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ABSTRACT Facial emotion recognition (FER) has been applied to various sectors, including e-learning, 

marketing, humanoid robot design, HMI/HCI applications, and medicine. The rapid development of 

intelligent technologies has led researchers to strive to improve facial emotion recognition techniques. A 

range of machine learning (ML) methods can be used to recognize facial expressions based on data from 

small to large datasets. Random Forest (RF) is simpler and more efficient than other ML algorithms. Some 

modified versions of RF have been developed to improve classification accuracy in the literature. Most 

improved RF versions modify attribute selection processes or combine them with other machine learning 

algorithms, increasing their complexity. Identifying an appropriate training dataset and determining its size 

remain open questions. The partitioned random forests (PRFs) approach is proposed as a modified strategy 

for improving FER. The proposed method divides multiple regions (different data lengths) into the feature 

space, allowing the algorithm to learn more complex decision boundaries. Using three statistical measures 

Lyapunov exponents (LE), Correlation Dimension (CD), and approximate entropy (AE), we evaluated the 

performance of machine learning algorithms over different data lengths. A crucial role for classification 

accuracy is played by the Lyapunov exponent or LE and the size of the dataset. A PRF is more effective on 

smaller datasets and with higher LE values. The proposed method for partitioning the datasets has been 

successfully tested on the FER dataset to classify six basic emotions (sadness, anger, fear, surprise, disgust, 

and happiness). Based on our numerical results, PRF performed better than traditional RF and other ML 

methods for FER, providing 98.37% mean absolute accuracy. Thus, a robust and useful method for improving 

classification rates is proposed for both small and large datasets. 

INDEX TERMS Partitioned Random Forest, Random Forest, Machine Learning, Facial Emotion 

Recognition, Classification, Emotions.

I. INTRODUCTION 

Automation and interconnectedness among humans and 

machines constitute the fourth industrial revolution (Industry 

4.0). Due to Industry 4.0's rapid development and the impact 

of digitalization on our lives, large datasets are generated 

continuously, and their analysis has become an important 

topic. Human communication and decision-making are both 

significantly influenced by emotion. Affective computing 

aims to create computational systems that can recognize and 

react to human emotions in light of the current growth of 

human-computer interaction (HCI). Emotion detection is 

among the hottest topics in Industry 4.0, attracting decision-

makers' attention. Emotion detection has been widely used 

in marketing, e-learning, surveillance, security, health 

analytics, etc. 

Emotion recognition has been accomplished using a 

variety of inputs such as speech, body gestures, and facial 

expressions. For example, Hassouneh et al. [1] used 

electroencephalograms (EEG) and facial landmarks (virtual 

markers) to detect emotions in a real-time environment using 

machine learning (ML) methods and deep neural networks 
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(DNN). Batbaatar et al. [2] investigated emotion recognition 

from text using bidirectional Long-Short term memory 

(BiLSTM) and convolution neural network (CNN). Schuller 

et al. [3] used the hidden Markov model (HMM) for emotion 

recognition from speech. Similarly, Khalil et al. [4] 

examined the accuracy of deep learning (DL) methods in 

speech emotion recognition. Furthermore, Koduru et al. [5] 

demonstrated feature extraction to improve speech emotion 

recognition accuracy using Mel frequency cepstral 

coefficients (MFCC), discrete wavelet transform (DWT), 

pitch, energy, and zero crossing rate (ZCR) algorithms. Zepf 

et al. [6] investigated driver emotion recognition methods 

based on a variety of inputs for intelligent vehicle design. 

Recently, Maithri et al [7] examined the efficacy of artificial 

intelligence (AI) in automating the process of emotion 

recognition. It was noted that AI methods perform well under 

controlled conditions, while their performance gets reduced 

in a real-time environment. 

It’s noteworthy that verbal communication constitutes 

only one-third of human interaction, while the remaining 

two-thirds is non-verbal [8]. The recognition of facial 

expressions (FE) can be considered as one of the most 

essential and standard methods of non-verbal 

communication. The detection of facial emotions can be 

applied to many applications. For example, it can enhance 

communication between humans and robots, improve 

marketing science by detecting satisfying emotions, and 

improve distant learning methods. Also, for human-

computer interactions such as clinical treatment and 

behavioral description, facial emotion recognition (FER) is 

important. Readers are referred to a latest review [9] for 

insights regarding emotion models employed, devices used, 

and classification techniques for automated visual emotion 

recognition. Facial emotion's effectiveness and wide 

applications, coupled with the emergence of Industry 4.0, 

make it a promising topic from a theoretical and practical 

perspective. 

Facial emotion recognition is a subfield of social signal 

processing and is applied in a wide variety of areas, 

specifically for human and computer interaction. Various 

FER datasets are commonly used to evaluate facial 

expression recognition methods, including AffectNet, CK+, 

FER2013, and JAFFE. AffectNet and FER2013 are large-

scale, "in-the-wild" datasets collected under uncontrolled 

conditions, whereas CK+ and JAFFE are smaller, controlled 

datasets with more standardized settings [10], [11]. Nathani 

[10] investigated the applicability of CNN transfer learning 

between different facial emotion datasets. He analyzed the 

FER 2013 and AffectNet datasets, designating them as the 

source and target datasets, respectively. His findings 

indicated a reduction in accuracy when using the AffectNet 

dataset, attributing this decline to its greater diversity 

compared to FER 2013. Zaman et al. [11] considered e 

JAFFE, CK+, FER-2013, AffectNet, and custom-developed 

datasets used for driver emotion recognition. Their results 

show that the customized dataset outperforms the considered 

dataset which emphasizes the effect of considering suitable 

datasets in efficiency of machine learning algorithms. Fard 

et al. [12] introduced the concept of soft-labeling which 

considers the occurrence probability of each emotion as its 

new label.  They applied it on AffectNet and the dataset with 

the new labels was called AffectNet+. 

Naga et al. [13] reviewed different methods and datasets 

available for facial emotion recognition (FER). Argaud et al. 

[14] studied methods for detecting facial expressions in 

Parkinson's disease (PD) patients. Slimani et al. [15] applied 

local binary-based methods for recognizing emotion in facial 

expressions. An approach to learning deep features using 

dense convolutional networks for FER was introduced by 

Sang et al. [16]. The FER system developed by Akhand et al. 

[17] used transfer learning and CNN. Rathour et al. [18] 

applied DL to recognize facial emotions from medical 

devices on the Internet of Things (IoT) to improve healthcare 

users. In other examples, Alreshidi and Ullah [19] proposed 

a method of extracting neighbourhood differences from 

features for FER. Canal et al. [20] analyzed classical and 

neural network models for FER. Haghpanah et al. [21] used 

facial landmarks and neural networks for real-time emotion 

recognition. A study by Lakshmi and Ponnusamy [22] used 

the histogram of oriented gradients (HoG) and local binary 

pattern (LBP) methods on detected faces to recognize 

emotion. In another study, Graumann et al. [23] investigated 

the effect of stress on patients with borderline disorders in 

relation to FER. Jain et al. [24] introduced a random walk 

(RW) and active shape model (ASM) for FER. Recently, 

Murugappan and Mutawa [25] introduced several 

geometrical features for FER. They compared the FER 

accuracies of support vector machines (SVM), decision trees 

(DT), K-nearest neighbour (KNN), extreme learning 

machine (ELM), and random forest (RF) methods in 

classifying six basic emotions, including happiness, sadness, 

surprise, fear, disgust, and anger. The authors found that the 

RF classifier outperformed other classification methods. A 

recent study used the VGGNet architecture with no 

additional training data [26] and obtained the FER2013 

dataset's highest single-network classification accuracy of 

73.28%. Dirik et al. considered 19 facial landmarks and a 

Type-2 fuzzy interface system for detecting facial emotions 

[27]. They achieved an accuracy of 86.17% by applying their 

proposed method. Recently, Dirik introduced a hybrid 

ANFIS-PSO method for FER and obtained 99.6% accuracy 

on the MUG dataset [28]. 

Facial emotion recognition has been an active area of 

research for several decades. Early approaches relied on 

hand-crafted features and traditional machine learning 

algorithms such as support vector machines and neural 

networks. More recently, deep learning methods have shown 

promising results in this field. Different types of deep 

learning architectures have been used for FER [29]. 

However, these methods often require large amounts of 

training data and can be computationally expensive. Zhang 
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et al. proposed a Random Quad-Tree based ensemble 

algorithm (R-QT) to address the small sample size problem. 

R-QT enlarged the training data to obtain more diverse base 

classifiers [30]. A double-channel occlusion perceptron 

neural network model was proposed to address the issue of 

low face detection accuracy under complex occlusion 

conditions [31]. To form an occlusion perceptron neural 

network, the area occlusion judgment unit was designed and 

integrated into the VGG16 network. The perceptual neural 

network then extracted the features of unoccluded and less 

occluded regions in facial images. To reduce overfitting 

caused by insufficient training data samples, the transfer 

learning algorithm was used to pretrain parameters of the 

convolution layer. After optimizing the residual network, the 

face features of the occluding perceptron neural network and 

the residual network were weighted and fused. 

Despite numerous studies exploring various classification 

techniques, the effects of dataset size on classification 

accuracy and optimal dataset size determination remain open 

issues [32]. The size of the training dataset is not a critical 

factor in classification problems with homogeneous classes. 

On the other hand, large training datasets are necessary for 

datasets with high variability. For example, Oyedare and 

Park [33] examined the effect of training dataset size on 

transmitter classification problems; they found that when the 

size of a dataset increases, classification accuracy follows a 

monotone increase and convergence sequence. Chu et al. 

[34] studied feature selection in Magnetic Resonance 

Imaging (MRI) and Positron Emission Tomography (PET) 

to detect early Alzheimer's disease. Their results indicated 

that larger datasets lead to more accurate results, although 

some minor fluctuations still exist. The effects of dataset size 

on logistic regression (LR) and neural network (NN) models 

were studied by Baillyet al. [35]. They showed that dataset 

size does not affect the accuracy of LR and deep NN 

methods. Althnian et al. [32] examined the effect of medical 

dataset size on the accuracy of NN, nave Bayes (NB), SVM, 

DT, and RF classifiers. Their results showed that SVM, 

ANN, and RF are appropriate classification methods for 

small-size datasets. Therefore, RF is primarily used for 

classification tasks with small data sets. In this study, we 

investigate RF classifiers for facial emotion recognition. 

Also, we investigate the effect of dataset size on the RF 

classifier. 

In the previous work [25], the RF classifier achieved a 

maximum mean emotion recognition rate of 98.17% 

(number of trees N=300) based on the Inner Circle Area of 

the Triangle (ICAT). Other triangular features, including the 

Area of the Triangle (AoT) and the Inner Circle 

Circumference of the Triangle (ICCT), also yielded 

maximum mean emotion recognition rates of 97.97% 

(N=300) and 97.47% (N=55). In contrast, when all the above 

three features were combined and compared to other 

classifiers such as SVM, PNN, ELM, DT, and KNN, the RF 

classification could achieve a maximum mean classification 

rate of 98.05% (N=620). The number of trees (N) in the RF 

classifier was heuristically varied between 50 and 3000, with 

increments of 10. Even though the RF classifier showed a 

higher mean emotion recognition rate than the SVM, DT, 

KNN, PNN, and ELM classifiers, it required the highest 

computation time. The maximum computation times for 

AoT, ICAT, and ICCT features were 31573 s, 34471 s, and 

35263 s, respectively, on a Windows 10 machine equipped 

with an Intel i7 processor at 2.43GHz and 32 GB of memory. 

A large sample size is one of the main reasons for requiring 

more computation time. Literature indicates that a system’s 

computational power is directly related to the input size in 

ML problems. Therefore, the current work aims to develop 

an intelligent algorithm for the RF classifier to achieve a 

higher emotion recognition rate with a lesser computation 

time. We propose a novel partitioning method algorithm to 

reduce the sample size without losing any information for 

classifying emotions. To the best of our knowledge, almost 

all existing research discusses the need for a larger dataset to 

produce better results. Despite previous studies, this study 

found that reducing the dataset improved accuracy when 

using an RF method. Additionally, this work provides a 

confidence value for each classification result, which is very 

meaningful from a theoretical and practical perspective. This 

work uses 190967 samples and 25 features for FER. Thus, 

the dataset size is large enough to eliminate overfitting issues 

[36], [37], [38], [39]. 

The main contribution of this manuscript is threefold.  

• First, this paper proposes a modified version of RF 

that significantly increases classification accuracy in 

real-time emotion recognition using virtual markers.  

• Second, the effects of dataset length, Lyapunov 

exponents (LE), Correlation Dimension (CD), and 

approximate entropy (AE) on classification accuracy 

are investigated. 

• Thirdly, we compared the performance of the 

proposed PRF with other ML algorithms, 

conventional RF classifiers and with open-source 

FER dataset for benchmarking. 

Overall, real-time FER is an important area of research 

with numerous applications in fields such as psychology, 

marketing, online learning, virtual reality, and security [1], 

[18], [21], [40]. Despite significant progress in this field, 

accurately recognizing real-time emotions from facial 

expressions remains a challenging task due to the need to 

work with limited data and operate quickly [18], [40]. In this 

paper, we propose a novel partitioned random forest method 

for facial emotion recognition. Our approach leverages the 

strengths of random forest algorithms while introducing a 

partitioning scheme that improves the accuracy of emotion 

recognition. 

 
II.  RELATED WORKS 

Random forest (RF) is a machine learning algorithm that uses 

supervised learning methods and can be applied to both 
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classification and regression problems [41]. It operates by 

constructing a multitude of decision trees at training time and 

outputting the class that is the mode of the classes 

(classification) or mean prediction (regression) of the 

individual trees. The algorithm has three main 

hyperparameters: node size, number of trees, and number of 

features sampled. Random forest is an ensemble learning 

method and is considered to have good scalability and 

parallelism to high-dimensional data in classification [42]. The 

random forest method is a powerful machine-learning 

algorithm that has been applied across several industries to 

solve complex problems and make better decisions [43], to 

make predictions and identify patterns in data. 

Random forest algorithms have also been used for facial 

emotion recognition. For example, one study proposed and 

developed a methodology to identify facial emotions using 

facial landmarks and a random forest classifier [37]. Faces 

were first identified in each image using a histogram of 

oriented gradients with a linear classifier, image pyramid, and 

sliding window detection scheme. Then, the random forest 

algorithm was used as the facial expression classifier. Random 

Forest is a type of ensemble learning, where multiple models 

are combined to improve performance. It can be used with 

other machine learning algorithms to improve accuracy and 

reduce overfitting. For example, a study used a combination 

of random forest and convolutional neural network for facial 

expression recognition [42]. Based on the discriminative 

representation of features, a recent study proposed a DNA-

RCNN (Deep Normalized Attention-based Residual 

Convolutional Neural Network) to extract the appropriate 

features [44]. The proposed M-RF (modified-random forest) 

with an empirical loss function was used for classification. The 

learning weights on the data subset reduce loss between the 

predicted value and the ground truth, allowing for more 

precise classification. According to Dapogny et al., FER is a 

spatiotemporal event, and a pairwise conditional random 

forest was introduced to address this issue [45][40]. Gharsalli 

et al. used RF to select features from the FER dataset in their 

study [46].  

Random forests have been successfully applied to a wide 

range of practical problems, but they are not as accurate or 

computationally efficient when applied to large datasets [47], 

[48], and [49]. Shahhosseini and Hu proposed a weight 

optimization method for increasing RF accuracy [50]. In [51], 

the authors have combined the adaboost classifier with RF for 

facial emotion classification and achieved a maximum mean 

accuracy of 92.5% using the CK+ dataset. In a recent study, 

the combination of RF with a Deep Neural Network 

(Convolutional Neural Network (CNN)) was proposed by 

Arnaoud et.al to classify facial expressions. Their proposed 

CNN-RF achieved a maximum mean classification rate of 

86.6% in the CK+ dataset.  In their study, Yin et al. suggested 

reducing computational time by using Spark and parallel RF 

[49]. A disjoint subset of attributes and datasets was taken into 

account by Kulkarni and Sinha to improve RF accuracy [52]. 

The dataset is divided into a number of considered trees based 

on their approach. The elements of each partition that contain 

subsets of features are used to train its related tree. In their 

methods, the elements of each partition are randomly selected, 

and each partition is of the same size. Finding the optimal 

dataset size remains the most challenging step to improving 

RF accuracy. 

To our knowledge, finding the ideal dataset size for 

improving RF accuracy remains an open issue. A partitioned 

random forest (PRF) method is proposed in this paper as a way 

to improve random forest algorithms' accuracy. In these 

methods, the feature space is partitioned into multiple regions 

so the algorithm can learn more complex boundaries for 

decision-making. 

In this paper, partitioned random forest (PRF) methods have 

been proposed to improve the accuracy of random forest 

algorithms. These methods introduce a partitioning scheme 

that divides the feature space into multiple regions, allowing 

the algorithm to learn more complex decision boundaries. 

III. MATERIALS AND METHODS 

A. DATA ACQUISITION 

This work used the FER database developed by Murugappan 

et al. [25] to recognize facial emotions. This study involved 85 

participants mean aged 24.5 years (21 – 32 years) who 

participated voluntarily, with a sex ratio of 55: 30 (male: 

female). All the participants are university undergraduate 

students. The investigation was conducted in a controlled 

environment (room temperature at 25oC) with different 

backgrounds (solid black and advertisements) to acquire facial 

expression data for six emotions (happiness, sadness, anger, 

fear, disgust, and surprise) with a camera on an Apple 

MacBook with a resolution of 2560 × 1600 at 30 frames per 

second (FPS).  

 

FIGURE 1. Emotion elicitation protocol used for facial expression 
recognition. 

  

The participants were presented with an automated 

PowerPoint slide presentation to elicit their emotional 

responses and asked to express each emotion ten times. An 

overview of the emotion elicitation protocol used here to 

acquire six samples of facial expressions is shown in Figure 1. 

The figure also shows the order and label of emotions used in 

this study. A 10s break was given to the participants to avoid 

any feedback from previous emotion elicitation. At the end of 

each trial, the participants will be asked to report the emotion 

they felt during the expression. Eight virtual markers were 
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placed on defined locations (as shown in Figure 2(a)) based on 

a mathematical model of the participant, and the marker 

coordinates were used to formulate seven triangles (as 

indicated in Figure 2(b) and Table 1). 

A more detailed description about the data acquisition 

environment, data acquisition device specification, marker 

placement, formation of seven triangles based on eight 

markers, and triangular features extraction is given in [22]. A 

feature vector of size 190967 × 25 was derived and the features 

were normalized using the average mean reference method. 

Finally, the normalized features were used to analyze the 

performance of the proposed partitioned random forest (PRF) 

method to classify facial emotional expressions.  

FIGURE 2. (a) Placement of virtual markers, (b) triangles used for feature 
extraction. 

TABLE 1. Markers used to formulate the seven triangles used for feature 
extraction. 
 

Triangles Markers 

T1 p_e1, p_e2, and C  

T2 p_e3, p_e4, and C  

T3 p_m1, p_m2, and C 

T4 p_m1, p_m3, and p_m4 

T5 p_m2, p_m3, and p_m4 

T6 p_m1, p_m2, and p_m3 

T7 p_m1, p_m2, and p_m4 

B.  RANDOM FOREST METHOD 

The random forest method is an ensemble data mining 

technique that can be used for both classification and 

regression problems. It is an improved form of the decision 

tree method with desirable features, including the ability to 

handle high-dimensional problems, parallel processing, and 

reduced computational time. Such features have popularized 

RF in the data mining field. For example, Murugappan and 

Mutawa [25] used RF to detect emotions in facial images; Liu 

and Ge [53]  used weighted RF to detect faults in industrial 

processes. A study by Shah et al. [54] showed that RF 

outperformed logistic regression and KNN for text 

classification. 

Consider a p-dimensional dataset with N elements in dataset 

Z and r classes. Figure 3 illustrates the method of RF 

classification. The RF method splits the 𝑝 features into 

𝑘 disjoint subsets randomly and applies the decision trees 

method to each subset. Each tree generates a classification 

result for each input. The final classification result is the class 

that has the highest score. 

 

C. PARTITIONED RANDOM FOREST METHOD 

Despite the great features of RF, it is inefficient for solving 

some practical problems due to its higher computation time 

and memory requirement. Improved versions of RF have been 

developed to overcome these difficulties. For example, Paul et 

al. [41] divided the features set into subsets of important and 

unimportant features, resulting in improved classification 

accuracy. It was also demonstrated that defining the upper 

limit of the total number of trees in the RF classifier could 

improve the classifier's accuracy. As the traditional RF 

classifier suffers from a long run time resulting in slower fault 

identification, Han et al. eliminated trees with low accuracy 

and applied a sub-forest optimization approach to improve the 

RF classifier prediction accuracy in small datasets by 

modifying the hyperparameters [55]. 

 
Algorithm 1: Random Forest method 

Input: dataset Z, number of ensemble c, number of selected features Ni 

for i= 1 to c do 

Randomly sample the training data D with replacement to produce Di 

Create a root node, Ni containing Di 

Call BuildTree(Ni) 

end for 

BuildTree(N): 

if N contains instances of only one class then 

return 

else 

Randomly select x% of the possible splitting features in N 

Select the feature F with the highest information gain to split on 

Create f child nodes of N, N1,..., Nf, where F has f possible values (F1, 

…, Ff ) 

for i= 1 to f do 

Set the contents of 

Nito Di, where Di is all instances in N that match 

Fi 

Call BuildTree(Ni) 

end for 

end if 

FIGURE 3. The pseudocode of the random forest algorithm. 

 

To the best of our knowledge, a handful of studies have 

explored the impact of dataset size on RF accuracy. In one 

study, Rodriguez-Galiano et al. [56] evaluated the effect of 

training dataset size on the classification accuracy for RF 

methods. They found that the RF classification error increased 

by shrinking the training dataset. Racz et al. [57] examined the 

effects of dataset size and train/test split ratio on the 

classification accuracy of Xtreme Gradient Boosting 

(XGBoost), NB, SVM, feedforward neural networks (FNN), 

and PNN. Their results indicated that XGBoost was relatively 

unaffected by the dataset size, whereas all the other methods 

considered were more efficient when the dataset size 

increased. Catal and Diri [58] used hypotheses tests in 
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examining the effect of dataset size on the accuracy of 

software fault prediction. They found that both RF and NB 

classifiers were appropriate for large and small datasets. 

In random forest-based machine learning training, 

partitioned random forests address an important and complex 

challenge by optimizing the dataset size [59]. Small training 

datasets may result in underfitting, while large training 

datasets may result in overfitting. An ECG time series 

classification was performed by Gupta et al. [60] using 20 

samples per class. Shahinfar et al. investigated the impact of 

training dataset size on classification accuracy in project-

specific camera trap models. For each class, 150-500 images 

are sufficient to train deep-learning models [61]. By Goudjil 

et al. [62], the SVM was applied to text classification with 20 

samples for each class. Based on our assessment, the results 

obtained in the above references are only valid for the datasets 

considered in those references and cannot be generalized. In 

the ImageNet-Sketch dataset [63], there are 1000 classes, and 

500 samples in each class are not sufficient to train deep 

learning algorithms, while 100 samples in each class may 

cause overfitting. Therefore, the number of samples per class 

should depend on the number of classes and should not be 

fixed. The number of training samples for each class is 

averaging between 𝑛𝑛2 and 6*𝑛𝑛2 where 𝑛𝑛 is the number of 

classes. Binary classification typically requires four to 24 

samples per class. It may be necessary to use 1000000 to 

6000000 samples for a dataset with 1000 classes depending on 

the correlation between the data in each class. A small number 

of samples is required if there is a high correlation between the 

elements of a class, whereas large samples are required if the 

correlation is low. Across different training dataset sizes, the 

best accuracy is determined by the size of the training dataset 

used as the optimal training dataset. Testing must be 

conducted on a large enough set of data to ensure the results 

are robust. Several famous datasets, including MNIST-10 

[64], which contains 10000 test elements, satisfy the 

condition. For small datasets or datasets in which the test and 

train sets are not distinguished, we suggest considering the 

(1 + 𝑛𝑛)2 to 6*(1 + 𝑛𝑛)2 elements with a 20-80 or 30-70 

test/train ratio split. A model should be run at least three times 

independently to ensure stability where the train and test sets 

are independent without any intersection. 

Our investigations indicate that one can select an optimal 

dataset size for each classification problem to maximize the 

RF classification accuracy. For a large training dataset, it is 

important to consider RF with a deep structure to ensure 

acceptable results. In addition, RF may fall into overfitting 

for large training datasets. For a small training dataset, 

underfitting may occur, leading to inaccurate results. In this 

paper, we aim to show that there exists an optimal training 

dataset that maximizes RF accuracy. In addition, we will 

provide an algorithm for finding the optimal training dataset. 

To design a proper algorithm, it is not appropriate to ignore 

some data as it could potentially have vital information that is 

left out, impacting the accuracy of results outside of the 

sample. Therefore, this work proposes a partitioning method 

to decompose the whole dataset into parts with appropriate 

lengths. The RF method can be implemented on each subset 

in parallel, preventing the need for additional run-time costs. 

Normalized data is used to construct partitioned subsets, and a 

norm-1 partitioning method is used for each element. The 

partitioned random forest (PRF) algorithm is illustrated in 

Figure 4. In Step 1 to Step 3, based on the newly proposed 

subject independent feature (f26), the partitioned random 

forest method tries to split the dataset into some other smaller 

datasets. As it mentioned earlier, the number of elements in 

each partition should be between nn2 to 6*nn2 if dataset is 

large enough or the train and test set are separated already. 

Otherwise, the dataset set should be partitioned into subsets 

with the number of elements between (1+nn)2 and 6*(1+nn)2. 

In this case, 70-30 train/test split ratio is used for facial 

emotion classification. Here, we used subject-independent 

methods to split the training and testing set and ensured that 

the data in both sets does not belong to the same subject.  

To partition the dataset, PRF generates a new feature, which 

is the sum of previous features (Step 2 in Algorithm 2). The 

value of the new feature is used to detect the element of each 

partition. An element belongs to ith partition if the value of the 

new feature lies between i-1 and i (Step 3 in Algorithm 2). If 

the classification accuracy of a partition is not good, we divide 

the partition into some other sub-partitions to improve the 

accuracy. Step 5 in Algorithm 2 describes the relationship 

between the number of elements in sub-partitions and the 

number of features.   

 
Algorithm 2: Partitioned random forest method 

Inputs: Dataset Z, desired accuracy ACC, Confident level (95%)  

Step 1: Normalize Z (Described in the next section) 

Step 2: For each n∊Z, add the feature f26(n) = ∑ fk(n)
25

𝑘=1
 

Step 3: Partition Z to Zi, i=1,…, M subsets such that Min𝑓26(𝑍i)> i-1 

and Max𝑓26(𝑍i)< i. 

Step 4: Apply RF on each Zi and evaluate the accuracy, Ai 

Step 5: for i=1 to M 

 If accuracy Ai<ACC and (the number of elements) >nn then S=0, i=1 

while S<ACC and i<=6 

(a) Partition Ai in some disjoint subsets with i*(1+nn)2 elements, 

(b) evaluate the accuracy at each subset 

(c) S=max(the mean of subsets classification accuracy as the 

classification accuracy of Zi, (Ai)) 

(d) Ai=S 

(e) i+=1 

End while 

End for 

Step 7: Print the average of (Ai) as the accuracy of the model 

FIGURE 4. The pseudocode of partitioned random forest (PRF) algorithm. 

 

D. PERFORMANCE METRICS 

In this work, the performance of the classifiers is measured 

through accuracy, True Positive Rate (TPR), and False 

Positive Rate.  

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 (𝐴𝑐𝑐) =  
TP+TN

TP+FP+FN+TN
   (1) 
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𝑇𝑟𝑢𝑒 𝑃𝑜𝑖𝑠𝑖𝑡𝑖𝑣𝑒 𝑅𝑎𝑡𝑒 (𝑇𝑃𝑅) =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
  (2) 

𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑅𝑎𝑡𝑒 (𝐹𝑃𝑅) =  
𝐹𝑃

𝐹𝑃+𝑇𝑁
  (3) 

  

IV. RESULTS AND DISCUSSION 

There are 190967 samples with 25 features used to classify 

facial images for emotion detection [25]. These features 

include the marker features (p_e1,..., p_e4, p_m1,…, p_m4) 

as well as the triangle features (triangles T1,…,T7).In 

Murugappan and Mutawa [25], six different types of ML 

algorithms (SVM, PNN, KNN, ELM, DT, and RF) were 

applied for facial emotion classification using three triangle 

features, namely Area of Triangle (AoT), Inner Circle Area of 

Triangle (ICAT), and Inner Circle Circumference of Triangle 

(ICCT). They showed that the RF method outperforms other 

methods with an accuracy of approximately 97% using the 

ICAT feature (Figure 5). This comparison should suffice to 

illustrate the benefits of the proposed PRF method. 

 

 

FIGURE 5. The classification accuracy of different methods in facial 

emotion recognition. 

 

Our goal was to find a procedure that accurately classifies 

emotions with at least a 95% confidence level such that the 

mean accuracy is greater than the mean accuracy of the whole 

dataset when using RF. As a rule of thumb, we considered the 

train-test ratio 70-30 with 30 trees. Therefore, the train/test 

split ratio remains consistent between the original dataset and 

the partitioned datasets, ensuring that accuracy comparisons 

are valid. We validated our findings by applying the method 

three times independently on each dataset. Almost identical 

results were obtained, thus demonstrating the stability of the 

PRF method. A 96% classification accuracy was obtained for 

the entire dataset. Accordingly, we should choose a partition 

such that the mean accuracy in each partition is greater than 

96%, and the accuracy of each partition must be at least 95% 

(confidence level specified by the user). Table 2 shows a 

comparison between RF and the first stage of PRF. 

According to Table 2, the PRF method produces satisfactory 

results, except for subsets Z4, Z5, and Z6. In this context, Z 

refers to the whole (or complete) set of data given to the 

classifier, while Z1-Z9 refers to the sub-sets generated by the 

proposed methodology. All subsets achieve an accuracy 

higher than 80% and a maximum of 100% is achieved using 

Z1, Z8, and Z9. In addition to accuracy, the receiver-operating 

characteristic curves (ROC) and the area under the curve 

(AUC) are used to evaluate and compare the efficiency of 

classification algorithms [65]. ROC is the plot of sensitivity 

(TPR) against 100% specificity (FPR) for different threshold 

points. The Area Under the ROC (AUC) is a measure that 

determines the ability of the considered classification 

algorithm for distinguishing the elements between two groups. 

The higher AUC indicates more precise results. A 

classification method with AUC<0.75 is not useful, while that 

with AUC>0.97 is highly accurate [65]. Table 3 gives its AUC 

of whole data and data subsets. Here, we have obtained the 

same value of AUC in recognizing emotions for Z1, Z2, Z3, 

Z4, Z7, and Z8 and different values for complete data, Z5 and 

Z6. Figure 6 shows ROC for the PRF classifier of whole data, 

Z1 (since it's the same for Z2, Z3, Z4, Z7, and Z8), Z5, and 

Z6. These results confirm that PRF is highly accurate for 

recognizing FER, except for Z5, which has AUC<0.97 for 

angry and disgust emotions.

TABLE 2. The classification accuracy of the random forest method for the original dataset and the partitioned random forest subsets. 

Dataset Z Z1 Z2 Z3 Z4 Z5 Z6 Z7 Z8 Z9 

Number of elements 190967 5793 14817 43517 53170 55357 12488 4394 403 843 

Accuracy % 96.35 100.00 99.98 99.96 89.18 80.93 89.81 99.70 100.00 100.00 
 

TABLE 3. AUC of facial emotion recognition using PRF subsets. 

Area under curve (AUC) 

Subset/Emotion Complete Z1 Z2 Z3 Z4 Z5 Z6 Z7 Z8 

Angry 0.99 1.00 1.00 1.00 1.00 0.95 0.97 1.00 1.00 

Disgust 0.99 1.00 1.00 1.00 1.00 0.95 0.98 1.00 1.00 

Fear 0.99 1.00 1.00 1.00 1.00 0.97 0.99 1.00 1.00 

Sadness 0.99 1.00 1.00 1.00 1.00 0.98 0.99 1.00 1.00 

Happiness 0.99 1.00 1.00 1.00 1.00 0.98 0.99 1.00 1.00 

Surprise 0.99 1.00 1.00 1.00 1.00 0.97 0.99 1.00 1.00 
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(a) 

 

 
(b) 

 
(c) 

 

 
(d) 

FIGURE 6. Receiver Operating Characteristics (ROC) curve of the classifiers (a) whole data (b) Z1 subset (c) Z5 subset and (d) Z6 subset. 

TABLE 4. The confusion matrices for Z4, Z5, and Z6. 

Confusion 

matrix for 

Z4 

Emotion Anger Disgust Fear Sadness Happiness Surprise 

Anger 92.20 1.37 3.83 1.88 0.35 0.38 

Disgust 10.20 81.90 2.68 2.96 0.45 1.90 

Fear 6.16 0.78 89.80 2.90 0.07 0.26 

Sadness 4.94 0.82 3.27 90.10 0.12 0.76 

Happiness 4.73 1.95 1.26 1.10 90.60 0.32 

Surprise 4.60 1.75 1.56 1.41 0.19 90.50 

Confusion 

matrix for 

Z5 

Anger 71.80 5.73 6.58 4.27 7.34 4.27 

Disgust 5.78 73.10 3.76 2.48 7.56 7.29 

Fear 4.08 4.36 83.30 2.11 2.66 3.46 

Sadness 3.41 3.29 4.15 85.00 1.67 2.52 

Happiness 2.34 2.63 1.53 1.21 89.70 2.54 

Surprise 3.16 3.74 2.74 0.87 6.80 82.70 

Confusion 

matrix for 

Z6 

Anger 79.80 4.64 0.99 2.65 6.29 5.63 

Disgust 0.20 83.30 3.05 1.02 5.30 7.13 

Fear 0.17 1.88 92.50 0.34 0.69 4.45 

Sadness 0.00 2.18 0.94 92.80 0.00 4.05 

Happiness 0.00 0.65 0.00 0.11 97.60 1.64 

Surprise 0.18 1.50 0.80 0.35 4.24 92.90 
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TABLE 5. The average classification accuracy for the subsets of SZ4, SZ5, and SZ6; where each subset has at most 250 elements. 

Dataset SZ4 

(nn=250) 

SZ5 

(nn=200) 

SZ6 

(nn=250) 

Average ACC% 95.60 95.04 95.13 

Min ACC % 53.33 50 64 

Max ACC % 100 100 100 

Median ACC% 100 98.33 100 

Standard deviation 7.93 8.23 8.66 
*ACC: Accuracy 

Table 4 contains the confusion matrices for these three 

subsets. The confusion matrices of Z5 and Z6 indicate that 

anger emotion recognition is a challenging task. Although the 

confusion matrix of Z4 indicates maximum recognition 

accuracy for anger and minimum recognition accuracy for 

disgust, the second line shows that the low accuracy in disgust 

emotion recognition is caused by the algorithm’s weakness in 

distinguishing between anger and disgust. Therefore, 

identifying anger emotion recognition needs further attention. 

Therefore, Z4, Z5, and Z6 were divided into disjoint 

subsets. A set of disjoint subsets of Z4, Z5, and Z6 is denoted 

by SZ4, SZ5, and SZ6, respectively. Table 5 illustrates the 

statistical properties of the classification accuracy for each of 

the considered subsets. The median accuracy of SZ4, SZ5, and 

SZ6 was greater than 98%, suggesting that more than half of 

the subsets had an accuracy greater than 98%. An accuracy of 

less than 65% indicates that the analyzer needs to concentrate 

on these subsets, investigate any outlier data, or develop more 

samples to improve accuracy. Based on Algorithm 2, the set 

Z4, Z5 and Z6 should be partitioned into subsets with i*(6+1)2, 

i=1, …, 6 elements. For simplicity without loss of generality, 

we consider (6+1)2≅ 50. The calculation concludes i=5, 4 and 

5 for Z4, Z5 and Z6 respectively. The confusion matrices for 

SZ4, SZ5, and SZ6 are shown in Figure 7.

 

(a) SZ4                                          (b) SZ5 

 

 

 

 

 

 

 

 

(c) SZ6 

FIGURE 7.  The augmented confusion matrices for (a) SZ4, (b) SZ5 and (c) SZ6. 
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The results in Table 5 and Figure 7 prove that PRF 

outperforms existing methods for FER. The approximate 

entropy, correlation dimension, and Lyapunov exponent were 

calculated to investigate the underlying theoretical reasons for 

this improvement. To reduce complexity, we used MATLAB 

software and considered default values as initial values for 

these parameters’ computation, i.e., in all computations, the 

embedding dimension and time lag were taken as 2 and 1, 

respectively. The expansion steps were taken in the range (1,5) 

for computing the Lyapunov exponent, and 10 points were 

considered when calculating the correlation dimension. The 

results for these mathematical properties are presented in 

Table 6.

TABLE 6. Mathematical properties of the original and partitioned datasets. 

Dataset 
Approxima

te Entropy 

Correlation 

Dimension 

Lyapunov 

Exponent 

Number of 

Elements 

Accuracy 

% 

Z 1.538506 7.627926 -0.142 190962 96.35 

Z1 1.150326 6.507724 0.301443 5973 100.00 

Z2 1.284794 6.790684 0.336175 14817 99.98 

Z3 1.466413 7.066216 0.334643 43517 99.96 

Z4 1.367146 7.126334 -0.13103 53170 90.73 

Z5 1.371762 7.417851 -0.12988 55357 83.57 

Z6 1.101974 6.604944 0.323424 12488 96.35 

Z7 1.084597 6.228043 0.324628 4394 99.70 

Z8 1.18898 4.471484 0.140159 403 100.00 

Z9 0.540082 5.847646 0.295327 843 100.00 
 

FIGURE 8. (a) Lyapunov Exponent (LE) (b) Correlation Dimension (CD) (c) Approximate Entropy (AE). 

 

(a) (b)

(c)
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The results indicate that datasets with negative Lyapunov 

exponents exhibit the lowest classification accuracy. As a 

result, datasets with chaotic behaviors are more suitable for 

classification. Heidari and Velichko recently introduced a new 

classification method, LogNNet, by applying a chaotic matrix 

to input data [66]. Their results confirm the current 

understanding of the relationship between classification 

accuracy and the Lyapunov exponents. However, the 

Lyapunov exponent is not sufficient to determine RF 

classification accuracy. Consider the datasets Z6 and Z9, 

which have positive Lyapunov exponents. While the 

Lyapunov exponent Z6 is greater than the Lyapunov exponent 

Z9, the classification accuracy in dataset Z6 is smaller than 

that in dataset Z9. Similar problems are observed with datasets 

Z and Z5. The Lyapunov exponent of Z is smaller than that of 

Z5, while the classification accuracy of dataset Z5 is lower 

than that of Z. 

According to our analysis, the number of elements is also a 

significant factor that affects classification accuracy. It is 

noteworthy that although datasets Z6 and Z7 have almost the 

same positive Lyapunov exponent, their classification 

accuracy does not match. This mismatch is due to the 

differences in the number of elements in the two datasets. 

Figure 8(a) shows a plot of accuracy concerning the number 

of elements and the Lyapunov exponents. Comparing 

classification accuracy between two distinct datasets with the 

same Lyapunov exponents reveals that the smaller datasets 

possess significantly higher classification accuracy. Similarly, 

comparisons were made regarding the accuracy of 

classification with dataset size and the properties of the 

dataset, including correlation dimension (Figure 8(b)) and 

approximate entropy (Figure 8(c)). The results suggest that a 

dataset with a smaller correlation dimension and approximate 

entropy values generates more accurate classification results 

in emotion recognition. 

To illustrate the robustness and generality of the proposed 

method, we also considered the 428-landmark 3D facial 

images, introduced in [67]. The dataset contains 429 images 

for detecting happiness, surprise, sadness, and anger emotions. 

The feature space contains 468 three-dimensional landmarks. 

Therefore, the dataset contains 3*468 features, which are 

much larger than the number of elements in the dataset. Based 

on Algorithm 2, the dataset should be partitioned into subsets 

with the number of elements between 42 (= 16) and 6*42 (= 64) 

to achieve maximum accuracy. By following Algorithm 2, 

data are normalized, and feature (4) is added. The data is sorted 

by the feature f1405 in ascending order. 

 

𝑓1405 = ∑ 𝑓𝑖
144
𝑖=1      (4) 

 

Next, the sorted dataset is partitioned into subsets with 16*k 

elements, in which k could be 1, …, 6 to obtain maximum 

accuracy. We started with k=1 and increased it in steps to 

achieve the desired accuracy. The computation was repeated 

three times independently, in which 80% of the data was used 

for training and 20% for testing the accuracy. The mean of 

accuracy in different runs was considered as the accuracy of 

the method. The results for k=1,…, 4 are shown in Table 7, 

which indicates partitioning with 2*16 elements could 

accurately classify anger, happiness, sadness, and surprise 

emotions. Although the partition with 32 elements could 

classify the emotions exactly, we continued Algorithm 2 for 

investigating the trends for classification accuracy. The 

partitions with 32 or 48 elements could classify the emotions 

exactly, while the classification accuracy is decreased for 

nn=64 (see Table 7). This phenomenon confirms our claim 

about the existence of an optimal partition for the random 

forest classifier. 

TABLE 7. Mean accuracies for different partition lengths and number of 
partitions for the 468-landmark 3D facial image dataset. 

Partition 

length 

Number of 

partitions 

Mean accuracy 

(%) 

427 1 97.70 

16 26 97.82 

32 13 100 

48 8 100 

64 6 98.72 

 

The values of approximate entropy, correlation dimension, 

and Lyapunov exponents versus number of partitions are 

shown in Figures 9, 10, and 11, respectively. From Figure 9, it 

is seen that for nn=32 and nn=48, at which highest mean 

accuracy was achieved, have lower approximate entropy 

values than for nn=16 (except for the negative values for 

nn=16).  

FIGURE 9. Approximate entropy versus number of partitions for the 468-
landmark 3D facial image dataset. 

 

From Figures 9 and 11, it can be observed that negative 

Lyapunov exponent or negative approximate entropy values 

cause inaccuracy in the RF method, while lower approximate 

entropy or higher Lyapunov exponent values lead to higher 

accuracy. From Figure 10, it is seen that RF generates more 
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accurate results on datasets with higher correlation dimension 

values. These results are important for two reasons. First, it 

proves the robustness of the proposed method in small 

datasets, where neural networks and deep learning methods 

fail. Second, existing facial emotion recognition approaches 

have problems and give inaccuracies for distinguishing 

between anger and sadness or happiness and surprise. 

However, the proposed method could distinguish between 

these emotions accurately.  

FIGURE 10. Correlational dimension versus number of partitions for the 
468-landmark 3D facial image dataset. 

FIGURE 11. Lyapunov exponent versus number of partitions for the 468-
landmark 3D facial image dataset. 

 

Compared to deep learning (DL) algorithms, the proposed 

methodology is computationally efficient (faster and requires 

limited memory), does not require larger data sets or higher 

computational power to identify facial emotions. PRF 

classifiers are highly accurate in predicting emotions, but the 

proposed approach has a few limitations.  

• One limitation is that the present experimental 

framework utilized a database [25] developed using 

virtual markers in real-time emotion recognition tasks. 

Most facial emotion recognition databases in the 

literature consist of static facial images [27], [28] or 

video-based emotion recognition. To the best of our 

knowledge, currently, there are no databases for real-

time facial emotion recognition using virtual markers. 

Therefore, a comparison between the efficiency of the 

proposed method on different datasets was not made. 

To show the efficiency and robustness of the proposed 

method, a real-time 3D FER dataset [67] was also 

considered. However, benchmarking the results of this 

experiment with other open-source databases would be 

extremely challenging.  

• Another limitation is that this study investigated the 

chaotic behavior of facial features by using three 

nonlinear measures: LE, AE, and CD. Other nonlinear 

features such as Fractal Dimension (FD), Recurrence 

Quantification Analysis (RQA), and others could be 

analyzed to assess the PRF classifier's performance in 

recognizing facial emotions with the three proposed 

features. 

In light of this, future work should focus on the following: 

(a) extending PRF to other practical datasets, (b) identifying 

the most suitable algorithm for data partitioning across a 

variety of datasets, (c) developing a theoretical approach to 

determinant’s optimal value, and (d) analyzing statistical 

characteristics of classification accuracy. 

 

V. CONCLUSION 

The rapid development of digital technology and human-

computer interaction has made facial emotion recognition an 

intriguing topic from a theoretical and practical point of 

view. This paper developed a novel variant of the random 

forest method, the partitioned random forest method, to 

improve facial emotion recognition. The main idea is to 

divide large datasets into smaller disjoint datasets according 

to a predetermined order, achieved by applying the 

classification method to each dataset. Although existing 

classification accuracies are promising, over 90% of subsets 

will significantly improve classification accuracy using the 

presented method. Results reveal that Lyapunov exponents 

and the number of elements are significant factors in 

classification accuracy. Subsets with large positive 

Lyapunov exponents and smaller elements demonstrated 

higher classification accuracy, indicating that an increased 

number of samples does not necessarily mean greater 

accuracy in random forest classification. It is also evident 

that using the norm-1 of each element for partitioning leads 

to a significant increase in classification accuracy. Future 

work could involve applying the proposed method to feature 

selection in Random Forest (RF).  
 
ACKNOWLEDGEMENT 

The open access publication cost is supported by Qatar 

National Library.  

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2025.3560362

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



 

13 
 

COMPETING INTERESTS  

The authors declare no competing interests.  

DATA AVAILABILITY 

Data is available by request to the corresponding author MM. 

REFERENCES 
[1] A. Hassouneh, A. M. Mutawa, and M. Murugappan, 

“Development of a Real-Time Emotion Recognition 

System Using Facial Expressions and EEG based on 

machine learning and deep neural network methods,” 

Informatics in Medicine Unlocked, vol. 20, p. 100372, 

2020, doi: 10.1016/j.imu.2020.100372. 

[2] E. Batbaatar, M. Li, and K. H. Ryu, “Semantic-

Emotion Neural Network for Emotion Recognition 

From Text,” IEEE Access, vol. 7, pp. 111866–111878, 

2019, doi: 10.1109/ACCESS.2019.2934529. 

[3] B. Schuller, G. Rigoll, and M. Lang, “Hidden Markov 

model-based speech emotion recognition,” in 2003 

IEEE International Conference on Acoustics, Speech, 

and Signal Processing, 2003. Proceedings. (ICASSP 

’03)., Hong Kong, China: IEEE, 2003, p. II-1–4. doi: 

10.1109/ICASSP.2003.1202279. 

[4] R. A. Khalil, E. Jones, M. I. Babar, T. Jan, M. H. Zafar, 

and T. Alhussain, “Speech Emotion Recognition 

Using Deep Learning Techniques: A Review,” IEEE 

Access, vol. 7, pp. 117327–117345, 2019, doi: 

10.1109/ACCESS.2019.2936124. 

[5] A. Koduru, H. B. Valiveti, and A. K. Budati, “Feature 

extraction algorithms to improve the speech emotion 

recognition rate,” Int J Speech Technol, vol. 23, no. 1, 

pp. 45–55, Mar. 2020, doi: 10.1007/s10772-020-

09672-4. 

[6] S. Zepf, J. Hernandez, A. Schmitt, W. Minker, and R. 

W. Picard, “Driver Emotion Recognition for 

Intelligent Vehicles: A Survey,” ACM Comput. Surv., 

vol. 53, no. 3, pp. 1–30, May 2021, doi: 

10.1145/3388790. 

[7] M. Maithri et al., “Automated emotion recognition: 

Current trends and future perspectives,” Computer 

Methods and Programs in Biomedicine, vol. 215, p. 

106646, Mar. 2022, doi: 

10.1016/j.cmpb.2022.106646. 

[8] B. Ko, “A Brief Review of Facial Emotion 

Recognition Based on Visual Information,” Sensors, 

vol. 18, no. 2, p. 401, Jan. 2018, doi: 

10.3390/s18020401. 

[9] S. C. Leong, Y. M. Tang, C. H. Lai, and C. K. M. Lee, 

“Facial expression and body gesture emotion 

recognition: A systematic review on the use of visual 

data in affective computing,” Computer Science 

Review, vol. 48, p. 100545, May 2023, doi: 

10.1016/j.cosrev.2023.100545. 

[10] S. Nathani, “A Comparative Study of Transfer 

Learning for Emotion Recognition using CNN and 

Modified VGG16 Models,” Jul. 19, 2024, arXiv: 

arXiv:2407.14576. doi: 10.48550/arXiv.2407.14576. 

[11] K. Zaman et al., “A novel driver emotion recognition 

system based on deep ensemble classification,” 

Complex Intell. Syst., vol. 9, no. 6, pp. 6927–6952, 

Dec. 2023, doi: 10.1007/s40747-023-01100-9. 

[12] A. P. Fard, M. M. Hosseini, T. D. Sweeny, and M. H. 

Mahoor, “AffectNet+: A Database for Enhancing 

Facial Expression Recognition with Soft-Labels,” Oct. 

29, 2024, arXiv: arXiv:2410.22506. doi: 

10.48550/arXiv.2410.22506. 

[13] P. Naga, S. D. Marri, and R. Borreo, “Facial emotion 

recognition methods, datasets and technologies: A 

literature survey,” Materials Today: Proceedings, vol. 

80, pp. 2824–2828, 2023, doi: 

10.1016/j.matpr.2021.07.046. 

[14] S. Argaud, M. Vérin, P. Sauleau, and D. Grandjean, 

“Facial emotion recognition in Parkinson’s disease: A 

review and new hypotheses,” Movement Disorders, 

vol. 33, no. 4, pp. 554–567, Apr. 2018, doi: 

10.1002/mds.27305. 

[15] K. Slimani, M. Kas, Y. El Merabet, R. Messoussi, and 

Y. Ruichek, “Facial emotion recognition: A 

comparative analysis using 22 LBP variants,” in 

Proceedings of the 2nd Mediterranean Conference on 

Pattern Recognition and Artificial Intelligence, Rabat 

Morocco: ACM, Mar. 2018, pp. 88–94. doi: 

10.1145/3177148.3180092. 

[16] D. V. Sang, L. T. B. Cuong, and P. T. Ha, 

“Discriminative Deep Feature Learning for Facial 

Emotion Recognition,” in 2018 1st International 

Conference on Multimedia Analysis and Pattern 

Recognition (MAPR), Ho Chi Minh City: IEEE, Apr. 

2018, pp. 1–6. doi: 10.1109/MAPR.2018.8337514. 

[17] M. A. H. Akhand, S. Roy, N. Siddique, M. A. S. 

Kamal, and T. Shimamura, “Facial Emotion 

Recognition Using Transfer Learning in the Deep 

CNN,” Electronics, vol. 10, no. 9, p. 1036, Apr. 2021, 

doi: 10.3390/electronics10091036. 

[18] N. Rathour et al., “IoMT Based Facial Emotion 

Recognition System Using Deep Convolution Neural 

Networks,” Electronics, vol. 10, no. 11, p. 1289, May 

2021, doi: 10.3390/electronics10111289. 

[19] A. Alreshidi and M. Ullah, “Facial Emotion 

Recognition Using Hybrid Features,” Informatics, vol. 

7, no. 1, p. 6, Feb. 2020, doi: 

10.3390/informatics7010006. 

[20] F. Z. Canal et al., “A survey on facial emotion 

recognition techniques: A state-of-the-art literature 

review,” Information Sciences, vol. 582, pp. 593–617, 

Jan. 2022, doi: 10.1016/j.ins.2021.10.005. 

[21] M. A. Haghpanah, E. Saeedizade, M. T. Masouleh, 

and A. Kalhor, “Real-Time Facial Expression 

Recognition using Facial Landmarks and Neural 

Networks,” in 2022 International Conference on 

Machine Vision and Image Processing (MVIP), 

Ahvaz, Iran, Islamic Republic of: IEEE, Feb. 2022, pp. 

1–7. doi: 10.1109/MVIP53647.2022.9738754. 

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2025.3560362

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



 

14 
 

[22] D. Lakshmi and R. Ponnusamy, “Facial emotion 

recognition using modified HOG and LBP features 

with deep stacked autoencoders,” Microprocessors 

and Microsystems, vol. 82, p. 103834, Apr. 2021, doi: 

10.1016/j.micpro.2021.103834. 

[23] L. Graumann et al., “Facial emotion recognition in 

borderline patients is unaffected by acute psychosocial 

stress,” Journal of Psychiatric Research, vol. 132, pp. 

131–135, Jan. 2021, doi: 

10.1016/j.jpsychires.2020.10.007. 

[24] N. Jain, S. Kumar, A. Kumar, P. Shamsolmoali, and 

M. Zareapoor, “Hybrid deep neural networks for face 

emotion recognition,” Pattern Recognition Letters, 

vol. 115, pp. 101–106, Nov. 2018, doi: 

10.1016/j.patrec.2018.04.010. 

[25] M. Murugappan and A. Mutawa, “Facial geometric 

feature extraction based emotional expression 

classification using machine learning algorithms,” 

PLoS ONE, vol. 16, no. 2, p. e0247131, Feb. 2021, 

doi: 10.1371/journal.pone.0247131. 

[26] Y. Khaireddin and Z. Chen, “Facial Emotion 

Recognition: State of the Art Performance on 

FER2013,” May 08, 2021, arXiv: arXiv:2105.03588. 

Accessed: Mar. 21, 2024. [Online]. Available: 

http://arxiv.org/abs/2105.03588 

[27] M. Dirik, O. Castillo, and A. F. Kocamaz, “Emotion 

Recognition Based on Interval Type-2 Fuzzy Logic 

from Facial Expression,” Journal of Soft Computing 

and Artificial Intelligence, vol. 1, pp. 1–17, 2020. 

[28] M. Dirik, “Optimized Anfis Model with Hybrid 

Metaheuristic Algorithms for Facial Emotion 

Recognition,” Int. J. Fuzzy Syst., vol. 25, no. 2, pp. 

485–496, Mar. 2023, doi: 10.1007/s40815-022-

01402-z. 

[29] W. Mellouk and W. Handouzi, “Facial emotion 

recognition using deep learning: review and insights,” 

Procedia Computer Science, vol. 175, pp. 689–694, 

2020, doi: 10.1016/j.procs.2020.07.101. 

[30] Cuicui Zhang, T. Matsuyama, and Xuefeng Liang, 

“Small Sample Size Face Recognition using Random 

Quad-Tree based Ensemble Algorithm,” in 5th 

International Conference on Imaging for Crime 

Detection and Prevention (ICDP 2013), London, UK: 

Institution of Engineering and Technology, 2013, p. 

2.02-2.02. doi: 10.1049/ic.2013.0270. 

[31] Y. Li, “Face Detection Algorithm Based on Double-

Channel CNN with Occlusion Perceptron,” 

Computational Intelligence and Neuroscience, vol. 

2022, pp. 1–10, Jan. 2022, doi: 

10.1155/2022/3705581. 

[32] A. Althnian et al., “Impact of Dataset Size on 

Classification Performance: An Empirical Evaluation 

in the Medical Domain,” Applied Sciences, vol. 11, 

no. 2, p. 796, Jan. 2021, doi: 10.3390/app11020796. 

[33] T. Oyedare and J.-M. J. Park, “Estimating the 

Required Training Dataset Size for Transmitter 

Classification Using Deep Learning,” in 2019 IEEE 

International Symposium on Dynamic Spectrum 

Access Networks (DySPAN), Newark, NJ, USA: 

IEEE, Nov. 2019, pp. 1–10. doi: 

10.1109/DySPAN.2019.8935823. 

[34] C. Chu, A.-L. Hsu, K.-H. Chou, P. Bandettini, and C. 

Lin, “Does feature selection improve classification 

accuracy? Impact of sample size and feature selection 

on classification using anatomical magnetic resonance 

images,” NeuroImage, vol. 60, no. 1, pp. 59–70, Mar. 

2012, doi: 10.1016/j.neuroimage.2011.11.066. 

[35] A. Bailly et al., “Effects of dataset size and 

interactions on the prediction performance of logistic 

regression and deep learning models,” Computer 

Methods and Programs in Biomedicine, vol. 213, p. 

106504, Jan. 2022, doi: 10.1016/j.cmpb.2021.106504. 

[36] H. Gong, Y. Sun, X. Shu, and B. Huang, “Use of 

random forests regression for predicting IRI of asphalt 

pavements,” Construction and Building Materials, vol. 

189, pp. 890–897, Nov. 2018, doi: 

10.1016/j.conbuildmat.2018.09.017. 

[37] M. I. N. P. Munasinghe, “Facial Expression 

Recognition Using Facial Landmarks and Random 

Forest Classifier,” in 2018 IEEE/ACIS 17th 

International Conference on Computer and 

Information Science (ICIS), Singapore: IEEE, Jun. 

2018, pp. 423–427. doi: 10.1109/ICIS.2018.8466510. 

[38] K. Tanaka, T. Kinkyo, and S. Hamori, “Random 

forests-based early warning system for bank failures,” 

Economics Letters, vol. 148, pp. 118–121, Nov. 2016, 

doi: 10.1016/j.econlet.2016.09.024. 

[39] S. Wang, C. Aggarwal, and H. Liu, “Random-Forest-

Inspired Neural Networks,” ACM Trans. Intell. Syst. 

Technol., vol. 9, no. 6, pp. 1–25, Nov. 2018, doi: 

10.1145/3232230. 

[40] M. Jeong and B. C. Ko, “Driver’s Facial Expression 

Recognition in Real-Time for Safe Driving,” Sensors, 

vol. 18, no. 12, p. 4270, Dec. 2018, doi: 

10.3390/s18124270. 

[41] O. Pauly, “Random Forests for Medical 

Applications,” TECHNISCHE UNIVERSITÄT 

MÜNCHEN, 2012. 

[42] Y. Wang, Y. Li, Y. Song, and X. Rong, “Facial 

Expression Recognition Based on Random Forest and 

Convolutional Neural Network,” Information, vol. 10, 

no. 12, p. 375, Nov. 2019, doi: 10.3390/info10120375. 

[43] A. Ziegler and I. R. König, “Mining data with random 

forests: current options for real‐world applications,” 

WIREs Data Min & Knowl, vol. 4, no. 1, pp. 55–63, 

Jan. 2014, doi: 10.1002/widm.1114. 

[44] S. Alsubai, “Emotion Detection Using Deep 

Normalized Attention-Based Neural Network and 

Modified-Random Forest,” Sensors, vol. 23, no. 1, p. 

225, Dec. 2022, doi: 10.3390/s23010225. 

[45] A. Dapogny and K. Bailly, “Investigating Deep Neural 

Forests for Facial Expression Recognition,” in 2018 

13th IEEE International Conference on Automatic 

Face & Gesture Recognition (FG 2018), Xi’an: IEEE, 

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2025.3560362

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



 

15 
 

May 2018, pp. 629–633. doi: 

10.1109/FG.2018.00099. 

[46] S. Gharsalli, B. Emile, H. Laurent, X. Desquesnes, and 

D. Vivet, “Random forest-based feature selection for 

emotion recognition,” in 2015 International 

Conference on Image Processing Theory, Tools and 

Applications (IPTA), Orleans, France: IEEE, Nov. 

2015, pp. 268–272. doi: 10.1109/IPTA.2015.7367144. 

[47] Z. Sun, G. Wang, P. Li, H. Wang, M. Zhang, and X. 

Liang, “An improved random forest based on the 

classification accuracy and correlation measurement 

of decision trees,” Expert Systems with Applications, 

vol. 237, p. 121549, Mar. 2024, doi: 

10.1016/j.eswa.2023.121549. 

[48] J. Chen et al., “A Parallel Random Forest Algorithm 

for Big Data in a Spark Cloud Computing 

Environment,” IEEE Trans. Parallel Distrib. Syst., vol. 

28, no. 4, pp. 919–933, Apr. 2017, doi: 

10.1109/TPDS.2016.2603511. 

[49] L. Yin, K. Chen, Z. Jiang, and X. Xu, “A Fast Parallel 

Random Forest Algorithm Based on Spark,” Applied 

Sciences, vol. 13, no. 10, p. 6121, May 2023, doi: 

10.3390/app13106121. 

[50] M. Shahhosseini and G. Hu, “Improved Weighted 

Random Forest for Classification Problems,” in 

Progress in Intelligent Decision Science, vol. 1301, T. 

Allahviranloo, S. Salahshour, and N. Arica, Eds., in 

Advances in Intelligent Systems and Computing, vol. 

1301. , Cham: Springer International Publishing, 

2021, pp. 42–56. doi: 10.1007/978-3-030-66501-2_4. 

[51] K. Gubbala, M. N. Kumar, and A. M. Sowjanya, 

“AdaBoost based Random forest model for Emotion 

classification of Facial images,” MethodsX, vol. 11, p. 

102422, Dec. 2023, doi: 10.1016/j.mex.2023.102422. 

[52] V. Y. Kulkarni and P. K. Sinha, “Efficient Learning of 

Random Forest Classifier using Disjoint Partitioning 

Approach,” presented at the Proceedings of the World 

Congress on Engineering, 2013. 

[53] Y. Liu and Z. Ge, “Weighted random forests for fault 

classification in industrial processes with hierarchical 

clustering model selection,” Journal of Process 

Control, vol. 64, pp. 62–70, Apr. 2018, doi: 

10.1016/j.jprocont.2018.02.005. 

[54] K. Shah, H. Patel, D. Sanghvi, and M. Shah, “A 

Comparative Analysis of Logistic Regression, 

Random Forest and KNN Models for the Text 

Classification,” Augment Hum Res, vol. 5, no. 1, p. 

12, Dec. 2020, doi: 10.1007/s41133-020-00032-0. 

[55] S. Han, B. D. Williamson, and Y. Fong, “Improving 

random forest predictions in small datasets from two-

phase sampling designs,” BMC Med Inform Decis 

Mak, vol. 21, no. 1, p. 322, Dec. 2021, doi: 

10.1186/s12911-021-01688-3. 

[56] V. F. Rodriguez-Galiano, B. Ghimire, J. Rogan, M. 

Chica-Olmo, and J. P. Rigol-Sanchez, “An assessment 

of the effectiveness of a random forest classifier for 

land-cover classification,” ISPRS Journal of 

Photogrammetry and Remote Sensing, vol. 67, pp. 93–

104, Jan. 2012, doi: 10.1016/j.isprsjprs.2011.11.002. 

[57] A. Rácz, D. Bajusz, and K. Héberger, “Effect of 

Dataset Size and Train/Test Split Ratios in 

QSAR/QSPR Multiclass Classification,” Molecules, 

vol. 26, no. 4, p. 1111, Feb. 2021, doi: 

10.3390/molecules26041111. 

[58] C. Catal and B. Diri, “Investigating the effect of 

dataset size, metrics sets, and feature selection 

techniques on software fault prediction problem,” 

Information Sciences, vol. 179, no. 8, pp. 1040–1058, 

Mar. 2009, doi: 10.1016/j.ins.2008.12.001. 

[59] F. E. Nowruzi, P. Kapoor, D. Kolhatkar, F. A. 

Hassanat, R. Laganiere, and J. Rebut, “How much real 

data do we actually need: Analyzing object detection 

performance using synthetic and real data,” Jul. 16, 

2019, arXiv: arXiv:1907.07061. Accessed: Mar. 21, 

2024. [Online]. Available: 

http://arxiv.org/abs/1907.07061 

[60] P. Gupta, S. Bhaskarpandit, and M. Gupta, “Similarity 

Learning based Few Shot Learning for ECG Time 

Series Classification,” in 2021 Digital Image 

Computing: Techniques and Applications (DICTA), 

Gold Coast, Australia: IEEE, Nov. 2021, pp. 1–8. doi: 

10.1109/DICTA52665.2021.9647357. 

[61] S. Shahinfar, P. Meek, and G. Falzon, “‘How many 

images do I need?’ Understanding how sample size 

per class affects deep learning model performance 

metrics for balanced designs in autonomous wildlife 

monitoring,” Ecological Informatics, vol. 57, p. 

101085, May 2020, doi: 

10.1016/j.ecoinf.2020.101085. 

[62] M. Goudjil, M. Koudil, M. Bedda, and N. Ghoggali, 

“A Novel Active Learning Method Using SVM for 

Text Classification,” Int. J. Autom. Comput., vol. 15, 

no. 3, pp. 290–298, Jun. 2018, doi: 10.1007/s11633-

015-0912-z. 

[63] H. Wang, S. Ge, Z. Lipton, and E. P. Xing, “Learning 

Robust Global Representations by Penalizing Local 

Predictive Power,” in Advances in Neural Information 

Processing Systems, 2019. 

[64] A. Velichko, M. Belyaev, Y. Izotov, M. Murugappan, 

and H. Heidari, “Neural Network Entropy (NNetEn): 

EEG Signals and Chaotic Time Series Separation by 

Entropy Features, Python Package for NNetEn 

Calculation”. 

[65] J. Fan, S. Upadhye, and A. Worster, “Understanding 

receiver operating characteristic (ROC) curves,” 

CJEM, vol. 8, no. 01, pp. 19–20, Jan. 2006, doi: 

10.1017/S1481803500013336. 

[66] H. Heidari and A. A. Velichko, “An improved 

LogNNet classifier for IoT applications,” J. Phys.: 

Conf. Ser., vol. 2094, no. 3, p. 032015, Nov. 2021, 

doi: 10.1088/1742-6596/2094/3/032015. 

[67] M. J. Ashraf, “Emotion_Recognition_Mediapipe 

Public.” 

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2025.3560362

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



 

16 
 

https://github.com/JafirDon/Emotion_Recognition_

Mediapipe, 2021. 

 

HANIF HEIDARI is an assistant 

professor in the Department of Applied 

Mathematics, Damghan University, 

Damghan, Iran. His research interests are 

quantum machine learning, time series 

classification and prediction, grey system 

theory, and theoretical aspects of 

metaheuristic optimization methods. With 

over twelve years of experience, his foundations have been 

published in high-quality interdisciplinary scientific 

journals. He has also given more than 20 talks at 

international conferences and supervised 22 graduate 

students in applied mathematics and computer science. Hanif 

enjoys international scientific collaboration for solving 

complex practical problems using mathematical methods. 

 

M. MURUGAPPAN has been working 

at Kuwait College of Science and 

Technology (KCST), Kuwait as a Full 

Professor in Electronics, Department of 

Electronics and Communication 

Engineering since 2016. He is also 

serving as a Visiting Professor at the 

School of Engineering at Vels Institute 

of Science, Technology, and Advanced Studies in India and 

an International Visiting Fellow at the Center of Excellence 

in Unmanned Aerial Systems at Universiti Malaysia Perlis in 

Malaysia. In 2006, he graduated from Anna University, India 

with an M.E. degree in Applied Electronics. He received his 

Ph.D. from Universiti Malaysia Perlis, Malaysia in 2010 for 

his contribution to the field of Mechatronic Engineering. 

Between 2010 and 2016, he worked as a Senior Lecturer at 

the School of Mechatronics Engineering, Universiti 

Malaysia Perlis, Malaysia. In a study by Stanford University, 

he was recently ranked among the top 2 percent of scientists 

working in experimental psychology and artificial 

intelligence for three consecutive years (2020-2022). To 

date, his Google Scholar citations reach 8850+ with an H-

Index of 47. His research into affective computing has 

received more than 750K in grants from Malaysia, Kuwait, 

and the UK. His publications include more than 170 peer-

reviewed conference proceedings papers, journal articles, 

and book chapters. Several of his journal articles have been 

recognized as best papers, best papers of the fiscal year, etc. 

Prof. Murugappan is a member of the editorial boards of 

PlosOne, Human Centric Information Sciences, PEERJ 

Computer Science, Journal of Medical Imaging and Health 

Informatics, and International Journal of Cognitive 

Informatics. In addition to being the Chair of the IEEE 

Kuwait Section's Educational Activities Committee, Kuwait. 

He is interested in affective computing, affective 

neuroscience, neuromarketing, and medical image 

processing. 

 

JAVEED SHAIKH-MOHAMMED 

received the B.Tech. degree in electrical 

and electronics engineering from Sri 

Venkateswara University, India, and the 

M.S. degree in electrical engineering 

and the Ph.D. degree in engineering 

from Louisiana Tech University, USA. 

He is currently an Associate Professor 

in the Biomedical Technology Department at Prince Sattam 

bin Abdulaziz University, Saudi Arabia. He previously 

worked at IIT-M (India), UniSZA (Malaysia), VIT (India), 

KSU (Saudi Arabia), UW-Madison (USA), and UIC-

Chicago (USA). His research interests include BioMEMS, 

nanotechnology, microfluidics, assistive technologies, and 

artificial intelligence. 

 

MUHAMMAD E. H. CHOWDHURY 

received his Ph.D. degree from the 

University of Nottingham, U.K., in 

2014. He worked as a Postdoctoral 

Research Fellow at the Sir Peter 

Mansfield Imaging Centre, University 

of Nottingham. He is currently working 

as an Assistant Professor with the Department of Electrical 

Engineering, at Qatar University. He has filed several patents 

and published more than 180 peer-reviewed journal articles, 

30+ conference papers, and several book chapters. His 

current research interests include biomedical 

instrumentation, signal processing, wearable sensors, 

medical image analysis, machine learning and computer 

vision, embedded system design, and simultaneous 

EEG/fMRI. He is currently running NPRP, UREP, and 

HSREP grants from the Qatar National Research Fund 

(QNRF) and internal grants (IRCC and HIG) from Qatar 

University along with academic projects from HBKU and 

HMC. He is a Senior Member of IEEE, and a member of 

British Radiology, ISMRM, and HBM. He serves as a Guest 

Editor for Polymers, an Associate Editor for IEEE Access, 

and a Topic Editor and Review Editor for Frontiers in 

Neuroscience. He has recently won the COVID-19 Dataset 

Award, AHS Award from HMC, and National AI 

Competition awards for contributing to the fight against 

COVID-19. His team is the gold medalist at the 13th 

International Invention Fair in the Middle East (IIFME). He 

has been listed among the Top 2% of scientists in the World 

List, published by Stanford University .

 

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2025.3560362

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/


