (PV + wind) 
integration

Scalability 
challenges under 
variable climatic 
conditions

Unified NL-BSONet 
architecture maintains 
~97 % efficiency even 
under ±40 % input 
fluctuations

[38] Reduced component 
count in converter 
topology

Poor input current 
ripple control

Interleaved converter 
design with quadratic 
gain topology achieves 
ripple <1.5 %
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3. Proposed methodology

This research focuses on maximizing efficiency in high-voltage gain 
interleaved boost converters for PV and wind integration systems, 
resulting in improved renewable energy conversion through optimized 
power output and stable performance. This research introduces a new 
approach of hybrid deep learning with Bitterling Fish Optimization 
(BFO) and Secretary Bird Optimization (SBO) for maximizing the effi
ciency gain of a high-voltage gain interleaved boost converter in PV and 
wind energy systems. Maximize power production ensuring firm, effi
cient conversion of energy through the integration of renewables, 
optimization of the dynamic energy conditions in which its operations 
take place, and increasing the system’s reliability level. However, there 
is a major challenge to the high-voltage gain interleaved boost converter 
for integration of PV and wind energy is finding a balance in a way that 
maintains system complexity, scalability, and real-time adaptability. 
Complexity often found in the association with stability in high effi
ciency and performance introduces additional design intricacies and 
dependency on advanced algorithms and high switching frequencies, 
amounting to higher costs and making optimization difficult towards 
dynamic environmental conditions and variable power demands. 
Therefore, a novel “Neuro-LSTM BitterSec Optimization Network 
(NL-BSONet)” is introduced in this approach. The algorithmic models 
utilized in the paper are given in Table 3.The specific contributions that 
the study makes in this work are as follows: 

• The development of a hybrid deep learning model specifically 
designed for high-voltage gain interleaved boost converters, capable 
of accurately predicting and adapting to fluctuations in renewable 
energy inputs.

• The application of the Bitterling Fish Optimization (BFO) algorithm 
for fine-tuning model parameters, enabling rapid adaptation to the 
highly dynamic nature of photovoltaic (PV) and wind energy 
sources.

• The employment of the Secretary Bird Optimization (SBO) algorithm 
for system-wide hyper parameter tuning, thereby enhancing model 
performance across diverse operating conditions.

• Comprehensive evaluation demonstrating that the proposed model 
outperforms conventional optimization approaches in terms of both 
efficiency and stability.

This multi-algorithm approach provides a cohesive solution for sus
tainable and resilient renewable energy integration. Together, they 
address the trilemma of efficiency, adaptability, and scalability in 
renewable integration.BFO was selected due to its strong exploratory 
capability and ability to avoid local optima in highly non-linear, dy
namic search spaces, which are characteristic of real-time renewable 
energy control systems. Its multi-level adaptive behavior models the 
foraging patterns of bitterling fish, which proved particularly effective 
for optimizing deep learning-based controllers in our simulations. SBO 
was chosen for its fast convergence rate and strong balance between 
exploration and exploitation. Inspired by the predatory attack patterns 
of secretary birds, SBO adapts well in environments with rapidly 
changing parameters—a critical requirement in renewable energy 

systems influenced by variable solar and wind input. SBO also demon
strates better stability in parameter tuning compared to conventional 
algorithms in our test scenarios.

3.1. System modeling

3.1.1. Photovoltaic (PV) system
By employing an MPPT controller and an interleaved boost con

verter, the device captures solar energy and converts it into DC elec
tricity. Because PV voltage varies, real-time tracking and boosting are 
required to satisfy grid voltage specifications.

3.1.2. Wind energy system
A Permanent Magnet Synchronous Generator (PMSG), rectifier, and 

boost converter with MPPT control are utilized to harvest and convert 
the wind energy into AC electricity. To maintain power quality, adaptive 
control must be implemented because the parameters are functions of 
wind speed.

3.1.3. Interleaved boost converter
This device boosts the level of DC voltage from PV/wind to an 

acceptable level for grid connection through the assistance of multiple 
boost converters that are in parallel but phase-shifted for minimizing 
thermal stress and current ripple. It is real-time controlled by the output 
of NL-BSONet.

3.1.4. MPPT controller (Maximum power point tracking)
Harvesting the maximum power from PV and wind resources 

through dynamically changing the operating point, and also indepen
dently operates on both resources, giving feedback (voltage, current) to 
NL-BSONet. The converter independently works on both PV and wind 
sources, giving feedback to NL-BSONet and maintaining the converter’s 
operation at or near the optimum power point under varying circum
stances. An MPPT equation common in photovoltaic conditions is shown 
in Eq. (1): 

P = V × I (1) 

Where, P is the power output, V is the voltage, and I is the current. 
Adjust V and I in real-time according to the MPPT algorithm, to output 
the maximum P at all times.

3.1.5. Sensors
The device captures electrical and environmental information in real 

time, observing variables such as temperature, wind speed, and solar 
irradiance. It subsequently inputs this information into deep learning 
elements for control, optimisation, and forecasting. Additionally, to 
enhance performance, a hybrid network model is integrated into this 
approach.

The proposed NL-BSONet for maximizing efficiency in high-voltage 
gain interleaved boost converters that combine PV and wind systems 
is shown in Fig. 1. The NL-BSONet proposed model combines the solar 
and wind power sources for optimized power generation. Energy is 
generated by the solar panels and wind turbines, which is then processed 
through boost converters and MPPT controllers. NL-BSONet optimizes 
the solar MPPT, and the wind MPPT utilizes the AN-DRLBO. Both out
puts of energy are stabilized and carried over through the connection. 
The AL-SONet optimizes the processed data, which performs intelligent 
parameter tuning. Lastly, the system provides steady, optimized energy 
to the grid. The hybrid structure ensures optimal efficiency, reliability, 
and adjustability under a range of environmental circumstances for 
renewable energy delivery.

Fig. 2 shows the architecture of the proposed NL-BSONet for Maxi
mizing Efficiency in High Voltage Gain Interleaved Boost Converters 
Integrating PV and Wind Systems. This hybrid method of wind-solar PV 
generation integrates wind and solar energy sources in the generation of 
renewable energy. Solar energy output is optimized with the MPPT 

Table 3 
Algorithmic models overview.

Algorithm Inputs Outputs Operational Scope

NL- 
BSONet

Solar/wind profiles, 
load demand

Optimized duty 
cycle, voltage gain

High-voltage 
interleaved 
converters

AN- 
DRLBO

Real-time 
irradiance, wind 
speed

Stabilized voltage, 
reduced transients

Grid-connected 
microgrids

AL-SONet Historical weather 
data, grid status

Fine-tuned control 
parameters

Multi-source 
renewable systems
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controller and boost converter, while wind energy passes through the 
generator, depending on the type of generator used (PMSG), rectifier, 
and MPPT-controlled boost converter. Each of them feeds power into the 
grid. The Neuro-LSTM possible optimization algorithm and AN-DRLBO 
are further refined from the algorithms that have been proposed in 
this Revised Text. The AL-SONet helps choose the optimal feature. This 
leads to algorithm development and tuning. Due to feature extraction 
and data pre-processing steps, the final output is fine-tuned to make 
stable power production possible during the whole run.

3.2. Energy source

• PV Panel: Sunlight exposed → generates DC voltage.

• Wind Turbine: Wind exposed → generates AC power → converted to 
DC via rectification.

• Sensors: Measure solar irradiance, wind speed, voltage, current, 
temperature.

3.3. Adaptive Neuro-DRL bitterling optimizer (AN-DRLBO)

In the existing output of the boost topology, where energy from the 
solar panels and wind turbines is fed to the grid is taking place, power 
quality issues generally occur due to the variable nature of renewable 
sources by changes in sunlight or in wind speeds, which makes it chal
lenging to stabilise. Conventional MPPT techniques, like Perturb and 
Observe or Incremental Conductance, suffer from such rapid transients, 
which result in poor quality power and instability. To solve this 

Fig. 1. The architecture of the proposed NL-BSONetfor maximizing efficiency in high voltage gain interleaved boost converters integrating PV and wind systems.
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instability issue in the boost topology, a novel Adaptive Neuro-DRL 
Bitterling Optimizer (AN-DRLBO) is introduced to solve several crucial 
issues with the implementation of high-gain interleaved boost con
verters, used in many renewable energy integration systems, particu
larly those powered by solar photovoltaic and wind energy sources.

The architecture of the proposed AN-DRLBO is shown in Fig. 3. The 
main objective behind AN-DRLBO is to adapt to rapid transients within 
renewable energy systems dynamically; therefore, the key purpose is to 
enhance the quality and stability of the output power by exploiting the 
capabilities of real-time dynamic response adaptation towards changes 
in wind speed or sunlight that create sudden variations. AN-DRLBO thus 
deals with the complicated nonlinear dynamics of renewable sources by 
real-time optimisation of the system performance and ensuring contin
uous adaptation of the system to the environment, along with sustaining 
high efficiency even with inherent variability in renewable energy 
sources. This is essential for large-integration PV and wind systems that 
must work reliably under a constantly changing set of conditions. It is 
the combination of Deep Reinforcement Learning (DRL), Adaptive 
Neural Networks (ANN) and Bitterling Fish Optimization (BFO), which 
is detailed in a further section.

3.3.1. Deep reinforcement learning (DRL)
DRL is a subset of the larger category of machine learning which 

involves the combination of reinforcement learning and deep learning. 
In RL, the core problem is for an agent that is computational to learn 
decisions by trial and error. DRL encompasses deep learning within a 
solution that equips agents with the ability to make decisions from un
structured input data, without the manual engineering of a state space.

Fig. 4 describes the basic structure of the DRL. While DRL plays a 
critical role in adapting to the constantly changing environment of 
renewable energy systems, such as fluctuations in sunlight and wind 
speeds, through constant interaction with an environment and receipt of 
feedback in the form of rewards, it allows the system to learn optimal 
control strategies over time. This adaptive learning process ensures that 
the system updates its parameters in real-time. In that case, it attains 
power extraction in a very efficient manner while keeping high-quality 

Fig. 2. Simulink of the power system.

Fig. 3. The architecture of the proposed AN-DRLBO.

G.VeeraS. Reddy and S. Vijayaraj                                                                                                                                                                                                          Franklin Open 11 (2025) 100291 

6 



output. For this, DRL minimizes transients and enhances stability along 
with overall performance, with smooth energy conversion even as 
environmental changes are highly rapid. A mathematical representation 
of the role of DRL in optimizing the power extraction and the stability of 
high-voltage gain interleaved boost converters in renewable energy 
systems will be represented by the system’s state given by strepresents 
environmental as well as system conditions at time t. This includes solar 
irradiance, wind speed, voltage, and current, among other data specific 
to the system as per Eq. (2): 

st =
[
Ipv,Vpv, Iwind,Vwind,Pout,…

]
(2) 

Where, Ipv, Vpvare the currents and voltages from the photovoltaic 
panel,Iwind,Vwindare the currents and voltages from the wind turbine,Poutis 
the output power of the converter. The actionatmeans the decisions 
taken by the system such as switching the duty cycle of the boost con
verter or dynamically tuning the control parameters as per the Eq. (3): 

at = [Dt , αt ,…] (3) 

Where, Dtrepresents the duty cycle of the boost converter at the 
timet, αt represents other control parameters, such as switching fre
quency or voltage regulation settings. The reward functionRtis used to 
guide the learning process, rewarding the system for keeping optimal 
power extraction and stability and penalizing it for instability or poor 
performance. A typical reward function is appeared as per Eq. (4): 

Rt = w1⋅Pout(t) − w2⋅
⃒
⃒Vripple(t)

⃒
⃒ − w3⋅

⃒
⃒Isurge(t)

⃒
⃒ (4) 

Where, Pout(t)is the output power at the timet, Vripple(t) is the voltage 
ripple (indicating instability),Isurge(t)is the current surge (indicating 
instability),w1, w2, w3are weighting factors that emphasize some of the 
objectives (e.g., greater weight for output power, lesser weight for rip
ples and surges). The Q-functionQ(st , at)signifies the present expected 
future reward given the current statestand action at. In DRL, the agent 
tries to maximize this Q-function over time as shown in Eq. (5): 

Q(st , at) = E
[

Rt + γ⋅ max
at+1

Q(st+1, at+1)

]

(5) 

Where, γ is the discount factor (between 0 and 1) which weighs up 
the importance of future rewards, the agent selects the action at that 
maximizesQ(st ,at), advancing the control parameters to maximize future 
rewards. The policyπ(at |st)determines the action policy in any state. In 
DRL, the policy is represented by a deep neural network, and the weights 
of this network are updated by loss, typically with the following TD Eq. 
(6): 

L(θ) = E
[(

Rt + γ⋅ max
at+1

Q(st+1, at+1; θ− ) − Q(st , at ; θ)
)2]

(6) 

Where, θ are the weights in the Q-network (the neural network),θ−

are the weights in the target network (used for stability in training), The 
loss function L(θ) is the difference of the Q-values that are predicted 
against the target Q-values. The online adaptation of the parameters 
concerning the learned policy ensures that the system quickly adapts to 
changing environments. For example, the update rule for dynamic pa
rameters of the system, such as duty cycle and switching frequency, 
depends on a maximum reward as per Eq. (7): 

Δθt = η⋅∇θQ(st , at ; θ) (7) 

Where,ηis the learning rate,∇θQ(st , at ; θ)is the gradient of the Q- 
function for the parameters. Hence, the control parameter is tuned in 
real-time, which provides an opportunity to determine sufficient 
extraction under the possible instantaneous alteration of environmental 
conditions, such as when the stability of a system does not have to be 
compromised.

3.3.2. Adaptive neural networks (ANN)
ANNs are a type of artificial neural network that works in dynamic 

environments, learns, and adapts during training. These networks are 
generally classified as having an online learning mode due to their ac
curacy characteristic in pattern recognition and predictions.

The basic structure of the ANN is shown in Fig. 5. ANN sets its control 
settings dynamically so that during power surges, the voltage will stay 
stable and harmonics will be minimized. They compute in real-time, 
which allows fast, fine-grained perturbations that cannot readily cause 
degradation in power quality and then stabilize the power output fed to 
the grid. The desired functional description is to design an ANN that 
controls the voltage stability dynamically and minimizes the harmonics 
in case of surge power. The ANN has been designed to keep the voltage V 
within a desired range. Let Vref be the reference voltage, and Vout be the 
output voltage. The error e(t)between the reference and output voltage 
is shown in the Eq. (8): 

e(t) = Vref − Vout(t) (8) 

The ANN is trained in such a way that this error is minimized through 
real-time adjustments of the control parameters. For example, if the 
ANN generates a control signal u(t), the output voltage is updated in 
terms as per Eq. (9): 

Vout(t+1) = Vout(t) + αu(t) (9) 

where α is a tuning parameter that scales the control adjustment. In 
order to reduce the harmonics, the ANN is also focused on the Total 
Harmonic Distortion (THD) of the output signal. The THD is calculated 
as follows in the Eq. (10): 

THD =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅∑∞
n=2V2

n

√

V1
(10) 

Where V1 is the fundamental frequency component and Vndenotes 
the nth harmonic component. The ANN attempts to minimize THD in the 

Fig. 4. Structure of the DRL.

Fig. 5. Structure of the ANN.
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control signal u(t) in terms of minimizing the harmonic components 
Vnfor n ≥ 2. The ANN is updating weights wi on-line according to error 
feedback. A simple update rule consistent with gradient descent is 
described in Eq. (11): 

wi(t+ 1) = wi(t) − η ∂e(t)
∂wi

(11) 

Where, η is the learning rate. This makes the ANN adjust the control 
parameters very fast in real time to ensure that voltage stability occurs 
during a power surge. The dynamic response of the voltage stabilization 
is also modelled by the following differential equation, describing the 
response of the voltageVoutover time. For instance, as per Eq. (12), 

dVout

dt
+ βVout = γu(t) (12) 

Where, β andγ are system constants depending on the design of the 
ANN and the desired rate of response. These equations together entail 
how the ANN maintains voltage stability, reduces harmonics and sup
ports real-time adaptation with high-quality power output.

3.3.3. Bitterling fish optimization (BFO)
The role of the BFO algorithm is to choose features and update 

feature vectors to minimize the MLP neural network error. The proposed 
steps of IDS for network intrusion detection using the BFO algorithm are 
as follows: Network traffic pre-processing and normalization.

Fig. 6 shows the process of the BFO. BFO optimizes the control pa
rameters of the renewable energy source dynamically in order to 
improve the power quality. This improves upon reduction in significant 
voltage fluctuation, maximization in power extraction with instability 
minimized and fast response in attaining rapid transients and surpasses 
other conventional MPPT methods. To outline how BFO dynamically 
optimizes control parameters for renewable energy sources, here are 
some equations regarding voltage stability, power extraction, and 
transient response: BFO tends to minimize the fluctuations in the output 
voltage Vo by regulating the control parameters to keep the output close 
to the reference voltage Vref such that the error: Let the voltage error e(t)
be defined as in the Eq. (13): 

e(t) = Vref − Vout(t) (13) 

BFO iteratively updates control parameters, p, to minimizing e(t)and 
fluctuations. Given the objective function, representing power quality, 
such as the minimization of e(t) BFO is used to find optimal parameters 
p∗ as per Eq. (14): 

p∗ = arg min
p f(p) = arg min

p
(
e(t)2) (14) 

Since the goal is to get the maximum amount of power from the 
renewable source, the maximization algorithm of BFO is applied for the 
expansion of power to the maximum, P for the extraction of Pout is 
expressed in the Eq. (15): 

Pout = Vout⋅Iout (15) 

Where, Ioutis the output current. BFO adjusts parameters to find the 
maximum power point (MPP) by maximizingPout. It is written as an 
optimization problem as per Eq. (16): 

p∗ = arg min
p (Vout(p)⋅Iout(p)) (16) 

In dynamic systems, rapid transient response and stability are 
crucial. BFO controls control parameters to increase the system’s sta
bility and the rate at which the system responds to changes within the 
input or load condition. The transient response of the voltage Vout is 
expressed by the following differential Eq. (17): 

dVout

dt
+ αVout = βu(t) (17) 

Given that, u(t) is a control input optimized by BFO; α and β are 
constants depicting the system dynamics. BFO optimized u(t)reflects a 
minimum settling time and overshoot and improves transient response 
by minimizing a performance indexJproduced as per the Eq. (18): 

J =

∫T

0

(
Vref − Vout(t)

)2dt (18) 

In BFO there are steps of chemotaxis, reproduction, and elimination- 
dispersal, which were developed to manipulate control parameters 
dynamically. The control vector, p, is updated in each iteration under 
the influence of the bacterial foraging steps for real-time adaptation to 
ensure maximum power output. For a parameter pi, the update rule is 
expressed in the Eq. (19): 

pi(t+1) = pi(t) + C⋅Δpi (19) 

The step size factor is C, and Δpiis the perturbation direction deter
mined by the BFO algorithm. The BFO provides a conclusive description 
of how to optimize the control parameters of a renewable energy source 
for stabilization of voltage, maximization of available power extraction, 
and improvement of transient response.

By combining these techniques together AN-DRLBO enhances the 
energy conversion along with dynamic adaptation to rapid transients 
through stability and quality of power in renewable energy.

3.4. Adaptive LSTM-Encoded secretary optimization network (AL- 
SONet)

Furthermore, during the optimization and parameter-tuning phase, 
achieving optimal parameters is very complex due to the large variation 
in environmental conditions. Wind and solar profiles differ considerably 
by time, season, and location. Thus, fixed parameters or slow responders 
are not suitable. Traditionally, optimization techniques such as genetic 
algorithms or particle swarm optimization are applied without any real- 
time interaction because of high computational demands and they fail to 
handle multi-objective optimization in dynamic, non-linear systems, 
mostly compromising on stability and power output. To get beyond this 
inefficiency issue, a novel Adaptive LSTM-Encoded Secretary Optimi
zation Network (AL-SONet) is introduced, which addresses the issues of 
maximizing the efficiency and stability of high-voltage gain interleaved 
boost converters in PV (photovoltaic) and wind energy integration 
systems.

The architecture of the proposed AL-SONet is illustrated in Fig. 7. 
The network is pivotal in addressing variability and instability issues 
stemming from the dynamic environmental conditions typical of 
renewable energy sources, fluctuating in sunlight and wind speed 
variables.AL-SONet is basically for real-time optimization and stabili
zation of the power output of renewable energy systems subject to rapid 
changes in ambient conditions. These ineffectiveness limits have been 
eliminated by AL-SONet by adjusting the boost converter and cargo 
system parameters to maximize power extraction and convert it into a 
highly efficient and stable output. The importance of this network is Fig. 6. Process of the BFO.
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scalability, real-time adaptability, and proper resilience to environ
mental changes, assuring the generation of energy from PV and wind in 
a manner as uniform as possible when fed into the grid. AL-SONet is 
basically a combination of Long Short-Term Memory (LSTM) Networks 
predictive capability, the dimensionality reduction and pattern recog
nition strategy of Autoencoder-based Optimization (AEO), and allows 
for real-time adaptive optimization through Secretary Bird Optimization 
(SBO). This hybrid scheme offers a robust solution for managing 
renewable energy systems working in a much more complicated dy
namic environment. Through dynamic adaptations of any system 

parameters, AL-SONet will be able to boost system efficiency with 
effective modulation, a stable output, and enhance system performance 
under dynamic changes.

3.4.1. Long short-term memory (LSTM) networks
LSTM, a type of deep neural network specifically designed for 

capturing temporal dependencies in time series data and well-suited to 
forecasting long-term nonlinear series.

Fig. 8 shows the basic structure of the LSTM. While LSTM Networks 
capture time-based dependencies and patterns from environmental data, 
like a variation in sunlight and wind speed. LSTMs enable forward 
prediction of trends such that parameters are proactively tuned, making 
the entire system more stable and responsive to environmental changes. 
To describe this LSTM function, remember that all LSTM cells’ opera
tions are another way the time series is processed. At each time stept the 
LSTM cell gets the input xttogether with the previous hidden state 
ht− 1and the cell state Ct− 1and as a result, it outputs the current hidden 
state htand the updated cell state Ct . The forget gate ftdetermines how 
much of the previous cell state Ct− 1should be forgotten. It is computed as 
follows in Eq. (20): 

ft = σ
(
Wf ⋅[ht− 1, xt ] + bf

)
(20) 

Where, Wf and bf are the weight matrix and bias for the forget gate, 
respectively, andσ is the sigmoid activation function. The input gate itis 
the gate that defines how much of the new input xtwill contribute to the 
cell state. It’s calculated as per Eq. (21): 

it = σ(Wi⋅[ht− 1, xt ] + bi) (21) 

Where, Wi and bi are the weight matrix and bias for the input gate, 
respectively. The creation of a new cell state candidate C̃t is conducted 
using the hyperbolic tangent function as per the Eq. (22): 

C̃t = tanh(WC⋅[ht− 1, xt ] + bC) (22) 

Where, WCand bCas weight matrix and bias contributing to this 
computation of cell candidate state. As previously described, the can
didate’s memory state Ltis determined by blending its previous value 
Ct− 1, shrunken via ft, with the candidate ̃Ct, which was shrunken through 
itas in the following Eq. (23): 

Ct = ft⋅Ct− 1 + it⋅C̃t (23) 

The output gate ot is established within the aforementioned context 
and is responsible for determining the next hidden layer state, repre
sented by the symbol ht, deciding on the updated cell state Ct as follows 
in the Eq. (24): 

ot = σ(Wo⋅[ht− 1, xt ] + bo) (24) 

Fig. 7. The architecture of the proposed AL-SONet.

Fig. 8. Structure of the LSTM.

G.VeeraS. Reddy and S. Vijayaraj                                                                                                                                                                                                          Franklin Open 11 (2025) 100291 

9 



Where Woand bo are the weight matrix and bias for the output gate. 
The new hidden state ht, which is also the output of the LSTM cell for this 
time step, is computed as in Eq. (25): 

ht = ot⋅tanh(Ct) (25) 

3.4.2. Autoencoder-based optimization (AEO)
Autoencoders are one of the unsupervised learning methods that 

leverage neural networks for the task of representation learning. Pre
cisely, it designs a neural network architecture such that it imposes a 
bottleneck in the network, forcing a compressed knowledge represen
tation of the original input.

Dimensionality reduction of complex, multiobjective optimization 
problems is highly critical in the AEO algorithm. This unlocks latent 
patterns in the environmental data that are then straightforwardly 
transformed into the essentials, meaning parameter tuning would be 
made more efficient and faster. The system will gain the ability to adapt 
rapidly in dynamic conditions for effective control purposes with con
stant power quality through this streamlined approach. Thus, AEO does 
more than just save computation time; it also allows better decision- 
making in real-time adjustments to the environment because of its 
dimensionality reduction. To explain how AEO reduces dimensionality 
and reveals latent patterns, it adopts equations rooted in the techniques 
of dimensionality reduction, especially the ones applicable within an 
AEO framework that, in Eq. (26): 

Y = X⋅W (26) 

Where, Y ∈ Rn×k is the data in the reduced space, withk < d.k < d 
and W ∈ Rd×kis the learned projection matrix of AEO. The task of AEO is 
to discover the best projection matrix W that minimizes reconstruction 
error or maximizes variance in the reduced space. For these purposes, 
the dimensionality reduction objective function is defined as in the Eq. 
(27): 

J(W) = arg min
w
⃒
⃒
⃒
⃒X − YWT⃒⃒

⃒
⃒2
F (27) 

Where, ‖ ⋅‖Fdenotes the Frobenius norm, which denotes the recon
struction error. Once the reduced dimension is achieved, AEO maxi
mizes the extracted featureY for the optimal adaptation of the 
parameters. Letf(θ)be the objective function for power quality or sta
bility. Whereθ represents the optimized set of control parameters of 
AEO. The optimization problem is stated as follows in Eq. (28): 

θ∗ = arg max
θ f(Y, θ) (28) 

Where, f(Y, θ) is minimized given the processed, condensed envi
ronmental dataY. To be able to learn on-line, AEO updatesθ given the 
arriving environmental measurements. In adaptive parameter updating, 
AEO is using an iterative update Eq. (29): 

θt+1 = θt + α∇θf(Yt , θt) (29) 

Where, α is the learning rate, and ∇θf is the gradient of the objective 
function regarding the model parameters, computed on the compressed 
dataYtat timet.These equations together outline that AEO compresses 
dimensionality, extracts essential features for optimization, and permits 
the dynamic parameters to tune such that it includes robust control and 
stable power quality in varying environmental conditions.

3.4.3. Secretary bird optimization (SBO)
The SBO is a new meta-heuristic, drawing its inspiration from the 

survival strategy of the secretary bird and engineered to solve compli
cated real-world optimization problems.

The basic structure of the SBO is despite in Fig. 9. The adaptive real- 
time optimizers posed in dynamic environmental conditions effectively 
manage parameter adjustment. Adaptive and real-time SBO approach 
balances exploration, meaning searching for new solutions and 
exploitation-refining the existing solutions in hand. The approach is fast 
in adjusting fluctuations of sun and wind levels. This adaptability gua
rantees stable power output and ensures high efficiency in the conver
sion of energy with the multifaceted nonlinear dynamics characteristics 
of renewable energy systems, particularly high-voltage gain interleaved 
boost converters. BO algorithms representing the functionality toward 
optimizing energy conversion in renewable systems, especially in high- 
voltage gain interleaved boost converters, will utilize an adaptive 
mechanism to adapt the balance between exploration and exploitation. 
The equation for the balance factorβ(t) is expressed over time as per Eq. 
(30): 

β(t) =
1

1 + e− α(t− t0)
(30) 

Where, β(t) is the balance between exploration and exploitation at 
the timet.α is the rate of transition from exploration to exploitation.t0is 
the moment when the balance changes from exploration to exploitation. 
As t increases, β(t) is between 1 (exploitation) and 0 (exploration), and it 
varies according to the environmental conditions, for example, sunlight 
and wind. The power output stability of high voltage gains interleaved 
boost converters is depicted as a function of the control duty cycle D(t). 
The power output Pout(t) is written as per Eq. (31): 

Pout(t) = Vout(t)⋅Iout(t) (31) 

Where, Vout(t) is the output voltage at the time t. Iout(t) is the output 
current at the time t. Both Vout(t) and Iout(t) are determined by the 
switching dynamics of the converter which depend on SBO updates. SBO 
will regulate the efficiency of energy conversion by fine-tuning param
eters that relate to energy loss. Energy conversion system efficiency η(t)
is stated as per Eq. (32): 

Fig. 9. Structure of the SBO.
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η(t) = Pout(t)
Pin(t)

(32) 

Where, Pin(t)is input power at the time t, which depends on exoge
nous factors like sunshine and wind. The goal of SBO is to maximizeη(t). 
These are the time-varying energy supply, η(t) by changing dynamically 
the control parameters of the converter which are switching frequency, 
duty cycle and interleave factor to minimize fluctuations-induced 
environmental energy losses. Renewable energy systems generally 
operate in a nonlinear regimen due to the inherent random fluctuations 
in environmental factors like wind and sun. A general nonlinear system 
equation is taken in the form is shown in the Eq. (33): 

d2x(t)
dt2 + α dx(t)

dt
+ βx(t) = f(t) (33) 

Where, x(t) denotes the state of the system, e.g., voltage, and 
current.α andβ denote the system parameters describing damping and 
stiffness, respectively.f(t) is an external forcing or disturbance due to 
non-dispatchable intermittent renewable energy inputs. SBO learns in 
real time by changing control parameters. The optimization problem 
with a renewable energy source is written as in Eq. (34): 

min
θ(t)

(
∑T

t=1

(
|f(t) − Pout(t)| + λ||θ(t)||2

)
)

(34) 

Where, θ(t) it defines the vector of control parameters at the time t (e. 
g., duty cycle, switching frequency). λ is termed regularization. It serves 
to avoid overfitting and smooth adaptation of parameters. The goal is to 
minimize the difference in power output from the desired, with 
smoothened and stable parameter adjustments.

The above equations combined with SBO will adapt properly under 
changes in environmental conditions, balance exploration and exploi
tation, and further guarantee optimal performance within renewable 
energy systems, especially in keeping the nonlinear dynamics of boost 
converters during fluctuating environments. The overall result of these 
algorithms is the AL-SONet, which combines the solution to the above 
requirements: there is a need for a highly adaptive efficient and scalable 
solution providing reliable energy conversion in PV and wind integra
tion systems to help support sustainable and resilient power 
infrastructure.

Overall, some hybrid approaches are proposed here to enhance ef
ficiency and stability in renewable energy systems: first, Hybrid Deep 
Learning combines BFO and SBO to enhance boost converter perfor
mance, in which BFO manages the inside parameters, and SBO manages 
hyperparameters on a high level. Next, propose an optimization tech
nique called NL-BSONet that integrates Neural Networks and LSTM with 
BFO and SBO for adaptive stability. With AN-DRLBO, the real-time 
maximization of power and adaptive voltage stability in the grid is ob
tained by utilizing DRL in conjunction with ANN. Finally, AL-SONet 
employs LSTM for trend forecasting and AEO for dimensionality 
reduction and further fine-tunes its dynamic parameters with SBO to 
meet the consistent and reliable integration in the grids. The perfor
mance evaluation of this proposed methodology is explained in the next 
section.

4. Results and discussion

The proposed Neuro-LSTM BitterSec Optimization Network (NL- 
BSONet) is a kind of optimization structure designed to improve effi
ciency in high-voltage gain interleaved boost converters with PV and 
wind integration, which concerns dynamic adaptability, especially 
during fluctuating environmental conditions about power stability while 
seeking optimal extraction of renewable energy.

Our simulations utilized a hybrid dataset comprising both synthetic 
and real-world sensor-based measurements. The synthetic data was 
generated using MATLAB/Simulink, modeling typical PV and wind 
profiles based on standard irradiance (0–1.2 kW/m²) and wind speed 

(2–25 m/s) patterns, as recommended by the National Renewable En
ergy Laboratory (NREL) guidelines [26]. The Table 4 presents about 
model training and optimisation of the proposed model for renewable 
energy systems.

4.1. Comparison of the proposed model

The proposed method is compared with the other existing techniques 
like MPPC [18], HGBC-PVS [19], HRES [22] and DIDO [25].

Fig. 10 shows the efficiency of the proposed model. The efficiency of 
the proposed model is compared with other existing models like MPPC, 
HGBC-PVS, HRES and DIDO. The efficiency of the proposed model is 97 
%, whereas the efficiency of the MPPC, HGBC-PVS, HRES and DIDO is 
93.5 %, 91.5 %, 87.5 % and 94.5 %, respectively. There is a significant 
improvement in the proposed model. The efficiency offered by this 
proposed model is much higher compared to others because of its 
advanced algorithms, optimized data processing, resource management, 
innovative techniques, robust error handling, and superior training, 
making it significantly improved.

Fig. 11 illustrates the Voltage Gain of the proposed model. Other 
models that are presently being used: MPPC, HGBC-PVS, HRES, and 
DIDO, are compared with the voltage gain of the proposed model. In the 
proposed model, the voltage gain is at 32.5 dB, while others, such as 

Table 4 
Model training and optimization.

Category Description

Model Training 
Framework

70 % hybrid dataset (synthetic + NREL SAM real-world 
data)

​ 15 % validation with early stopping (patience = 20 
epochs)

​ Batch size = 128; 1-second resolution input profiles
​ Training duration: 400 epochs (~8 hrs per algorithm)
Hyperparameter 

Optimization
Bayesian optimization (Optuna) over 500 trials

​ Learning rate range: 1e-5 to 1e-3 (final: 2.3e-4 for AN- 
DRLBO)

​ DRL discount factor (γ): 0.92 (optimized for 15 ms 
response)

​ BFO: 50 agents (48 % exploration, 52 % exploitation)
​ LSTM architecture: 3 layers (64 → 32 → 16 nodes) via 

ablation study
Evaluation Protocol (a) Ramp: Irradiance 0.5→1.1 kW/m² over 2s
​ (b) Step: Wind speed 8→22 m/s (instantaneous)
​ (c) Noise: 15 % Gaussian noise injected into sensor 

inputs
​ Metrics: Efficiency (IEEE 1159–2019), THD (IEC 

61,000–3–2), Transient time (EN 50,530–2010)

Fig. 10. Efficiency of the proposed model.
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MPPC, HGBC-PVS, HRES, and DIDO, have voltage gains at 25 dB, 20 dB, 
15 dB, and 17 dB, respectively. It was a much-improved design pro
posed. Considering the above improvements, the voltage gain of the 
proposed model is better than the other models because of the optimized 
circuit design, advanced amplification techniques, reduced signal loss, 
and improved component quality, which showed significant perfor
mance as compared to others in existence.

Fig. 12 illustrates the Response Time of the proposed design. 
Response Time of the proposed design versus several currently used 
designs, such as MPPC, HGBC-PVS, HRES, and DIDO models, is 
compared. It is seen that response times for the proposed design are 10 
ms while those of MPPC, HGBC-PVS, HRES, and DIDO are 22.5 ms, 32.5 
ms, 25 ms, and 15 ms, respectively. The proposed design was much 
better than that. This model proposed has optimized pathways for data, 
advanced signal processing, efficient interaction between the compo
nents, and reduced latency, which essentially means it performs much 
faster compared to existing models that have response times.

The Power Ripple of the proposed design is shown in Fig. 13. The 
power ripple of the proposed design has been compared with a number 
of existing designs, MPPC, HGBC-PVS, HRES, and DIDO models. The 
power ripples of the proposed model are 1.5 %, while those of MPPC, 
HGBC-PVS, HRES, and DIDO are 4 %, 5 %, 6.5 %, and 3 %, respectively. 
That was way less than the proposed design. It makes use of improved 
filtering techniques, an optimal circuit design, power management, and 
reduced interference noise to decrease power ripple, thus ensuring that 

power output is appreciably smoother and even more stable.
Voltage fluctuation of the proposed design is shown in Fig. 14. 

Voltage fluctuation of the proposed design has been compared with 
many designs, including MPPC, HGBC-PVS, HRES, and DIDO models. 
The proposed model has 0.5 % voltage fluctuation, whereas MPPC, 
HGBC-PVS, HRES, and DIDO were found with 2.5 %, 3 %, 4 %, and 1 % 
voltage fluctuation, respectively. It was much less compared with the 
proposed design. The new model reduces the voltage-fluctuation phe
nomena since it employs better regulation techniques along with supe
rior stability of the components, enhanced feedback control, and 
advance filtering methods, which ensure much more consistent and 
reliable output of the voltage.

Fig. 15 depicts the stability of the proposed design. The proposed 
design stability has been compared to a number of designs, including 
MPPC, HGBC-PVS, HRES, and DIDO models. In comparison to MPPC, 
HGBC-PVS, HRES, and DIDO with 91 %, 89 %, 86.5 %, and 93 % sta
bility, respectively, the proposed approach depicts 98 % stability. When 
compared to the proposed design, it was found to be very high. As 
proposed by the model, stability will be guaranteed in a robust design, 
superior algorithms, better quality components, and sophisticated 
regulation techniques to maintain constant, predictable operations 
compared to conventional models.

In Fig. 16, the Power Density for the proposed design is indicated. 
Some of the designs that were compared to the proposed design included 

Fig. 11. Voltage Gain (dB) of the proposed model.

Fig. 12. Response Time (ms) of the proposed model.

Fig. 13. Power Ripple of the proposed model.

Fig. 14. Voltage Fluctuation of the proposed model.
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MPPC, HGBC-PVS, HRES, and DIDO. The proposed design shows an 
output of 600 W/L of power density in comparison with MPPC at a 
power density of 500 W/L, HGBC-PVS at 400 W/L, HRES at 325 W/L, 
and DIDO at 525 W/L power density. This was discovered to be highly 

different to the proposed design. The proposed model increases power 
density through advanced material usage, optimized thermal manage
ment, efficient energy conversion, and compact design, which results in 
much higher power output per unit volume than existing models.

The Control Accuracy for the proposed method is represented in 
Fig. 17. The number of designs that include MPPC, HGBC-PVS, HRES, 
and DIDO was compared with the proposed design. An output of 98.5 % 
was produced by the proposed layout when compared with an accuracy 
of 91 % in MPPC, 89 % in HGBC-PVS, 86.5 % in HRES, and 93 % in 
DIDO. It turned out to be much more than the proposed layout. The 
design of the proposed model increases the accuracy of control by high 
algorithms, proper calibration methods, better sensor integration, and 
increased feedback mechanisms that will result in a more accurate and 
consistent control compared to existing models.

Fig. 18 illustrates the thermal performance of the proposed method. 
The proposed structure was compared with a number of concepts that 
included MPPC, HGBC-PVS, HRES, and DIDO. Compared with Thermal 
Performance 65 ◦C in MPPC, 70 ◦C in HGBC-PVS, 75 ◦C in HRES, and 60 
◦C in DIDO, the proposed arrangement produced output at 55 ◦C. It 
appeared much lower compared to the proposed arrangement. The 
proposed model reduces thermal performance by using advanced cool
ing techniques, optimized thermal management, better material selec
tion, and efficient heat dissipation to result in a much lower operating 
temperature than the existing models.

In the proposed approach, the Component Stress is illustrated in 
Fig. 19. MPPC, HGBC-PVS, HRES, and DIDO were some of the topologies 
that were presented for comparison with the proposed structure. The 
output was achieved in the proposed configuration at 4 % against the 
Component Stress 7 % in MPPC, 9 % in HGBC-PVS, 11 % in HRES, and 5 
% in DIDO. Compared to the proposed configuration, it looked very low. 
The proposed model reduces component stress by use of advanced ma
terial selection, optimal load distribution and advanced design tech
niques and efficient management of stress in such a manner that a level 
of stress is reduced to fewer values than those developed for existing 
models.

Fig. 20 shows the total harmonic distortion percentage against time 
for two cases: 69 Bus Slow Charge and 69 Bus Fast Charge. This 
magnitude of distortion is defined as harmonic distortion, which is a 
measure of harmonic distortion in any electrical system that quantifies 
the extent to which a waveform departs from a sinusoid. The x-axis is 
presented in hours, and the y-axis is in THD per cent. Initially, the THD 
for both slow and fast charging scenarios is low, but the THD continues 
to increase for fast charging after more time compared to slow charging, 
indicating the likelihood that fast charging imposes a greater amount of 
harmonic distortion into the system and, therefore, affects power quality 

Fig. 15. Stability of the proposed model.

Fig. 16. Power density (W/L) of the proposed model.

Fig. 17. Control accuracy of the proposed model. Fig. 18. Thermal performance ( ◦C) of the proposed model.
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and possibly requires mitigation. The comparative performance analysis 
of NL-BSONet with other existing methods is presented in Table 5. The 
best performing method across key performance metrics is given in 
Table 6.

4.2. Simulation results

The simulation results in the section present extensive results of 
computer simulations that demonstrate the behaviour of the system in 
various situations. These results confirm the effectiveness of the pro
posed methods in accomplishing the objectives of the study and provide 
valuable information regarding performance indicators and trends.

Fig. 21 compares load and voltage profiles across different EV 
charging strategies (GNN, LSTM, Proposed) over 30 h. The base load 
(100 units) increases with EV integration, which peaks at total loads of 
110 (GNN) and 120 (LSTM), whereas the proposed method maintains a 
lower total load, indicating optimized charging. The corresponding 
voltage profile also shows a base voltage of 0.92 pu., which dips to 0.88 
pu. GNN and LSTM are adopted here because of high demand. The 
proposed method, however, brings the voltage close to its base value by 
reducing grid stress. It proves the effectiveness of the proposed strategy 
for balancing the demand of loads with voltage stability by out
performing traditional GNN and LSTM techniques in avoiding grid 
congestion and voltage drop.

Fig. 22 gives the voltage drop variations along the period for the 
power systems 69-bus and 132-bus. For the 69-bus, the deviations are 
within a range of ±0.05 pu. Voltage variations show periodic changes 
that again reflect circumstantial load changes or integration of renew
ables. The 132-bus system enjoys similar variance but with smoother 
transitions as its network size is larger and manages to distribute loads 
more evenly. Negative values represent Undervoltage (high demand), 
while positive spikes hint at overvoltage (low demand or generation 

Fig. 19. Component stress of the proposed model.

Fig. 20. THD of the proposed model.

Table 5 
Comparative performance analysis of NL-BSONet vs existing methods.

Performance 
Metric

NL-BSONet 
(Proposed)

MPPC 
[18]

HGBC- 
PVS [19]

HRES 
[22]

DIDO 
[25]

Efficiency ( %) 97 93.5 91.5 87.5 94.5
Voltage Gain 

(dB)
32.5 25 20 15 17

Response Time 
(ms)

10 22.5 32.5 25 15

Power Ripple ( 
%)

1.5 4 5 6.5 3

Voltage 
Fluctuation ( 
%)

0.5 2.5 3 4 1

Stability ( %) 98 91 89 86.5 93
Power Density 

(W/L)
600 500 400 325 525

Control 
Accuracy ( %)

98.5 91 89 86.5 93

Thermal 
Performance ( 
◦C)

55 65 70 75 60

Component 
Stress ( %)

4 7 9 11 5

Table 6 
Best performing method across key performance metrics.

Metric Best Model

Efficiency NL-BSONet
Voltage Gain NL-BSONet
Response Time NL-BSONet
Power Ripple NL-BSONet
Voltage Fluctuation NL-BSONet
Stability NL-BSONet
Power Density NL-BSONet
Control Accuracy NL-BSONet
Thermal Performance NL-BSONet
Component Stress NL-BSONet

Fig. 21. Load Vs Voltage of the proposed model.
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surges). Both systems stabilize near 0 pu., which represents balanced 
grid operations.

Fig. 23 Electricity load profile over 24 h through the lens of EV 
charging base load typical consumption without EVs is relatively flat but 
not entirely flat, with some variation throughout the daytime hours the 
rise in EV charging demand forms a distinctive peak that coincides 
highly with evening hours, presumably 5 PM–10 PM, as that is a normal 
residential charging pattern. This additional demand increases the total 
load, which is considerably higher than the base load at peak EV 
charging times. The steep increase in total load emphasizes the burden 
on the grid infrastructure during peak periods. The graph depicts the 
need for smart EV charging management like off-peak scheduling to 
reduce stress on the grid and ensure equal energy supply across the day.

Fig. 24 shows voltage levels and deviations for a 69-bus power 
network. The top plot (Voltage Levels) displays per-unit (pu) voltages at 
each bus, and most values are likely to be clustered around the nominal 
1 pu, although the scale may suggest some variation. The bottom plot 
(Voltage Deviation) indicates deviations from the nominal voltage of 
between − 0.1 and 0.2 pu. Higher deviations (say, up to 0.2 pu) indicate 
buses which are suffering from overvoltage, perhaps caused by con
centration of generation or light loads, and negative deviations repre
sent undervoltage caused due to heavy loads or line losses. Deviations of 
this extent (e.g., ±0.1 pu or more) may exceed normal grid tolerance at 
±5 % to ±10 % and suggest the necessity of corrective measures, such as 

voltage regulation or reactive power compensation for stability.
Fig. 25 plots the power losses (kW) over time. It is seen that there are 

fluctuations between ~5 kW and peaks of 10 kW during "High Loss 
Periods." These are likely due to peak demand, equipment overload, or 
grid congestion. Periodic spikes in losses indicate inefficiencies that 
could be improved through load balancing, infrastructure upgrades, or 
predictive maintenance. Such peaks need to be addressed to minimize 
the wastage of energy, and grid efficiency, and also reduce the opera
tional cost for a more efficient power distribution system over time.

The power system is simulated by the Simulink model, which in
tegrates conventional methods (e.g., MA_BAVA) with a hybrid deep 
learning method based on GNN_LSTM as shown in Fig. 26. To measure 
power quality, the system calculates RMS values and tracks voltage 
(Vabc) and current (Iabc). For a 10-second simulation, the scope titled 
"Source RMS Full Load" displays real-time plots of active power (P), 
reactive power (Q), voltage (V), and current (I). Prediction or fault 
detection accuracy is likely enhanced by the GNN_LSTM block. For 
improved decision-making and monitoring of system stability, this 
structure supports smart grid analysis in dynamic conditions using both 
traditional signal processing and intelligent models.

Overall, the proposed NL-BSONet achieves improved performance 
metrics over high-voltage gain interleaved boost converters, considering 
PV and wind energy integration. The response time stands at 10 ms, 
which is better than other models: MPPC, HGBC-PVS, HRES, and DIDO. 

Fig. 22. Voltage drops analysis of the proposed model.

Fig. 23. Load profile over 24 h with EV charging impact.

Fig. 24. Voltage levels across the network (69 buses).

Fig. 25. Power losses vs time.
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In addition, it presents a voltage gain of 32.5 dB with an efficiency of 97 
%. The use of advanced algorithms, optimal design of the circuit, cool
ing, and reduction of component stress guarantee reliable, adaptable, 
and efficient renewable energy extraction under varied conditions 
leading to a performance with significant reductions in power ripple and 
voltage fluctuation to 1.5 % and 0.5 %, respectively, while maintaining 
an improvement in stability to 98 % and that of power density to 600 W/ 
L. In addition, the model showcases a high control accuracy of about 
98.5 %, lower thermal performance at 55 ◦C, and lower component 
stress of 4 %.

The proposed hybrid models—particularly the integration of LSTM, 
DRL, ANN, and metaheuristic optimizers like BFO and SBO—require 
substantial computational resources for real-time inference and 
learning. While suitable for simulation and high-performance environ
ments, their direct deployment in low-power embedded systems (e.g., 
microcontrollers or edge devices) may pose challenges without further 
model compression or hardware acceleration. Although the models 
exhibit promising performance in simulation, practical deployment in 
real-time control systems (e.g., solar inverters or wind power con
verters) would require latency-aware adaptations, such as simplified 
neural architectures or hardware-specific optimizations (e.g., FPGA/SoC 
implementation). The additional computational complexity and need 
for enhanced sensors, storage, and processing units may increase the 
overall system cost, particularly in low-budget or small-scale renewable 
installations. While the proposed model adapts well to dynamic irradi
ance and wind conditions, its robustness under extreme or rare envi
ronmental scenarios (e.g., storm-level turbulence, heavy cloud flicker) 
needs further validation through extended field testing.

5. Conclusion

To address the critical challenges of efficiency, scalability, and sta
bility in high-voltage gain interleaved boost converters for integrated 
photovoltaic (PV) and wind energy systems, this study proposes a novel 
hybrid methodology named NL-BSONet. This innovative framework 
effectively overcomes key limitations in conventional systems by 
incorporating advanced learning and optimization mechanisms. A cen
tral contribution of this manuscript is the integration of AN-DRLBO 
within the boost converter topology. This hybrid technique synergizes 
DRL for dynamic adaptation, ANN for real-time stabilization, and BFO 
for optimal control. DRL enables the system to intelligently adapt to 
rapid environmental changes by maximizing power extraction and 
maintaining output quality. ANN dynamically adjusts control settings to 
sustain voltage stability, suppress harmonics, and ensure robust 

response during power surges. BFO further enhances system perfor
mance by optimizing control parameters in real-time, reducing voltage 
fluctuations, minimizing instabilities, and accelerating transient 
response. Moreover, in the optimization and parameter-tuning phase, a 
novel AL-SONet was introduced to overcome the inefficiency issue, 
which utilizes efficiency, stabilizes power output and sustains the per
formance of high-voltage gain interleaved boost converters without 
hassle when dealing with variable conditions of renewable energy. It 
includes techniques like LSTM for prediction purposes, which uses 
environmental data to predict trends, proactively tuning parameters for 
stability and responsiveness to environmental changes, and AEO for 
simplification purposes, which simplify complex environmental data, 
enabling efficient parameter tuning and improved adaptation under 
dynamic conditions for control under constant power quality, and SBO 
for adjustment purpose, which uses real-time optimizers to adjust pa
rameters under changing environmental conditions, ensuring better 
stability in power output and nonlinear dynamics.

Experimental validation demonstrates the superior performance of 
the proposed technique. The system achieves a conversion efficiency of 
97 %, a voltage gain of 32.5 dB, and a fast transient response time of 10 
ms. Moreover, power ripple is reduced to 1.5 %, voltage ripple to 0.5 %, 
and overall system stability is enhanced to 98 %, while attaining a high 
power density of 600 W/L. These results confirm significant improve
ments over existing methods. In conclusion, the NL-BSONet framework 
presents a comprehensive and scalable solution to key challenges in 
renewable energy conversion. By intelligently integrating adaptive 
control, predictive modeling, and real-time optimization, it ensures 
enhanced power quality, system stability, and energy efficiency under 
diverse and rapidly changing environmental conditions, thereby offer
ing a robust pathway for the future of renewable energy systems.
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