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Abstract: Irrigation management plays a crucial role in sustainable agriculture by optimizing water usage and 

minimizing resource wastage, especially in the face of global challenges like water scarcity and climate change. 

Traditional irrigation prediction models often lead to inefficient water use, either by under-irrigating or over-irrigating, 

thus affecting crop yield. This study proposes a novel hybrid deep learning (DL) model that combines a one-

dimensional convolutional neural network (1D-CNN) and Bidirectional Gated Recurrent Units (Bi-GRU) to enhance 

irrigation prediction accuracy. The 1D-CNN excels at spatial feature extraction, enabling the model to detect localized 

patterns in environmental and soil moisture data, while the Bi-GRU captures temporal dependencies by processing 

sequential data in both forward and backward directions. This hybrid approach addresses the shortcomings of 

conventional models by effectively learning both spatial and temporal relationships within the data, leading to more 

accurate and adaptive irrigation predictions. The model is trained and evaluated using the Irrigation Scheduling for 

Smart Agriculture dataset, which includes various environmental and soil moisture parameters. The proposed hybrid 

model achieved an accuracy of 97.29%, outperforming traditional models and demonstrating its potential to optimize 

irrigation management. This study presents a scalable and adaptive solution for intelligent irrigation systems, offering 

a promising approach to reduce water wastage, enhance crop yield, and contribute to sustainable agricultural practices. 

The novel combination of CNN and Bi-GRU provides a significant advancement over existing techniques, making it 

a valuable contribution to the field of smart agriculture. 
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1. Introduction 

Water is one of the most essential natural 

resources that sustain life on Earth. It is indispensable 

for various human activities, with agriculture being 

the most significant consumer of freshwater 

resources. However, the availability of water is often 

limited and expensive, particularly in semi-arid and 

arid regions, where rainfall is sparse and inconsistent. 

In these regions, agricultural productivity heavily 

depends on irrigation to meet the water requirements 

of crops [1]. The growing global population and 

ongoing climatic changes have led to a significant 

surge in water demand, especially for agricultural 

purposes. The increase in food production 

requirements has placed immense pressure on 

existing water resources, necessitating efficient 

management strategies to ensure sustainable water 

use. 

Water plays a crucial role in crop development 

and overall agricultural productivity. It is vital for 

various physiological processes such as 

photosynthesis, nutrient uptake, and temperature 

regulation in plants [2]. Without an adequate supply 

of water, crops fail to reach their full potential, 

leading to reduced yields and food shortages. Given 

the unpredictability of natural precipitation in many 

agricultural regions, irrigation is employed as a 

controlled means of delivering water to crops. 

Farmers rely on irrigation systems to supplement 

inadequate or inconsistent rainfall, ensuring that 
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plants receive the necessary hydration for growth [3]. 

By maintaining optimal soil moisture levels, 

irrigation helps sustain crop health throughout the 

growing cycle and prevents the negative impacts of 

water stress, such as wilting, stunted growth, and 

reduced productivity. 

In modern agriculture, irrigation management has 

evolved into a critical aspect of farming due to the 

increasing demand for food and the growing concerns 

over water scarcity [4]. The prediction of irrigation 

requirements plays a pivotal role in optimizing water 

consumption, enhancing crop yield, and promoting 

environmental conservation. Effective irrigation 

prediction enables farmers to apply the right amount 

of water at the right time, preventing the adverse 

effects of both over-irrigation and under-irrigation. 

Traditional irrigation practices, which often rely on 

fixed schedules or manual observations, are prone to 

inefficiencies. Over-irrigation results in excessive 

water wastage, leaching of essential nutrients from 

the soil, and increased risk of soil erosion. Conversely, 

under-irrigation leads to inadequate water supply, 

which negatively impacts plant growth and reduces 

crop yields [5]. To overcome these challenges, 

modern irrigation management integrates advanced 

technologies such as data analytics, weather 

forecasting, artificial intelligence (AI), and machine 

learning (ML) to accurately predict irrigation 

requirements [6]. 

Irrigation prediction is based on several key 

factors that influence water usage, including soil 

moisture levels, crop type, weather conditions, and 

the growth stage of plants. These factors are analyzed 

using advanced computational models that process 

large datasets to generate precise predictions. By 

leveraging these insights, farmers can make informed 

decisions regarding when and how much water to 

apply to their fields, ensuring that water resources are 

used efficiently. The integration of predictive models 

into irrigation systems enhances the accuracy of 

water distribution, minimizes waste, and reduces 

dependency on guesswork. This data-driven 

approach not only improves agricultural productivity 

but also contributes to the sustainability of water 

resources, addressing the long-term challenges of 

water scarcity and climate variability. 

Beyond its environmental benefits, precise 

irrigation prediction offers substantial economic 

advantages. In regions where agriculture relies 

heavily on irrigation, the cost of water can be a 

significant burden on farmers. By minimizing water 

wastage, predictive irrigation management helps 

reduce operational costs associated with water 

procurement, pumping, and distribution. The 

efficient use of water translates into lower energy 

consumption, as less power is required to operate 

irrigation systems. This contributes to overall cost 

savings for farmers and promotes economic 

sustainability in agricultural practices [7]. 

Furthermore, optimized irrigation strategies improve 

the resilience of farming operations to climate change. 

As global temperatures rise and extreme weather 

events become more frequent, farmers must adapt to 

fluctuating environmental conditions to maintain 

crop productivity. Irrigation prediction allows for 

adaptive water management, helping farmers 

mitigate the effects of prolonged droughts, heatwaves, 

and irregular rainfall patterns [8]. By ensuring that 

crops receive an adequate and timely water supply, 

predictive irrigation enhances plant health, boosts 

yield, and maintains food security. 

Another critical aspect of irrigation prediction is 

its role in maintaining soil health and long-term 

agricultural sustainability. Efficient water 

management prevents the degradation of soil 

structure and reduces the risks associated with 

excessive irrigation, such as soil salinization. When 

irrigation is applied excessively, the excess water 

percolates through the soil, dissolving and 

transporting salts to the surface. Over time, this leads 

to an accumulation of salts in the root zone, making 

it difficult for plants to absorb water and nutrients. By 

implementing precise irrigation techniques, farmers 

can maintain a balanced soil moisture level, 

preserving soil fertility and preventing land 

degradation. This not only benefits current crop 

cycles but also ensures that the land remains arable 

for future agricultural activities. 

The integration of artificial intelligence (AI) into 

irrigation prediction has revolutionized the way water 

resources are managed in agriculture. AI-powered 

models analyze complex datasets, identify patterns, 

and generate highly accurate irrigation forecasts. 

These models utilize deep learning algorithms to 

process real-time data from various sources, such as 

satellite imagery, weather stations, soil sensors, and 

historical irrigation records. By continuously 

learning and adapting to changing environmental 

conditions, AI-driven irrigation prediction systems 

enhance decision-making and improve water use 

efficiency.  

This study introduces a novel hybrid deep 

learning framework designed to leverage the 

strengths of both spatial and temporal analysis. The 

model integrates a 1D-CNN with Bi-GRU to form a 

synergistic architecture tailored for irrigation volume 

prediction. The 1D-CNN is particularly suited to 

identifying localized spatial patterns in multivariate 

input features. In agricultural settings, parameters 

such as soil moisture, temperature, and 
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evapotranspiration often vary spatially across 

different locations or depths. By applying 

convolutional filters, the 1D-CNN effectively 

extracts these spatial dependencies, which are critical 

for detecting subtle environmental cues that inform 

irrigation needs. 

To complement this, the Bi-GRU component 

captures temporal dynamics by processing input 

sequences in both forward and backward directions. 

This bidirectional learning allows the model to utilize 

both historical and forward-looking context, which is 

essential in understanding irrigation trends 

influenced by weather cycles, crop stages, and 

seasonal shifts. The GRU architecture also provides 

computational efficiency compared to LSTM models, 

making it suitable for real-time smart agriculture 

applications. By combining these two components, 

the model is capable of learning rich spatial-temporal 

representations from complex agricultural datasets. 

This integrated approach directly addresses the dual-

dimensional nature of irrigation prediction and 

significantly enhances forecasting accuracy and 

system adaptability. The key contributions of the 

study are given below. 

• To propose a novel hybrid DL model for 

irrigation prediction. 

• To develop an intelligent irrigation prediction 

model that adapts to different environmental 

conditions.  

• To assess the proposed model using different 

evaluation metrics.  

• To compare the efficacy of the suggested model 

with conventional methods.  

The remaining portion of the study is structured 

as: Section 2 gives a comprehensive review of 

existing studies in irrigation prediction and water 

management. Section 3 shows the proposed design of 

the hybrid DL method and Section 4 assesses the 

effectiveness of the suggested method. Finally, 

Section 5 concludes the key findings of the study. 

2. Literature review 

Sheline et al. [9] developed the Predictive 

Optimal Water and Energy Irrigation (POWEIr) 

controller, a precision irrigation system for solar-

powered drip irrigation (SPDI) aimed at optimizing 

water and energy usage. The POWEIr controller 

utilized physics-based models and machine learning 

for crop water demand and energy predictions, 

improving irrigation scheduling and reducing overall 

system costs. The study validated the controller with 

a small-scale prototype tested in Cambridge, 

Massachusetts, over seven days. Results indicated 

that the POWEIr controller increased solar irrigation 

reliability by up to 46% on high water demand days 

while using six times less battery storage compared 

to conventional SPDI systems. Additionally, an 

economic analysis demonstrated that improved solar 

energy efficiency could save 18%–74% in solar 

pump lifetime costs while ensuring 31%–66% more 

reliable irrigation. A limitation of the study was the 

adaptation challenges when applying the POWEIr 

controller to different irrigation systems and variable 

power inputs. 

 Youssef et al. [10] investigated the use of 

machine learning (ML) algorithms to predict 

reference evapotranspiration (ETO), which is critical 

for optimizing irrigation management in the face of 

climate change. The authors employed three ETO 

calculation methods: Penman-Monteith (PM), 

Hargreaves (HA), and Blaney-Criddle (BC), and 

analyzed climate variables using the modified Mann-

Kendall test and Theil Sen’s slope estimator to 

identify trends. Several ML models, including 

Support Vector Regression (SVR), Random Forest 

(RF), XGBoost, K-Nearest Neighbor (KNN), 

Decision Trees (DT), Linear Regression (LR), and 

Multiple Linear Regression (MLR), were applied for 

ETO prediction. The results showed strong predictive 

performance, with R2 values ranging from 0.91 to 

0.99, and low Root Mean Square Error (RMSE) and 

Mean Absolute Error (MAE) values. While the study 

demonstrated that ML algorithms can effectively 

predict ETO, a limitation lies in its application across 

varying climatic regions. The models' performance 

could fluctuate when applied to diverse geographical 

areas with distinct climate patterns. 

Yan et al. [11] proposed an irrigation prediction 

method that integrates a bidirectional Long Short-

Term Memory (BiLSTM) model, Convolutional 

Neural Networks (CNN), and an attention 

mechanism. Their approach aimed to improve 

irrigation volume prediction by leveraging spatio-

temporal features and sequence dependencies within 

crop irrigation data. The study utilized historical 

irrigation data and meteorological variables such as 

temperature, precipitation, and wind speed, to train 

and test the BiLSTM-CNN-Attention model. The 

study achieved superior performance with an R² 

value of 0.9749. The study possessed challenges in 

parameter tuning and was limited to broader 

applicability testing across different contexts. The 

study also acknowledged that the increased 

complexity of the combined model structure, which 

integrates multiple components, could lead to 

computational inefficiencies and required extensive 

fine-tuning to optimize performance. 

Kumar et al. [12] proposed an IoT-based sensor-

integrated intelligent irrigation system for the 
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agriculture industry, utilizing IoT-based humidity 

and soil sensors to collect soil-related data, which is 

stored in a centralized cloud. The authors employed 

the Correlation-based Feature Selection (CFS) 

algorithm to select relevant features and discarded 

irrelevant data. They applied the K-means algorithm 

for clustering the data, helping to group similar data 

together. The classification model was built using 

SVM, Random Forest, and Naïve Bayes algorithms, 

which were trained, validated, and tested using the 

collected data, including historical soil and humidity 

data. The outcomes demonstrated that the SVM 

hybrid classifier achieved superior accuracy. The 

hybrid classifier was also successful in predicting 

water demand, helping to save up to 20% of fresh 

water through intelligent irrigation. However, the 

study faced challenges related to scalability and long-

term performance across different agricultural 

practices. These limitations were particularly evident 

in larger-scale implementations, where variations in 

soil conditions, sensor reliability, and environmental 

factors could affect the model's generalization. 

Additionally, the dependency on centralized cloud 

storage could pose risks related to data security and 

real-time processing for large agricultural areas. 

Ndunagu et al. [13] proposed a smart irrigation 

system (SIS) using the drip method, integrating 

wireless sensor networks and an IoT platform 

(ThingSpeak) for data collection, analytics, and 

visualization. The system utilized soil sensors, 

weather forecasts, and real-time data updates every 

15 minutes to automate irrigation based on 

predefined thresholds. Machine learning models 

processed CSV-formatted data containing over 

143,000 entries, achieving 89% accuracy, 79% 

sensitivity, and 93% precision. The ESP8266 

NodeMCU was used for efficient control, while RTC 

modules-maintained timekeeping. The prototype was 

tested on a small vegetable farm and successfully 

optimized irrigation efficiency and crop yield. 

However, limitations included reliance on stable 

internet and power sources, restricted scalability. 

Singh et al. [14] proposed a deep learning 

approach to improve sprinkler irrigation by 

predicting the optimal irrigation time based on in-

field soil moisture. The authors used a CNN 

integrated with depth-wise separable convolution and 

residual connections to predict soil moisture classes 

from in-field soil images. A mobile application was 

developed to estimate irrigation time by analyzing 

soil moisture, crop factors, and sprinkler system 

details. The CNN model achieved an impressive 

average classification accuracy of 97.10%, with high 

precision (85.50%) and recall (86.80%), leading to 

water and energy savings of 27.59% and 27.42%, 

respectively. The system was tested in an 

experimental field in Meghalaya, India, and 

demonstrated increased water productivity (32.75%) 

compared to conventional systems. However, the 

study faced challenges in predicting soil moisture due 

to horizontal heterogeneity in soil, which impacted 

model accuracy in certain conditions. Factors such as 

soil texture and structure occasionally resulted in 

misclassification, further limiting the model's 

performance. 

Suresh et al. [15] proposed an IoT-enabled deep 

learning-based smart irrigation system (IoTDL-SIS) 

to optimize water usage in precision agriculture with 

minimal human intervention. The system uses 

various sensors such as soil moisture, temperature, air 

temperature, and humidity, which send data to an 

Arduino module for transmission to a cloud server. 

Data analysis at the cloud level is performed using 

three methods: deep support vector machine (DSVM) 

regression, clustering, and artificial immune 

optimization algorithm (AIOA) with a deep belief 

network (DBN) model for binary classification. Their 

experimental results demonstrated the effectiveness 

of IoTDL-SIS, achieving high accuracy (0.971) in 

predicting irrigation needs and reducing water usage. 

The system's performance was superior to existing 

methods, with precision, recall, and accuracy all 

above 0.96 in various test runs. While the IoTDL-SIS 

showed promising results in various test 

environments, its performance in more expansive 

agricultural settings or under diverse conditions 

remains unclear. Furthermore, the reliance on cloud 

servers for data analysis could introduce latency, 

potentially hindering real-time decision-making, 

particularly in remote agricultural areas where 

connectivity might be limited. 

Alibabaei et al. [16] proposed DL models, like 

LSTM, Bi-LSTM and GRU, to forecast the 

agricultural yield from moisture content of the soil, 

irrigation prediction and climate data. The Bi-LSTM 

model surpassed others with an R² value of 0.97 to 

0.99. However, the study had notable limitations. 

One key limitation was the absence of efficient 

preprocessing methods, which could have enhanced 

the model’s performance by improving the quality of 

the input data and reducing noise. Additionally, the 

training process for these models was time-intensive, 

particularly with large datasets, leading to increased 

computational costs and longer model convergence 

times. 

Abuzanouneh et al. [17] suggested an IoT-ML 

based smart irrigation system (IoTML-SIS) for 

agriculture. Data were gathered using IoT sensors, 

which was achieved by the artificial algae algorithm 

to enhance the classification accuracy by least 
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square-SVM (LS-SVM). The results demonstrated 

the efficacy of the system by attaining superior 

accuracy. However, a significant limitation of the 

study was its challenge in real-time application, 

particularly regarding the system's ability to handle 

dynamic environmental conditions. While the model 

performed well under controlled conditions, its 

scalability and adaptability in real-world, real-time 

irrigation settings remain uncertain. 

Yonbawi et al. [18] improved intelligent 

agriculture by proposing a modified black widow 

optimization with a DBN based smart irrigation 

system (MBWODBN-SIS). Data were collected 

using IoT sensors and irrigation classes are classified 

into five categories using DBN and hyperparameter 

optimization was done using the MBWO algorithm. 

The outcomes demonstrated that, with 95.73% 

accuracy, this model outperformed other DL models. 

The study lacked efficient feature selection models, 

which limits its ability to identify the most relevant 

features for the system's performance. 

Xu et al. [19] examined the soil moisture level 

and improved the irrigation system by integrating IoT 

with adaptive DL models. An Adaptive Hybrid 

Convolution-based ShuffleNetV2 (AHC-

ShuffleNetV2) was employed for irrigation level 

prediction. Both 1D and 2D convolution layers are 

used to process the collected sensor data and crop 

field images. Piranha Foraging Optimization 

Algorithm (FPFOA) was used for optimization and 

the model achieved lower RMSE value. A notable 

limitation of the study was its inability to predict 

essential weather parameters such as temperature, 

UV rays, humidity, and wind, which are crucial for 

accurate crop field management and irrigation 

decisions. Benameur et al. [20] developed an 

intelligent irrigation system that identify the 

anomalies in sensor data by employing autoencoders 

(AE) and generative adversarial networks (GANs). 

The detected anomalies were replaced with the 

reconstructed output. The results demonstrated that 

the AE model outperformed GAN by 97% accuracy 

in detecting the air humidity. The study lacked 

autonomous calibration and remote management 

techniques, which are essential for improving sensor 

accuracy and ensuring the long-term sustainability of 

the system in real-world applications. 

Kaur et al. [21] suggested an automated irrigation 

system with IoT and ML. The system was designed 

to automatically control irrigation by activating the 

motor when soil moisture dropped below a certain 

threshold. The collected data was analysed using ML 

models and demonstrated that RF and naïve bayes 

model achieved higher accuracy. The study's 

limitation lies in the complexity of sensor-based 

irrigation systems, which can be affected by sensor 

calibration, environmental variability, and the high 

costs associated with implementing a fully automated 

system. Moreover, the study did not consider the 

variability in soil properties, which could affect the 

system’s overall performance. Dhal et al. [22] 

introduced a Decision Support System (DSS) based 

on ML aimed at optimizing irrigation of turfgrass 

while reducing runoff. The system used a Radial 

Basis Function-SVM (RBF-SVM) model with 

artificial data produced by the Monte-Carlo method. 

When evaluated alongside a commercial irrigation 

controller, by 74% on average the system reduced 

runoff and maintained a high Green Cover (GC) with 

87% accuracy. The study demonstrated that the ML-

based irrigation systems optimized water usage and 

minimized environmental impact. The use of 

artificial data produced by the Monte Carlo method 

limits the generalization of the results, as the system's 

performance in real-world, variable environmental 

conditions was not fully addressed. Therefore, the 

model's applicability across diverse ecological 

contexts remains uncertain. 

Rathore & Rajavat [23] employed ML models for 

irrigation water requirement prediction and real time 

disease detection. Three CNNs were employed for 

classify potato leaf disease and SVM and logistic 

regression (LR) model were used for real-time 

irrigation water requirement prediction. Parameters 

like humidity, soil moisture, temperature and crop 

age were measured as the factors to determine 

whether the water pump should be enabled or not. 

The SVM achieved 92% accuracy, while the LR 

model achieved 73%. However, the study faced 

limitations related to scalability, as it struggled to 

handle larger datasets and implement the models in 

real-time applications. This issue arises due to the 

inherent computational complexity of the employed 

models, especially when dealing with varying 

environmental factors and real-time data influx.  

Despite significant advancements in smart 

irrigation systems, several research gaps remain. 

Many studies have demonstrated high accuracy in 

irrigation classification and prediction using ML and 

DL models, such as DBN and SVM, but challenges 

persist in scalability and adaptability to diverse 

agricultural practices [12]. Furthermore, while IoT-

based solutions have been widely adopted, 

limitations in real-time application and broader 

context testing hinder their practicality [17]. 

Additionally, the lack of efficient preprocessing 

methods and feature selection models in several 

approaches impacts the optimization and 

performance of these systems [16,18]. Addressing  
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Figure.1 Suggested irrigation prediction method 

 

these gaps could enhance the efficiency and 

reliability of smart irrigation technologies in varied 

and dynamic agricultural environments. 

3. Proposed methodology 

Irrigation prediction is crucial for sustainable 

agricultural practices by optimizing water usage. 

Accurate irrigation prediction enables farmers to 

determine the optimal water quality required for 

crops by reducing water loss and soil erosion. This 

study develops a novel DL model using 1D-CNN and 

Bi-GRU to address issues such as over-irrigation and 

under-irrigation. The spatial and temporal features 

are extracted from the preprocessed irrigation data. 

The workflow of the suggested model is illustrated in 

Fig. 1. 

3.1 Dataset 

The Irrigation Scheduling for Smart Agriculture 

dataset from the public repository, Kaggle serves as a 

prominent benchmark for optimized irrigation 

decisions in sustainable agricultural practices, 

considering environmental factors and soil moisture 

[24]. The dataset was made publicly available on 

Kaggle approximately 2 years ago. The dataset 

includes several thousand entries, each 

corresponding to a time-stamped observation across 

the mentioned features. Its tabular format allows for 

straightforward preprocessing and integration with 

deep learning models. This dataset serves as a 

credible and practical benchmark for developing 

intelligent irrigation systems, particularly in 

sustainable agriculture where environmental and soil 

dynamics play a crucial role in water resource 

optimization. The dataset captures a diverse array of 

environmental parameters critical for irrigation 

decisions. 

One key feature is ‘temperature’, which 

represents the environmental temperature during data 

collection. This influences evaporation and 

transpiration rates, with higher temperatures typically 

increasing irrigation needs. Temperature values 

range from -10°C to 50°C, depending on 

geographical and climatic conditions. Another factor 

is ‘atmospheric pressure’ that influences weather 

conditions. Overall climate and its effect on plant 

health are assessed using pressure. Recorded pressure 

values vary between 900 hPa and 1050 hPa, relative 

to the standard atmospheric pressure (1013 hPa). The 

height of the place where the data is collected above 

sea level is referred to as altitude. This factor 

correlates with temperature and pressure variability, 

offering a broad representation of environmental 

conditions from sea level to mountainous terrain. 

Higher altitude locations generally exhibit cooler 

temperatures and lower atmospheric pressure. 

The quantity of water present in the soil is 

indicated by the factor ‘soil moisture’, which is 

crucial for plant health. Low soil moisture levels 

indicate dryness and necessitate irrigation, while high 

soil moisture signifies adequate wetness. This factor 

is represented in percentage, where 0% represents 

completely dry soil and 100% represents saturated 

soil. This aids in determining the irrigation needs 

grounded on the current state of water content in the 

soil. The parameter ‘notes’ provides additional 

context or observations recorded during data 

collection. This includes weather conditions, unique 

plant requirements or other factors affecting 

irrigation decisions. The observations, such as ‘high 

wind’ or ‘overcast’, explain the abnormalities or  
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Figure.2 Data sample 

 

 
Figure.3 Distribution of case types 

 

 
Figure.4 Statistical summary 

 

irregularities in the data. Finally, the ‘status’ of 

irrigation indicates whether irrigation was applied at 

the particular instance. The status is represented by 

binary values, where ‘0’ denotes ‘Not Irrigated’ and 

‘1’ means ‘Irrigated’. Fig. 2 demonstrates the data 

sample. 

Fig. 3 illustrates a bar plot that represents the 

distribution of binary status, which indicates whether 

the irrigation is applied or not, with labels ‘1’ and ‘0’ 

respectively. There are more cases of irrigated status 

compared to non-irrigated cases. This observation 

indicates that the majority of instances in the dataset 

required irrigation. 

3.2 Data Preprocessing and Exploratory Data 

Analysis 

The process of assessing, filtering, manipulating 

and encoding data, which converts it into machine-

readable format, is called data preprocessing. Several 

preprocessing steps, like handling outliers and 

missing values, handling categorical variables and 

scaling of numerical features are involved. 

Normalization is employed to prevent bias towards 

large-scale features. Eq. (1) indicates the 

standardization that scales each feature to have 

standard deviation (σ) of one and zero mean (μ).   

 

                       𝑥′ =
𝑥−𝜇

𝜎
                             (1) 

 

where the scaled feature value is represented by 

𝑥′ . The relationship between variables is analysed 

using the exploratory data analysis (EDA) by 

employing visualization and statistical metrics. The 

statistics summary, as shown in Fig. 4, indicates no 

missing values by offering a quantitative overview. 

The varying temperature, pressure and altitude 

provide different environmental and geographical 

conditions. Soil moisture also exhibits substantial 

variations. 

Fig. 5 depicts the histogram of features, showing 

distribution in the dataset. A skewed distribution is 

provided by the variable ‘temperature’, having values 

ranging between 250C and 500C. This value 

indicates suitable agricultural conditions and higher 

temperature necessitates irrigation due to evaporation 

and transpiration. The factor, ‘pressure’ is distributed 

around the standard atmospheric pressure (1013 hPa), 

while altitude is highly skewed with most data near 

sea level. The distribution of soil moisture shows 

multiple peaks, representing different levels of water 

content in the soil from dry to saturated. The observed 

categorical contents are reflected by the distribution 

of ‘note’. 

The heat map of the data, as illustrated in Fig. 6 

reveals the relationship between the features in the 

dataset, represented by positive and negative values, 

where a positive value shows a positive relationship 

and a negative value specifies a negative relationship. 

Both linear and non-linear relationships are evaluated 

using the correlation heatmap. Features such as 

temperature and pressure validate a strong positive 

correlation, while soil moisture displays lower 

correlation with other features and is independently 

influenced by the irrigation status. 
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(a)                                                              (b)                                                              (c)                                

         
(d)                                                              (e)                                                              

Figure.5 Distribution of features: (a) Distribution of temperature, (b) Distribution of pressure, (c) Distribution of 

altitude, (d) Distribution of note, and (e) Distribution of soilmiosture 

 

 
Figure. 6 Correlation heatmap 
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(a)                                                     (b)                                                   (c)                                    

 
(d)                                                    (e)                                                                

Figure.7 Correlation between target variable and the features: (a) temperature vs status, (b) pressure vs status, (c) 

altitude vs status, (d) soilmiosture vs status, and (e) note vs status 

 

 
Figure.8 Scatter matrix visualization 
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Figure.9 1D CNN architecture 

 

The box plot, represented in Fig. 7, shows the 

relationship between key features and the irrigation 

status. The demand for irrigation is exhibited with 

increased temperature levels. The pressure factor 

shows minimal variation between irrigated and not 

irrigated cases. The altitude vs. status plot 

demonstrates a stable distribution across the statuses, 

mentioning the limited influence on irrigation 

decisions in the dataset. Soil moisture reveals a 

unique trend that it heavily relies on the irrigation 

status. Lower soil moisture necessitates irrigated 

cases, indicating the need for water when the soil is 

dry. 

The data points by the status of irrigation are 

distinguished by understanding the feature 

relationships using a pair plot, as shown in Fig. 8. 

Temperature and pressure demonstrate a weak 

positive linear relationship, whereas soil moisture 

and altitude rely on particular values. The variability 

represented by the factor ‘note’ indicates the presence 

of contextual information that is crucial for irrigation 

decisions. 

3.3 Model development 

3.3.1. 1D convolutional neural network 

One-dimensional sequential data is processed 

using a 1D CNN (Conv1D), which is a type of neural 

network [25]. Unlike traditional 2D CNNs, 1D CNNs 

process in one spatial dimension, making them 

suitable for applications involving time-series data, 

audio signal, text sequences and temporal or 

sequential structural data [26]. The necessity of 

manual feature engineering is reduced by 

automatically extracting features from the sequential 

data using Conv1D while preserving spatial 

dependencies in the input data. A three-dimensional 

tensor is used to structure the input of a 1D CNN 

layer. The number of independent samples processed 

simultaneously during training is represented by the 

batch size. Efficient use of computational resources 

is ensured by the multiple sequences in each batch. 

The time steps in each sequence is indicated by the 

sequence length. Finally, the number of features or 

channels related to each data point in the sequence is 

denoted by the input dimension. This structure helps 

Conv1D to handle multivariate sequential data. The 

Conv1D employs a convolutional operation that 

applies a kernel (filter) to the input sequence to 

extract local patterns. The basic 1D CNN architecture 

is shown in Fig. 9 with convolution layer, pooling 

layers and fully connected layer. 

Eq. (2) defines the convolutional operation, 

which describes the computation of a weighted sum 

of input values after bias addition and a non-linear 

transformation. 

 

    𝑦𝑡
𝑗

= 𝜎(∑ 𝑤𝑖,𝑗 ⋅ 𝑥𝑡+𝑖 + 𝑏𝑗
𝑘−1
𝑖=0 )            (2) 

 

where 𝑦𝑡
𝑗
 represents the output of the 𝑗𝑡ℎ filter at 

position 𝑡, 𝑤𝑖,𝑗  is the weights of the 𝑖𝑡ℎ element in 

the  𝑗𝑡ℎ  filter, 𝑥𝑡+𝑖  is the input sequence values 

covered by the filter at position 𝑡, 𝑏𝑗 is the bias term 

and 𝑘 and 𝜎  are the kernel size and activation 

function, respectively.  

Another key component of Conv1D, which 

functions as a sliding window across the input 

sequence, is the filter or kernel. The number of 

sequential inputs processed at a time is represented 

by the filter defined by its kernel size. The weighted 

sum of the input values is computed to capture 

localized patterns within the sequence. A feature map 

is generated for each filter that indicates the presence 

of specific patterns learned by the network. 

Stride determines the movement of the filter 

across the input sequence. To facilitate precise 

feature extraction, the filter shifts over time, 

overlapping with the previous position. A higher 

stride value reduces the output size and computation 
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cost. The balance between computational efficiency 

and granularity of feature extraction is done with the 

stride parameter. The size of the output sequence is 

controlled by the padding technique. By adding zeros 

around the edges, padding is applied to the input 

sequence in Conv1D. It ensures that the output size is 

consistent with the input size. The main padding 

strategies are: padding=valid, where no padding is 

employed and the output sequence is smaller than the 

input sequence. This padding provides a 

computationally efficient process but may lose edge 

information. The next strategy is padding=same, 

where the same sequence length in the input is 

maintained in the output. This helps reduce 

dimensionality reduction across layers in complex 

architectures. Fig. 10 demonstrates 1D convolution. 

The presence of features learned by the filters in 

the input data is summarized by a feature map 

represented by the output of Conv1D. The number of 

different patterns learned by the network is 

represented by the number of filters and each filter 

generates a unique feature map. Complex patterns are 

learned by introducing non-linearity into the network 

using an activation function. In CNNs, a down-

sampling operation is employed by using 1D 

MaxPooling, especially for sequential or time-series 

data. Essential information is preserved while 

reducing the dimensionality of the feature maps 

shaped by convolutional layers. 1D MaxPooling 

emphasizes the most prominent features identified by 

the filters in specific areas of the input sequence 

within a sliding window by selecting the maximum 

value.  

For an input feature map 𝑥  of size 𝐿 , the 

MaxPooling output 𝑦 is computed by selecting the 

maximum value within the window, as given in Eq. 

(3). 

 

𝑦𝑡 = 𝑚𝑎𝑥 (𝑥𝑡, 𝑥𝑡+1, … … 𝑥𝑡+𝑘−1)       (3) 

 

where 𝑡  is the starting index of the pooling 

window and 𝑘 represents the kernel size. The degree 

of window shifts at each step is determined by 

moving a sliding window across the sequence with a 

stride 𝑠 . The overlapping of pooling operation 

happens if 𝑠 > 1. Eq. (4) calculates the output length 

𝐿𝑜𝑢𝑡. 

 

𝐿𝑜𝑢𝑡 =

𝐿−𝑘

𝑠
+ 1 𝑖𝑓 𝑝𝑎𝑑𝑑𝑖𝑛𝑔 = ′𝑣𝑎𝑙𝑖𝑑′

𝐿+2𝑝−𝑘

𝑠
+ 1 𝑖𝑓 𝑝𝑎𝑑𝑑𝑖𝑛𝑔 = ′𝑠𝑎𝑚𝑒′

  (4) 

 

where 𝑝 is the padding size. 

 

 
Figure.10 1D Convolution 

 

 
Figure.11. GRU architecture 

 

3.3.2. Bi-GRU 

GRU is a recurrent neural network (RNN) that 

process sequential data such as text, time series data 

and speech [27]. The GRU architecture comprises 

gates, as shown in Fig. 11. The sequential data, 𝑥𝑡  is 

processed by the GRU cell that captures relevant 

information maintained by a hidden state from the 

past and updates this state based on the current input 

and previous hidden state, where t is the time step 

ranges from 1 to T. 

As given in Eq. (5) the update gate regulates 

information of the past state to retain. 

 

     𝑧𝑡 = 𝜎(𝑊𝑧. 𝑥𝑡 + 𝑈𝑧 ⋅ ℎ𝑡−1 + 𝑏𝑧)         (5) 

 

where 𝑏 is the bias term, ℎ𝑡−1  is the preceding 

time step’s hidden state, 𝑈  and 𝑊   are the weight 

matrices and 𝜎  represents the sigmoid activation 

function. The reset gate regulates how much of the 
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preceding hidden state should be forgotten, as shown 

in Eq. (6). 

 

  𝑟𝑡 = 𝜎(𝑊𝑟. 𝑥𝑡 + 𝑈𝑟 ⋅ ℎ𝑡−1 + 𝑏𝑟)         (6) 

 

The candidate hidden state represents the new 

candidate values for the hidden state, as expressed in 

Eq. (7). 

 

ℎ𝑡̌ = tanh (𝑊 ⋅ 𝑥𝑡 + 𝑟𝑡 ∘ (𝑈 ⋅ ℎ𝑡−1) + 𝑏 (7) 

 

where 𝑡𝑎𝑛ℎ is the hyperbolic tangent activation 

function.  

The integration of the preceding hidden state and 

the candidate hidden state weighted by the update 

gate is indicated by the final hidden state. The 

mathematical expression of the final hidden state is 

given in Eq. (8).  

 

ℎ𝑡 = (1 − 𝑧𝑡) ∘ ℎ𝑡−1 + 𝑧𝑡 ∘ ℎ𝑡̌           (8) 

 

Bi-GRU is a form of the GRU that analyses 

sequential data in both forward and backward 

directions to capture contextual information from 

both the past and the future [28]. This architecture is 

especially suitable for tasks like NLP, time-series 

forecasting and speech recognition. Fig. 12 shows the 

structure of Bi-GRU layers. 

The Bi-GRU architecture comprises several 

components. In first input layer, input can be a 

sequence of words in a sentence, frames in a video or 

time steps in a timeseries. The next is the 

bidirectional layer, consisting of two GRU layers, 

which process the sequence in both directions. The 

forward layer processes the sequence from the first-

time step 𝑥𝑡  to the last time step 𝑥𝑇 , whereas the 

backward layer processes in reverse direction, from 

the last time step 𝑥𝑇  to the first-time step 𝑥𝑡−1 , as 

expressed in Eq. (9) and Eq. (10). 

 

  ℎ𝑓𝑜𝑟𝑤𝑎𝑟𝑑
𝑡 = 𝐺𝑅𝑈𝑓𝑜𝑟𝑤𝑎𝑟𝑑(𝑥𝑡 , ℎ𝑓𝑜𝑟𝑤𝑎𝑟𝑑

𝑡−1 )       (9) 

 

ℎ𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑
𝑡 = 𝐺𝑅𝑈𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑(𝑥𝑡, ℎ𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑

𝑡+1 )  (10) 
 

The forward and backward layers produce two 

sets of hidden state, ℎ𝑓𝑜𝑟𝑤𝑎𝑟𝑑
𝑡  for the forward 

direction and ℎ𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑
𝑡  for the backward direction. 

Each GRU cell that follows processes one-time step 

of the sequence in both backward and forward 

directions. The input 𝑥𝑡 and the hidden state from the 

preceding time step are used to compute the current 

hidden state. The flow of information is controlled to 

retain the long-term dependencies and reduce the 

vanishing gradient problem by employing the reset 

gate and the update gate. To introduce non-linearity 

hidden states are passed through an activation 

function. The complex patterns in the sequential data 

are modelled using the activation function. Finally, 

after processing the input sequence, both forward and 

backward GRUs are concatenated as shown in Eq. 

(11). 

 
 ℎ𝐵𝑖𝐺𝑅𝑈

𝑡 = 𝐶𝑜𝑛𝑐𝑎𝑡(ℎ𝑓𝑜𝑟𝑤𝑎𝑟𝑑
𝑡 , ℎ𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑

𝑡 )              (11) 

 

where ℎ𝐵𝑖𝐺𝑅𝑈
𝑡  is the combined hidden state at 

time step 𝑡. This final hidden state is passed to further 

layers, like a dense layer for prediction tasks.  

3.3.3. Proposed hybrid deep learning model 

The proposed model integrates 1D CNN and Bi-

GRU models to effectively predict irrigation. The 

overall predictive accuracy of the proposed model is 

improved by capturing temporal dependencies and 

extracting spatial features. The architecture begins 

with a 1D CNN layer that processes the input 

sequential data. An input layer is followed by a 

Conv1D layer with 32 filters and a kernel size of 3. 

From the input sequence local patterns are extracted 

by applying the ReLU activation function. A dropout 

layer with a 30% dropout rate is applied to reduce 

overfitting. Specific temporal features are extracted 

using the second Conv1D layer with a kernel size of 

1 and 64 filters.The granularity of the features is 

maintained using a MaxPooling1D layer with a pool 

size of 1. 64 units of the Bi-GRU layer are employed 

for capturing temporal dependencies. This layer 

processes in both forward and backward directions to 

learn long-term dependencies and relationships in the 

input sequences. The final classification is attained 

using a fully connected dense layer. The extracted 

features by the 1D CNN and Bi-GRU layers are 

integrated by a hidden dense layer with the ReLU and 

128 neurons. A dropout layer is followed by an output 

dense layer with a sigmoid activation function and a 

single neuron, which predicts the status of irrigation 

as ‘Irrigated’ or ‘Not-Irrigated’. The model summary 

and model architecture are given in Table 1 and Fig. 

13, respectively. The algorithm that details the 

proposed irrigation prediction model is given below. 
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Figure.12 Architecture of Bi-GRU 

 

 

Algorithm: Irrigation prediction using 1D CNN and Bi-GRU 

Input: Irrigation scheduling for smart agriculture dataset 

Output: A binary prediction of irrigation status (‘1’=’Irrigated’, ‘0’=’Not-Irrigated’) 

Begin  

Step 1: Load data 

• The dataset comprising environmental, agricultural and geographical features that affect the 

irrigation process.  

Step 2: Data preprocessing and exploratory data analysis 

• Handle missing values 

• Remove outliers 

• Handle categorical variables 

• Numerical feature scaling 

• Normalization using, 𝑥′ =
𝑥−𝜇

𝜎
 

• Correlation analysis 

• Feature Relationships with Target Variable 

Step 3: Model development 

• Feature extraction using 1D CNN 

❖ Add the Input layer as the first layer 

❖ Apply the convolutional operation using,  

                                                          𝑦𝑡
𝑗

= 𝜎(∑ 𝑤𝑖,𝑗 ⋅ 𝑥𝑡+𝑖 + 𝑏𝑗
𝑘−1
𝑖=0 ) 

❖ Apply MaxPooling using, 

                                             𝑦𝑡 = 𝑚𝑎𝑥 (𝑥𝑡 , 𝑥𝑡+1, … … 𝑥𝑡+𝑘−1)   

❖ Model= (Conv1D (32, kernel_size=3) 

❖ MaxPooling1D =pool_size=3, Conv1D_1 

❖ Conv1D layer with adjusted kernel_size, reduced pool size 

            Model = (Conv1D (64, kernel_size=1) 

            MaxPooling1D =pool_size=1, Conv1D_2 

• Temporal feature extraction using Bi-GRU 

❖ Forward hidden state calculation using, 

                                           ℎ𝑓𝑜𝑟𝑤𝑎𝑟𝑑
𝑡 = 𝐺𝑅𝑈𝑓𝑜𝑟𝑤𝑎𝑟𝑑(𝑥𝑡, ℎ𝑓𝑜𝑟𝑤𝑎𝑟𝑑

𝑡−1 ) 

❖ Backward hidden state calculation using, 

ℎ𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑
𝑡 = 𝐺𝑅𝑈𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑(𝑥𝑡, ℎ𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑

𝑡+1  

❖ Concatenation of forward and backward hidden state using, 

ℎ𝐵𝑖𝐺𝑅𝑈
𝑡 = 𝐶𝑜𝑛𝑐𝑎𝑡(ℎ𝑓𝑜𝑟𝑤𝑎𝑟𝑑

𝑡 , ℎ𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑
𝑡 ) 
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• Final prediction using dense layer 

❖ Model= (Dense (128, activation='relu')) 

❖ Model = (Dense (1, activation='sigmoid')) 

Step 4: Model compilation 

• Building the 1D CNN + Bi-GRU model for irrigation prediction 

• Model = CNN_Bi-GRU compile (optimizer=Adam (), loss='binary_crossentropy',  

Step 5: Model evaluation  

• metrics=['accuracy']) 

• Adjusting hyperparameters 

Save the model 

End 

 
Table 1. Model summary 

Layer (type) Output Shape   Parameters 

conv1d (Conv1D) (None, 3, 32) 128 

dropout (Dropout)  (None, 3, 32)       0 

conv1d_1 (Conv1D) (None, 3, 64)  2,112 

max_pooling1d (MaxPooling1D)  (None, 3, 64) 0 

dropout_1 (Dropout)   (None, 3, 64) 0 

bidirectional (Bidirectional)   (None, 128)     49,920 

dropout_2 (Dropout)  (None, 128)     0 

dense (Dense)  (None, 128)     16512 

dropout_3 (Dropout)  (None, 128)     0 

dense_1 (Dense)   (None, 1)  129 

Total params: 68,801 

Trainable params: 68,801 

Non-trainable params: 0 

 
Table 2. Hyperparameter specification 

Hyperparameters Values 

Optimizer Adam 

Activation functions ReLU, sigmoid 

Number of epochs 200 

Loss Binary cross entropy 

Dropout rate 0.3 

Batch size 32 

3.4 Hardware and software setup 

A comprehensive arrangement comprising an 

NVIDIA GeForce GTX 1080Ti GPU, 32GB of RAM 

and an Intel Core i7 processor is used in this study for 

effective training. This novel hybrid model has been 

implemented on the Google Collaboratory platform 

with the Python language. Python integrated with the 

TensorFlow framework and Keras’s user-friendly 

interface assures the execution of complex structures. 

A number of hyperparameters that are set before 

training are utilized in this research to optimize the 

performance of the hybrid model. These 

configuration parameters are essential that indicate 

the operation and functions of a DL model throughout 

the training. Table 2 shows the hyperparameters 

employed in this study. These hyperparameters 

collectively enhance the ability of the model for 

effective generalization and efficient data learning. 

The model was optimized using the Adam 

optimizer, which is known for its efficient gradient-

based optimization and adaptive learning rate. The 

network utilized a combination of ReLU and sigmoid 

activation functions, where ReLU was applied in 

hidden layers to introduce non-linearity and prevent 

vanishing gradient issues, while the sigmoid function 

was used in the output layer for binary classification 

of irrigation needs. The model was trained for 200 

epochs, ensuring sufficient learning while 

minimizing the risk of overfitting. Binary cross-

entropy was selected as the loss function due to the 

binary nature of the irrigation decision (water or no 

water). To prevent overfitting and improve 

generalization, a dropout rate of 0.3 was implemented, 

randomly deactivating 30% of neurons during 

training. The model processed data in mini-batches of 

32, balancing computational efficiency and model 

stability during training.  

4. Results and discussion 

Accuracy and loss plots are visual tools that track 

the efficiency of the model over time during training 

and validation. The accuracy plot shows the 

proportion of correct predictions, helping identify if 

the model’s predictive power improves with each  
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Figure.13 Proposed irrigation prediction model 

architecture 

 

epoch. Meanwhile, the loss plot displays the error rate, 

indicating the model’s effectiveness in fitting the 

data; lower loss over epochs improved learning.  In 

this study, these plots are important for evaluating the 

effectiveness of the model in determining irrigation 

prediction. Fig. 14 and Fig.15 present the accuracy 

and loss plot of the framework. 

The upward trends in training and validation 

accuracy signify effective learning and generalization. 

The validation accuracy increases steadily, starting at 

approximately 0.88 and eventually nearing 0.98, 

while the training accuracy follows a similar trend 

that continues to increase gradually and stabilizes 

close to 0.98 by the final epoch of 200. This close 

alignment between the validation and training  

 

 
Figure.14 Accuracy plot of the irrigation prediction 

model 

 
Figure.15 Loss plot of the irrigation prediction model 

 

accuracy denotes the efficiency of the model in 

learning and generalization without significant 

overfitting. 

A consistent decrease as the training progresses is 

displayed by the validation and training loss over 200 

epochs. The validation loss initializes at 0.36 and 

decreases eventually to a lower value of 0.08 in the 

final epochs. Similarly, the training loss steadily 

decreases from 0.6 to reach 0.95 over 200 epochs. 

These values indicate the model’s ability in 

minimizing errors during training. The minimal gap 

between the curves implies that the model efficiently 

balances fitting the training data and generalization to 

unseen data. 
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Table 3. Classification report of the proposed model 

 Precision Recall F1-score Support 

Irrigated 0.98 0.97 0.97 577 

Not-Irrigated 0.95 0.97 0.96 361 

Accuracy 0.9729 938 

Macro avg 0.97 0.97 0.97 938 

Weighted avg 0.97 0.97 0.97 938 

 

 
Figure.16 Confusion matrix of the irrigation prediction 

system 

 

 
Figure.17. ROC curve 

 

Various factors are defined to quantify essential 

performance parameters, as represented in following 

Equations. These metrics, based in the principles of 

False Positive (FP), True Negative (TN), False 

Negative (FN), and True Positive (TP), are crucial for 

evaluating the efficacy of the model. 

 

       𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
            (12) 

 

              𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
                  (13) 

 

            𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
                    (14) 

 

  𝐹1 − 𝑠𝑐𝑜𝑟𝑒 = 2 ×
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
  (15) 

 

The classification report, shown in Table 3, 

suggests that the proposed hybrid model accurately 

predicted classes, correctly identifying the majority 

of samples from both classes and maintains a 

balanced performance across the classes. 

The model achieved an overall accuracy of 

0.9729 in classifying between ‘Irrigated’ and ‘Not-

Irrigated’ classes. For the ‘Irrigated’ class, the model 

attained a precision value of 0.98, indicating the 

correctness in predicting the classes. A recall value of 

0.97 shows that the model predicts 97% of actual 

irrigated samples. The balance between the recall and 

precision is highlighted by an F1 score of 0.97. For 

the ‘Not-Irrigated’ class, the recall and precision 

values are 0.97 and 0.95, respectively, where the 

precision values are slightly lesser than the ‘Irrigated’ 

class. An F1-score of 0.96 shows the effectiveness of 

the model across the samples. The macro and 

weighted average is 0.97 for both the classes, 

indicating similar performance. 

Fig. 16 demonstrates the confusion matrix of the 

suggested irrigation prediction model. This plot 

provides a visualization of the performance for the 

classification task. The confusion matrix helps in 

comparing the model’s prediction to true labels. For 

instance, in the proposed irrigation prediction model, 

the model correctly classified 349 samples as ‘Not-

Irrigated’ and 560 samples as ‘Irrigated’ class. There 

are very few instances of misclassification with the 

majority of correct predictions, emphasizing the 

model’s robustness. 

Fig. 17 demonstrates the Receiver operating 

characteristics (ROC) Curve that evaluates the ability 

of the proposed model to distinguish between the two 

classes. The 1D CNN-BiGRU model indicates robust 

discriminative performance. The diagonal line 

represents random chances. The high TP rate with a 

low FP rate reflects the model’s excellence in 

classification. These outcomes reveal the efficiency 

of the suggested model in achieving high accuracy, 

minimal error and excellent classification 

performance. 
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Table 4. Performance comparison with existing models 

Author & Ref Model 
Accuracy 

(%) 

Precision 

(%) 

Recall (%) F1 Score 

(%) 

Ndunagu et al. [13] Machine Learning 89 93 79 - 

Singh et al. 14] CNN 97.1 85.5 86.8 85.8 

Rathore & Rajavat [23] SVM 92 92 92 92 

Proposed model 97.29 97.87 97.06 97.46 

 

 
Figure.18 Performance comparison of the proposed model with existing methods 

 

 

The performance of the proposed irrigation 

scheduling model using a 1-D CNN Bi-GRU has 

been evaluated and compared with existing models, 

as shown in Table 4 and Fig. 18. The proposed model 

achieved an overall accuracy of 97.29%, which is 

higher than the CNN (97.1%), and SVM (92%). 

Moreover, the proposed model attained a precision of 

97.87% and a recall of 97.06%, resulting in a high F1 

score of 97.46%. This consistent performance across 

different evaluation metrics indicates that the 

proposed model is not only highly accurate but also 

balanced in terms of its ability to identify both 

irrigated and non-irrigated conditions correctly. 

Traditional machine learning models, while 

offering a respectable accuracy of 89%, showed 

limitations in recall (79%), suggesting a relatively 

lower ability to correctly identify irrigation needs 

based on real-time environmental inputs. This 

underperformance is likely due to their reliance on 

handcrafted features and limited capacity to capture 

complex temporal dependencies in the sensor data. 

Similarly, the SVM model, with an accuracy of 92%, 

shows limitations in handling large and complex 

datasets due to its computational complexity and 

difficulty in managing non-linear relationships. The 

CNN model, although achieving an accuracy of 

97.1%, suffers from relatively low precision (85.5%) 

and recall (86.8%), indicating that it fails to 

consistently distinguish between irrigated and non-

irrigated samples, leading to misclassification and 

lower F1 score (85.8%). 

The superior performance of the proposed model 

can be attributed to the combined architecture of 1-D 

CNN and Bi-GRU. The CNN layer effectively 

extracts spatial features from the input data, capturing 

important patterns related to irrigation status, while 

the Bi-GRU layer enhances the model's capability to 

process sequential dependencies, improving temporal 

awareness. This hybrid architecture allows the model 

to learn both spatial and temporal correlations in the 

data, resulting in more accurate and reliable 

predictions. Furthermore, the Bi-GRU's bidirectional 

nature allows the model to retain past and future 

contextual information, enhancing its predictive 

capability for complex irrigation scenarios. 

5. Conclusion 

This study presents a hybrid deep learning model 

combining 1D Convolutional Neural Networks (1D-

CNN) and Bidirectional Gated Recurrent Units (Bi-

GRU) for intelligent irrigation prediction. The model 

effectively addresses critical agricultural 
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challenges—such as over-irrigation and under-

irrigation—by leveraging the spatial learning 

capabilities of 1D-CNN and the temporal modeling 

strength of Bi-GRU. Using the Irrigation Scheduling 

for Smart Agriculture dataset, which includes 

environmental variables such as altitude, atmospheric 

pressure, temperature, and soil moisture, the model 

achieved a notable accuracy of 97.29%. This high 

level of precision highlights the model’s efficacy in 

learning spatial-temporal dependencies for irrigation 

forecasting. 

The practical implications of this model are 

significant. Its deployment within smart irrigation 

systems can enhance water management practices by 

enabling timely, data-driven decisions. The binary 

classification of irrigation need can be integrated into 

automated irrigation controllers, making real-time 

adjustments based on environmental input data 

collected via IoT sensors or weather APIs. This not 

only optimizes water usage—critical in regions 

facing water scarcity—but also improves crop health 

and yield by ensuring consistent and accurate 

irrigation. 

Integration into existing irrigation management 

systems can be achieved through APIs or lightweight 

edge computing modules, allowing farmers to receive 

irrigation alerts or enable fully automated watering 

schedules. The model’s high accuracy ensures trust 

in decision outputs, while its relatively lightweight 

architecture allows deployment on portable 

agricultural devices. However, practical deployment 

does come with challenges such as sensor calibration, 

network connectivity in remote areas, and the need 

for regional model tuning based on local soil and crop 

conditions. 

Looking ahead, future research could focus on 

enhancing real-time adaptability by integrating 

streaming data and exploring reinforcement learning 

approaches for personalized irrigation strategies. 

Additionally, large-scale field trials across diverse 

geographic locations could help validate the model's 

generalizability and refine its effectiveness in various 

agricultural ecosystems. 
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