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ABSTRACT Diabetic retinopathy (DR), a severe consequence of diabetes, dramatically enhances the
likelihood of experiencing vision impairment. Timely identification is crucial for efficient intervention,
as untreated diabetic retinopathy can progress to irreversible vision loss. Despite advances, existing diagnos-
tic methods face challenges such as resource dependency, variability in accuracy, and limited accessibility,
especially in underserved regions. This study pioneers an innovative framework, using Multi-Scale Dis-
criminative Robust Local Binary Pattern (MS-DRLBP) features, combined with a hybrid Convolutional
Neural Network-Radial Basis Function (CNN-RBF) classifier, to enhance the detection of DR. Inspired
by principles of randomization-based learning, our approach incorporates elements of stochastic modeling
within the CNN-RBF architecture to optimize feature extraction and classification, mirroring the efficiency
of non-iterative training processes. We enhance the model’s diagnostic capability through complex image
preprocessing techniques, such as improved noise reduction and morphological approaches. Additionally,
we use Otsu’s thresholding method to segment blood vessels accurately. Our methodology demonstrates
superior performance in DR screening, significantly exceeding traditional diagnostic methods. Specifi-
cally, our precision reached 96.10%, sensitivity was 95.35%, specificity achieved 97.06%, and accuracy
was 96.10%. This research enhances the precision of DR diagnosis by applying it to different publicly
accessible datasets. It contributes to the broader discourse on the potential of hybrid, randomization-
inspired neural networks in medical imaging. This fusion of deep learning innovation with the principles
of randomization-based algorithms opens new avenues for developing accessible, accurate diagnostic tools,
potentially alleviating the global impact of diabetic vision loss.

INDEX TERMS Diabetic retinopathy detection, fundus image, hybrid CNN-RBF, MS-DRLBP, Otsu’s
thresholding, randomization-inspired methods, retinal vessels.

I. INTRODUCTION

According to the World Health Organization (WHO), dia-
betic retinopathy (DR), glaucoma, and age-related macular
degeneration are significant contributors to visual impair-
ment [1]. These disorders can be detected and tracked using
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a non-invasive technique known as retinal fundus imaging.
The primary anatomical features visible in color fundus
images are the retina’s blood vessels, which have a critical
role in detecting these diseases, particularly in individuals
with diabetes who are at an increased risk of DR owing
to damage to the retinal blood vessels. Timely identifi-
cation, therapy, and recognition can reduce the severity
of the illness and impede its advancement [2]. Artificial
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intelligence utilizes image processing and advanced machine
learning models to accurately identify and categorize cases of
DR [3]. The integration of artificial intelligence techniques
into retinal vascular segmentation has emerged because of
this field’s progressive advancement and expansion [4].
However, traditional methods for diagnosing DR, primar-
ily involving manual segmentation by ophthalmologists, are
labor-intensive, time-consuming, and subject to variability in
results [5].

Diabetic patients are predominantly impacted by DR,
which is the primary factor behind vision loss. Patients with
diabetes are more likely to experience DR due to retinal blood
vessel damage. Therefore, identifying and isolating the blood
vessels in the retina is crucial for diagnosing DR, helping to
prevent early vision loss in diabetic patients [6]. A precise
segmented image is essential to screening fundus diseases,
their subsequent diagnosis, and their treatment. In addi-
tion to being time-consuming, arduous, and requiring expert
techniques, manual segmentation is also labor-intensive.
Variating the segmentation results between different oph-
thalmologists will result in inaccurate final segmentation
results [7], [8]. Automated retinal vessel segmentation alle-
viates the diagnostic burden for ophthalmologists, and those
with limited experience can effectively address issues. Auto-
mated methods for identifying and segmenting the blood
vessels in the retina are essential for detecting DR [9].
Nevertheless, the accuracy of blood vessel detection and
the selection of abnormal features play a significant role in
detecting retinal disease DR, which still offers researchers the
opportunity to investigate this condition. Therefore, the pro-
grammed division of retinal vessels is essential for diagnosing
and treating ophthalmic infections.

The quest for more efficient, accurate, and automated diag-
nostic methods is unending in medical imaging, particularly
in diagnosing retinal diseases such as DR. Herein lies the
innovation of our approach: We introduce a groundbreak-
ing hybrid methodology that combines a CNN-RBF-based
classifier with features from Multi-Scale Discriminative
Robust Local Binary Pattern (MS-DRLBP). This technique
is designed to automate retinal blood vessel segmenta-
tion, address manual segmentation’s inherent limitations, and
significantly enhance the precision and efficiency of DR
diagnosis. Our approach uniquely combines the strengths of
deep learning and pattern recognition algorithms, thereby
achieving a more accurate and reliable DR diagnosis. This
advancement represents a significant leap forward in retinal
disease screening.

In this paper, we elaborate on developing and imple-
menting this novel methodology, showcasing its superior
performance in classifying retinal diseases compared to
conventional methods. Our approach not only sets a new
benchmark for accurate and efficient DR detection but also
lays the groundwork for its application to a broader spectrum
of retinal diseases, potentially transforming the landscape of
ophthalmic diagnostics.
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Numerous studies have explored the application of artifi-
cial intelligence (Al) in diagnosing retinal conditions such
as diabetic retinopathy (DR), glaucoma, and age-related
macular degeneration. Previous studies have used local
binary pattern (LBP)-based feature extraction alongside tradi-
tional machine learning algorithms—such as Support Vector
Machines (SVM), Decision Trees (DT), K Nearest Neigh-
bors (KNN), and Random Forests (RF)—as well as deep
learning architectures like convolutional neural networks
(CNNis) to classify retinal diseases. Although LBP offers a
cost-effective and straightforward method for feature extrac-
tion, its locally extracted features may lack the robustness
needed for effective class discrimination. Furthermore, CNNs
typically require extensive annotated datasets and significant
computational resources for efficient classification. There is a
critical need for enhanced diagnostic algorithms that improve
accuracy in detecting and classifying retinal diseases, thereby
enabling researchers to advance in this specialized field.
Our proposed research introduces an automated threshold
algorithm for DR diagnosis based on blood vessel segmen-
tation. Furthermore, we utilize MS-DRLBP, in conjunction
with a CNN-RBF classifier to address the limitations identi-
fied in previous studies.

Our adaptation of discriminative robust local binary pat-
terns (DRLBP) allows for the effective extraction of edges
and textures from images, emphasizing pixel contrasts to
improve image brightness and contrast. The proposed method
retains contrast information, incorporating edge and texture
data for object recognition. DRLBP distinguishes objects
based on texture and shape, defined by their boundaries.
The radial basis function (RBF), known for its efficacy
in pattern classification and regression, is extensively uti-
lized in traditional machine learning applications. Our study
uses CNN-RBF classifiers for deep learning applications,
demonstrating their superior performance over contempo-
rary techniques. By employing segmented features of fundus
images, our approach innovates the training process for
RBFs, allowing for the use of labeled and unlabeled data for
enhanced classification accuracy.

Emerging in the field of explainable artificial intelligence
(XALI), it aims to improve the transparency and interpretation
of Al systems so that people may grasp the machine learn-
ing model decision-making procedures. In high-stakes fields
like healthcare, where the consequences of Al choices may
greatly affect personal life, this is especially important. Local
Interpretable Model-Agnostics (LIME) is one well-known
technique in XAI that offers understanding of individual
predictions produced by intricate models [10], [11]. LIME
is a method for locally explaining machine learning model
individual predictions instead of the model taken as whole. Its
goal is to offer understanding of the reasons behind a model’s
unique forecast for a given instance.

Contributions of this paper include:

o« We combine three distinct public datasets (STARE,

HRF, FFA), which present challenges in dataset
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complexity and generalizability that are not commonly
addressed in DR detection.

o Using a multi-scale discriminative feature extraction
approach, we employ an enhanced version of LBP,
MS-DRLBP, to extract highly discriminative features for
classifying retinal diseases.

« We have developed a novel classifier that employs deep

learning techniques to integrate CNNs’ capabilities with

RBFs.

Our study integrates XAl approaches, notably LIME,

to improve the interpretability of machine learning mod-

els in clinical contexts.

o Our approach surpasses current leading techniques for
classifying retinal diseases, as demonstrated by our com-
parative analysis.

Despite their advantages, integrating RBFs into modern CNN
architectures presents challenges due to their nonlinear acti-
vations, which can impede efficient gradient flow, and the
assumption of fixed MS-DRLBP features with predetermined
cluster centers at the outset.

The remaining sections are structured as follows: In
Section II, we review previous research, while Section III
details the dataset and methods used, including our proposed
approach. Section IV showcases the experimental outcomes,
illustrating the effectiveness of our CNN-RBF architecture on
different datasets. Section V serves as the concluding section
of the paper.

Il. RELATED WORKS
CNN models have been extensively applied to image classifi-

cation and segmentation tasks in various domains, including
diabetic retinopathy (DR), plant disease identification, and
underwater imaging [6], [12], [13], [14], [15]. The retinal
vascular organization reflects the retina’s health, a valid ana-
lytic sign. As a result, segmenting retinal blood vessels can
be a handy tool for diagnosing vascular diseases [16]. A gen-
eralized Gauss-Markov random field was utilized for noise
reduction, while a combined Markov-Gibbs random field was
applied for blood vessel segmentation. In their 2015 study,
Hassan and colleagues [17] proposed a method that utilizes
mathematical morphology combined with K-means cluster-
ing to segment blood vessels. In their study, Fraz et al. [18]
emphasized that automating the segmentation process of reti-
nal blood vessels is a crucial component of retinal disease
screening tools. It has been examined in two-dimensional
retinal images. In a study by Roychowdhury et al. [19],
a three-stage segmentation algorithm involving green channel
extraction, high pass filtering, and Gaussian mixture models
(G.M.M.s) was presented. In their study [20] Barkana et al.
segmented retinal vessels and extracted descriptive statistics
from images of different retinal diseases. These features are
used to diagnose diseases by employing methods like fuzzy
logic, artificial neural networks, SVM, and classifier fusion
techniques.

Marin et al. proposed an innovative neural network method
for the segmentation and classification of retinal vessels.
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They utilized the DRIVE and STARE datasets, which are col-
lections of retinal images used to extract vessels and analyze
the retina. Their method used a seven-dimensional vector that
combined features from gray levels and moment invariants.
[9]. By preprocessing retinal vessel images with a Gaus-
sian filter and segmenting them through curvelet transform,
Kavitha et al. evaluated the method of diagnosing diabetes
using retinal vessel images [21]. Liskowski et al. developed
a supervised approach using deep neural networks to classify
retinal images, utilizing databases such as DRIVE, CHASE,
and STARE [22].

Vasanthi and Banu extracted blood vessels from reti-
nal images by combining preprocessing, feature extraction,
and classification [23]. Images are classified as normal
or abnormal using a combination of an ANFIS and an
ELM. Morales et al. examined texture analysis’s discrimi-
nation capabilities to differentiate pathologic images from
healthy images [24], [25]. A texture discriminator called
Local Binary Patterns (LBP) distinguishes DR from AMD.
An intelligent vessel segmentation model was developed by
Sangeethaa and Uma Maheswari [26] utilizing morphological
operations, thresholding techniques, edge detection methods,
and adaptive equalization of histograms. In a study of mam-
mograms, Alkhaleefah and Wu devised a mixed approach
utilizing convolutional neural networks (CNNs) in combina-
tion with radial basis function (RBF)-based support vector
machines (SVMs) to classify breast cancer [27]. By using
transfer learning, knowledge from deep neural networks can
be taken and applied to different tasks. In 2020, Park et al.
[28] proposed a novel conditional generative adversarial
network called M-GAN for accurate retinal blood vessel
segmentation. Their approach utilized stacked deep fully
convolutional networks to balance losses and achieve robust
segmentation performance. The authors emphasized that pre-
cise blood vessel segmentation plays a crucial role in the
early detection and diagnosis of retinal disorders such as dia-
betic retinopathy. Regular retinal screenings using advanced
segmentation techniques can enable prompt identification of
vascular changes associated with diabetic retinopathy, facili-
tating early intervention.

To streamline the screening procedure, Dai et al. intro-
duced a deep learning framework called DeepDR that is
capable of detecting diabetic retinopathy across all stages,
from early onset to advanced progression [29]. DeepDR
is trained to perform real-time image quality assessments,
identify lesions, and grade. Deep learning techniques have
significantly improved applications in detection, partition-
ing, forecasting, and categorization across various medical
fields. Nadeem et al. [30] provided an extensive overview
of advancements in deep learning for diabetic DR research,
including detection, partitioning, forecasting, categorization,
and verification.

A study by Radha et al. [31] explicitly mentions that
DR can arise from harm to the blood vessels in the retina.
Ophthalmologists can identify and annotate these vessels
manually using certain clinical and geometric characteristics,
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though this process is labor-intensive. Extracting and seg-
menting the anatomy of a vessel is essential for differentiating
anormal vessel from one with recent abnormal developments.
Detecting, isolating, and analyzing the blood vessels in the
retina is a complex procedure. Prabha and colleagues studied
diabetic retinopathy, a condition where elevated glucose lev-
els in the body start impacting the vessels in the retina [32].
An adaptive histogram equalization method with contrast
limitations has been employed to improve baseline contrasts
and reduce noise. Segmentation is further divided into two
steps. The initial step involves utilizing Fuzzy C-Means clus-
tering to identify the primary retinal vessels. Subsequently,
a region-based active contour method emphasizes the blood
vessels within the targeted area.

In the study by Sivapriya et al. [33], a ResEAD2Net
design was proposed, potentially separating imperceptible
micro-vessels accurately. A self-attention approach is applied
during the network’s subsequent decoding phase to capture
higher-level semantic features, improving its capacity to dif-
ferentiate between classes and consolidate information within
a single class. The network is tested on publicly available
datasets such as CHASE_DB1, DRIVE, and STARE. Jaspreet
and Prabhpreet [34] employed image preprocessing to elim-
inate blood vessels, the optic disc, and undesirable pixels
from the retinal images. They also used the KNN classi-
fier on the Diabetic Retinopathy Database (DIARETDBI)
dataset. In 2021, Li et al. [35] introduced a network architec-
ture combining U-Net with the DenseNet model to improve
microvessel segmentation accuracy and completeness. Reti-
nal vascular segmentation was done on the public DRIVE
dataset.

Distinctive features of microaneurysm and hemorrhage
(area, major and minor axis, perimeter, etc.) are extracted
after removing morphological features from the fundus
images by the study done by Kumar et al. [36]. They stated
that their technique has improved sensitivity and specificity
for detecting DR based on DIARETDB1 data. Kamran et al.
[37] asserted that segmentation techniques based on autoen-
coding cannot restore retinal microvascular structure due to
the loss of resolution during encoding and the subsequent
inability to recover it during decoding. They introduced a
generative architecture called RV-GAN to address this issue
by segmenting retinal vascular tissue at many scales. Their
model was based on the same datasets used by Sivapriya et al.
Similarly, Zhendi et al. [38] employed a U-Net model with
a decoder fusion module (DFM) and context squeeze and
excitation (CSE) module to successfully blend multi-scale
elements on the same datasets. They gathered information
from multiple levels, thus improving the segmentation of the
fundus images.

Numerous eye health problems can be identified using
retinal blood vessels. Yubo et al. [39] focus on visual
cortex cells and orientation selection processes. They uti-
lized DRIVE, CHASE, High-Resolution Fundus (HRF),
and STARE datasets for the model analysis based on

38904

W-shaped Deep Matched Filtering (WS-DMF). The study by
Xialan et al. [40] presents a revised technique for segmenting
retinal blood vessels using a network-based approach utiliz-
ing the CHASE, DRIVE, and STARE datasets. This method
extracts various features of the blood vessels at different
scales and continuously segments them. Low contrasts in
retinal fundus images hinder segmentation. Soomro et al. [41]
accessed independent component analysis (ICA) structures
using STARE and DRIVE datasets to fix image segmentation
issues caused by uneven contrast.

The LBP is emphasized as a nonparametric descrip-
tor that effectively encapsulates local features in pictures,
rendering it very proficient for tasks including image identifi-
cation, and recognition [42]. The benefits of LBP encompass
its computing efficiency and resilience to monotonic illu-
mination variations, which are essential considerations in
medical imaging because of the large fluctuations in lighting
conditions [43].

Berbar [44] utilizes Uniform Local Binary Patterns
Encoded Zeroes for feature extraction in the classification and
grading of DR, without necessitating lesion segmentation.
This strategy mitigates a notable constraint in conventional
image processing techniques, which frequently depend on
segmentation that may introduce inaccuracies and compro-
mise the overall precision of DR identification. In a study,
Pan et al. [45] a technique for pixel selection that modifies the
sampling radius according to local gray-value distributions,
thereby improving the LBP approach to image classification
is suggested. It overcomes a significant shortcoming of con-
ventional LBP techniques, therefore overlooking the intrinsic
diversity in specific texture features.

The study by Wang et al. [46] utilized separate datasets
for image segmentation using the U-net architecture, which
demonstrated superior performance. Despite the exceptional
performance of their approach, achieving generalizability
inside the model remains a difficulty. Most image segmen-
tation studies with public data employ a single dataset for
evaluation [47], [48]. By incorporating LBP-based method-
ologies into hybrid deep learning frameworks, the proposed
study can utilize the advantages of both conventional fea-
ture extraction methods and contemporary deep learning
approaches, thereby tackling the intricacies of retinal image
analysis and enhancing detection accuracy.

IIl. MATERIALS AND METHODS
Our study focuses on advancing diagnostic methods for reti-

nal diseases, particularly diabetic retinopathy (DR), by apply-
ing sophisticated image preprocessing techniques and a
novel classification approach. Our objective is to lever-
age randomization-inspired techniques within a combined
framework of Convolutional Neural Network and Radial
Basis Function (CNN-RBF), enhanced by features derived
from Multi-Scale Discriminative Robust Local Binary Pat-
tern (MS-DRLBP). The selection of MS-DRLBP features
and the initialization process within the CNN-RBF classifier
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are guided by principles of randomness. This randomness is
not arbitrary but is strategically applied to enhance model
performance and generalizability.

A. PROPOSED APPROACH

We introduce a detailed approach incorporating advanced
image preprocessing to improve vessel segmentation, essen-
tial for precise DR detection. This method includes reducing
noise, applying morphological techniques, performing back-
ground subtraction, and using Otsu’s method for optimal
image binarization [49]. After preprocessing, the features
were extracted using a Multi-Scale Discriminative Robust
Local Binary Pattern (MS-DRLBP). Meanwhile, we also
utilized the CNN (VGG16) model to extract instant features
from the input images. Both features are combined and given
to the classifier layer to classify the images into DR and nor-
mal. This classifier embodies the constructive collaboration
of deep learning and traditional pattern recognition, offering
a robust framework for retinal disease screening. The full
process of the suggested approach is illustrated in Figure 1.

1.Dilation

1.Green Channel Extraction ~ 2.Erosion

2.Noise-Reduction 3.0pening Operation

DR-Fundus images Data set 3.Image-Enhancement 4.Closing Operations
1.STARE

2.HRF " Morphological
3FFA —> Image Preprocessing Operations

4.Combined Dataset ¢

OTSU Thresholding

Blood vessel
Segmented

Image

Feature Extraction ~
(MS-DRLBP) ( )

i Diabetic Retinopathy
Convolutional Neural
Network —> Classifier

(Feature Extraction)

1.RBF
2.NB
3.8VM
4. ANFIS
5NN
6.CNN

7.CNN-RBF .

FIGURE 1. Diagrammatic representation of the suggested diabetic
retinopathy screening process.

B. DATA ACQUISITION

Our study employs three open-access datasets: HRF (High-
Resolution Fundus), STARE (Structured Analysis of the
Retina), and FFA (Fundus Fluorescein Angiography) [50],
[51], [52], Consisting of 190 images, these datasets include
cases of DME (Diabetic Macular Edema), DR (Diabetic
Retinopathy), AMD (Age-Related Macular Degeneration),
and CNV (Choroidal Neovascularization). Due to the limited
number of images per category, we grouped these into ‘Nor-
mal’ and ‘Abnormal DR’ for analysis.

C. DATASET PREPARATION AND PREPROCESSING
In preparing the datasets for analysis, each image underwent a
standardized preprocessing pipeline to maximize the efficacy
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of subsequent classification stages. This pipeline includes
advanced algorithms for noise reduction, utilizing adap-
tive filtering techniques that mirror the adaptability inherent
in randomization-based methods. Morphological operations
and background exclusion techniques were meticulously
applied to isolate and enhance the retinal blood vessels’ struc-
tural features, with Otsu’s thresholding method employed
for optimal segmentation [49]. Otsu’s technique determines
the threshold that reduces within-class variance in the seg-
mented image, enabling automatic differentiation between
the foreground (retinal blood vessels) and the background.
This technique is particularly effective due to its non-iterative
nature, aligning with the principles of randomization-inspired
methods by reducing reliance on parameter tuning and itera-
tive optimization commonly seen in traditional thresholding
techniques.

1) PREPROCESSING

Preprocessing is necessary to enhance the image quality. This
can lead to an increase in the success rate of the suggested
approach. As shown in Figure 1, we used the model devel-
oped by Sangeethaa and Uma Maheswari. We performed five
steps, including extracting green channels, contrast enhance-
ment, morphological operations, background exclusion, and
Otsu’s thresholding [49]. The MS-DRLBP features are cho-
sen through a stochastic process that considers a randomized
subset of available features at each iteration of the model
training. This approach ensures a diverse feature set that can
capture a broad spectrum of discriminative characteristics
within the retinal images, thereby improving the classifier’s
generalization ability across various datasets. The processed
images are shown in Figure 2. The green channel is extracted
from the image to mitigate noise present in the red and
blue channels. This extracted green channel is subsequently
enhanced using CLAHE (Contrast Limited Adaptive His-
togram Equalization), which splits the total area into a small,
tiny area, improving the contrast for better blood vessel
information.

STARE Dataset

Dataset HRF Dataset FFA Dataset

RGB Image
(Before Pre-

processing)

Green
Channel
Image

CLAHE Image
(After Pre-

processing)

FIGURE 2. Preprocessed images for STARE, HRF, and FFA datasets.
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2) MORPHOLOGICAL OPERATIONS

In retinal images, morphological operations brighten small or
tortuous blood vessels. A pre-processed image is morpholog-
ically opened with a structuring element (Se) using dilation,
erosion, opening, and closing operations.

3) BACKGROUND EXCLUSION

Every image captured has a background part, which may
replicate some information that leads to incorrect diagnosis.
Therefore, removing the background is essential to facilitate
the clear analysis of foreground objects. This work uses
CLAHE image enhancement to exclude background by sub-
tracting the morphological image.

4) OTSU'S THRESHOLDING

Several global thresholding methods were employed in ear-
lier works for blood vessel segmentation from retinal images.
However, Otsu’s thresholding gives the most effective seg-
mentation performance due to its ease of implementation and
robustness. Throughout the iterative procedure, the algorithm
identifies the threshold that reduces within-class variance
by computing the combined variances of the background
and foreground classes. Greyscale colors range from 0-255
(0-1 if they are floats). If a threshold of 100 is selected,
pixels with values below 100 are designated as the back-
ground, while those with values equal to or above 100 are
classified as the foreground. The equation for calculating
within-class variance at a given threshold is provided in
Equation (1).

(1) = wpg()oj (1) + wpe (1)o7 (1) (1

here wp,(t) and wy, (¢) represent the probabilities correspond-
ing to pixels categorized as background and foreground,
respectively, based on the threshold t. Similarly, abzg and af%g
denote the variances of pixel intensities in the background
and foreground, respectively. The term o(f) embodies the
within-class variance, which is the focal point of minimiza-
tion in Otsu’s method for optimal threshold selection.

Figure 3 shows an example of the resultant input and
output images for better understanding and clarity. The
suggested methodology demonstrates high accuracy in seg-
menting blood vessels.

D. RELATION TO RANDOMIZATION-INSPIRED METHODS
Using Otsu’s thresholding and the proposed hybrid
CNN-RBF classification framework fundamentally aligns
with the essence of randomization-inspired methods. These
approaches prioritize efficiency, robustness, and the abil-
ity to operate with minimal assumptions about the data
distribution or parameter settings. The non-iterative aspect
of Otsu’s method and the adaptive nature of our pre-
processing and classification strategies embody the core
advantages of randomization—speed and generalizability—
thereby enhancing the performance and reliability of DR
detection.

38906

STARE Dataset

Dataset HRF Dataset FFA Dataset

RGB Image

Blood Vessel
Extracted

Image

FIGURE 3. Input RGB image and blood vessel segmented image for
STARE, HRF, and FFA datasets.

E. MS-DRLBP FEATURE EXTRACTION

MS-DRLBP is an enhanced form of the LBP feature descrip-
tor extensively applied in image processing. The traditional
LBP operator interprets the result as a binary number by
comparing each pixel’s neighborhood with the center value
through thresholding. MS-DRLBP improves this by examin-
ing patterns at several orientations and scales, strengthening
its robustness and discriminative power. It is accomplished
by altering the radius of the neighborhood that is consid-
ered surrounding each pixel. The inclusion of multi-scale
features is advantageous since they can capture and represent
both intricate and broad aspects of the image. MS-DRLBP
algorithm specifically targets prominent patterns that have
statistical significance within the image. By reducing the
dimensionality of the feature space, this approach prioritizes
the most valuable characteristics, resulting in improved effi-
ciency and efficacy in classification. Figure 4 represents the
MS-DRLBP feature extraction step.

Input : Blood vessel extracted image

Output : The MS-DRLBP extracted features

begin

= Step 1 : initialize a list of radii to define the scale of LBP
= Step 2 : initialize an empty list
= Step 3 : for each radii
do
Step 4: extract LBP features from the images
Step 5: determine the histogram parameters to compute how the distribution of the
binary patterns is aggregated over the image

Uy

= Step 6: nomnalize the histogram
= Step 7: append the normalized histogram to the list
End for
= Step 8:Concatenate all histograms to form a multi-scale feature vector of the image

end

FIGURE 4. Pseudo-code for the MS-DRLBP feature extraction.

F. CLASSIFICATION METHODOLOGY

Our classification strategy harnesses the power of the
high-level feature extraction capabilities of CNNs with the
conventional features extracted through MS-DRLBP for DR
classification. To thoroughly evaluate classification perfor-
mance and enhance the DR detection rate, we employed var-
ious classifiers, including NB (Naive Bayes), RBF, ANFIS,
NN (Neural Network), and SVM (Support Vector Machine).
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benchmark the performance of nuanced pattern recognition
strength of RBF networks. This combination is particularly
effective for analyzing the complex textures and patterns
in retinal images. The CNN-RBF classifier benefits from
random initialization of network weights and RBF centers.
This process incorporates a controlled level of randomness,
optimizing the diversity of the neural network’s internal
representations and enhancing its capacity to learn com-
plex patterns. Such initialization mimics the essence of
non-iterative randomization-based methods, facilitating a
more efficient solution for space exploration. Integrating
MS-DRLBP features further enriches this model, enabling
the discrimination of subtle variances between normal and
DR-affected retinal images. This method marks a significant
breakthrough in medical analysis, emphasizing the capability
of hybrid models to attain high precision in disease classifi-
cation tasks.

G. NETWORK MODEL AND TRAINING

The training of our network model involves a careful pro-
cess to enhance performance, utilizing a momentum-based
stochastic gradient descent optimizer alongside a cross-
entropy loss function. The model parameters, including
learning rate and batch size, were carefully selected to achieve
high accuracy in disease classification, demonstrating the
potential of hybrid models in medical image analysis.

CNN is a deep-learning algorithm. It is where individual
neurons are arranged in tiles to relate to a given area in a
visual field. Our work also leverages randomization-based
learning principles, which form the foundation of the
hybrid CNN-RBF architecture. Randomization-based learn-
ing employs stochastic processes during model training
or architecture design, simplifying learning and reduc-
ing computational complexity. Unlike traditional iterative
optimization methods like backpropagation, randomization-
based approaches focus on non-iterative processes or stochas-
tic initialization to efficiently learn decision boundaries.
In our model, the RBF layers integrate stochastic model-
ing to enhance feature extraction and classification without
the need for extensive iterative tuning. This results in
faster training and improved efficiency, which is especially
important for applications requiring scalable and accessible
solutions.

In the proposed approach, the segmented RBV is evalu-
ated by computing the proportion of RBV pixels correctly
identified as RBV (P), the proportion of background pix-
els accurately detected as background (N), and the overall
proportion of correctly classified pixels (T). A segmented
blood vessel image is subsequently processed by MS-DRLBP
for feature extraction and CNN-RBF for additional feature
analysis and classification as either normal or DR.

The proposed study employed different preprocessing
methods and used CNN-RBF as a feature extractor and classi-
fier. The MS-DRLBP features are integrated with the features
extracted by CNN-RBF in this study. Figure 5 shows the
CNN-RBEF classifier network model of the proposed study.
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FIGURE 5. Proposed CNN-based retinal image classification.

The present work utilizes a DNN model (VGG16) with
hyperparameter settings including a maximum of 100 epochs,
a learning rate of 0.001, and a momentum factor of 0.9, with
batch sizes tested at 8, 16, and 32. Finally, batch size 32 is
selected to achieve higher accuracy in retinal image classifi-
cation. Based on the training, the tested optimizers include
Adaptive Moment Estimation (ADAM), Root Mean Square
Propagation (RMSPROP), and Momentum-based Stochastic
Gradient Descent (SGDM), with SGDM ultimately yielding
superior results, as presented in Table 1.

TABLE 1. Hyperparameters of CNN architecture.

CNN Architecture Mm-B atch Learning Rate Traiun} ne
Size Optimizers
VGG16 32 0.0001 SGDM

IV. RESULTS AND DISCUSSION

This part outlines the experimental findings of retinal image
classification and compares them with state-of-the-art detec-
tion methods for DR, highlighting their strengths and limita-
tions. The simulation was performed on a computer equipped
with an Intel i7 processor, operating on Windows 11, run-
ning at 3.20 GHz with 16 GB of RAM. We developed and
tested the code for the proposed retinal image classification
algorithm in MATLAB software. We use 90 images from the
STARE database, 30 from the HRF database, and 70 from
the FFA database to assess the effectiveness of the proposed
system. Table 2 shows descriptions of the datasets. Table 3
shows images separated into training and testing types based
on their classes. The dataset is divided into 60% for training
and 40% for testing.

TABLE 2. Description of STARE, HRF, and FFA datasets.

Dataset Normal Image DR image

STARE 38 52
HRF 15 15
FFA 30 40
Total 83 107

In this evaluation, the performance metrics—recall, pre-
cision, sensitivity, accuracy, specificity, and F-score—of the
proposed CNN-RBF model are compared with those of SVM,
RBF, Naive Bayes (NB), ANFIS (Adaptive Neuro Fuzzy
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TABLE 3. Training and testing images for STARE, HRF, and FFA datasets.

STARE HRF FFA ALL
Dataset Nor DR Nor DR Nor DR Nor DR
mal mal mal mal

Training 22 31 9 9 18 24 49 64
Testing 16 21 6 6 12 16 34 43
Total 38 52 15 15 30 40 83 107

Inference System), CNN, and Nearest Neighbor (NN) classi-
fiers. Sensitivity, specificity, precision, accuracy, and F-score
were computed using TN (True Negative), TP (True Posi-
tive), FN (False Negative), and FP (False Positive) values,
as described in the Equations 2—6.
o True positive (TP): The DR image is appropriately clas-
sified as a DR image.
« False positive (FP): This occurs when a non-DR image
is incorrectly categorized as a DR image.
o True negative (TN): A non-DR image that is correctly
identified as a normal image.
« False negative (FN): DR image mistakenly recognized

as Normal image (NR).
L. Tp
Precision = —— 2
Tp+Fp
Sensitivi Tp 3)
ensitivity = ————
v Tp+ Fy
Specifici il @)
ecificity = ————
P Y In + Fp
2Tp
F —Score = ————— 5)
2Tp+ Fp+ Fy
T T
Acc. PEN (6)

"~ Tp+Ty +Fp+Fy
The validation split is 10% of the training data. The validation
patience is set to 8, and the objective metric is loss. So if the
loss has not decreased for eight iterations, then the training
stops. Hence, the overfitting can be evaluated.

Table 4 shows the performance of the proposed and the
conventional classifiers on three publicly available datasets,
namely, STARE, HRF, FFA, and ALL (combining all three
datasets).

The derived Friedman test statistic and its accompanying
p-value are essential for evaluating the outcomes of the pro-
posed study, which involves comparing many models across
various metrics. The test’s null hypothesis states that there
isn’t a discernible variation in the algorithms’ performance.
The null hypothesis is considered valid if the p-value is
greater than 0.05 (the significance threshold). However, with
a Friedman test statistic of 21.8108 and a p-value of 0.0013,
the null hypothesis is rejected in favor of the alternative
hypothesis. Table 5 and Table 6 shows that CNN-RBF out-
performs other models based on the average rank obtained
on accuracy and precision measure.

Across the three individual datasets as well as the
combined dataset, the proposed CNN-RBF classifier
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outperformed traditional machine learning and deep learning
algorithms. Also, the maximum accuracy of 97.30%, 91.67%,
96.43%, and 96.10% is achieved in DR classification using
STARE, HRF, FFA, and ALL datasets, respectively. In addi-
tion, the deep learning algorithms (CNN-RBF and CNN)
reported higher accuracy than machine learning algorithms
such as Naive Bayes, Nearest Neighbour, Support Vector
Machine, and ANFIS. It shows that deep learning algorithms
extract more meaningful and valuable information from the
retinal image and accurately identify the retinal diseases
from the input fundus image. Among the different machine
learning algorithms, NB reported a lower accuracy in retinal
image classification. The confusion matrix of CNN-RBF for
individual and combined datasets is depicted in Figure 6.
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FIGURE 6. Confusion matrix of the test data with CNN-RBF model.
(a) STARE, (b) HRF, (c) FFA, and (d) ALL datasets.

Figure 7 summarizes the maximum performance achieved
in retinal image classification across different datasets. All
performance measures, such as precision, sensitivity, speci-
ficity, and accuracy, showed that the proposed CNN-RBF
classifier performed at least 90% better than the baseline
classifier. Compared to other advanced methods for retinal
image classification, the proposed classifier stands out for its
simplicity and efficiency, delivering top performance across
all three datasets.
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FIGURE 7. Evaluation metrics of the proposed method in DR screening.
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TABLE 4. Performance based on test set with all models.

Techniques P(};ril:ii/e Ng;?ve PESiItSiie Nggellifve Precision (%)  Sensitivity (%)  Specificity (%)  F-score (%)  Accuracy (%) Dataset
CNN-RBF 20 16 0 1 100.00 95.24 100.00 97.56 97.30
CNN 19 15 1 2 95.00 90.48 93.75 92.68 91.89
RBF 18 15 1 3 94.74 85.71 93.75 90.00 89.19
ANFIS 18 14 2 3 90.00 85.71 87.50 87.80 86.49 STARE
NN 17 14 2 4 89.47 80.95 87.50 85.00 83.78
NB 16 13 3 5 84.21 76.19 81.25 80.00 78.38
SVM 18 13 3 3 85.71 85.71 81.25 85.71 83.78
CNN-RBF 6 5 1 0 85.71 100.00 83.33 92.31 91.67
CNN 5 5 1 1 83.33 83.33 83.33 83.33 83.33
RBF 4 5 1 2 80.00 66.67 83.33 72.73 75.00
ANFIS 5 3 3 1 62.50 83.33 50.00 71.43 66.67 HRF
NN 3 4 2 3 60.00 50.00 66.67 54.55 58.33
NB 3 3 3 3 50.00 50.00 50.00 50.00 50.00
SVM 4 5 1 2 80.00 66.67 83.33 72.73 75.00
CNN-RBF 15 12 0 1 100.00 93.75 100.00 96.77 96.43
CNN 14 12 0 2 100.00 87.50 100.00 93.33 92.86
RBF 14 11 1 2 93.33 87.50 91.67 90.32 89.29
ANFIS 13 11 1 3 92.86 81.25 91.67 86.67 85.71 FFA
NN 12 10 2 4 85.71 75.00 83.33 80.00 78.57
NB 13 10 2 3 86.67 81.25 83.33 83.87 82.14
SVM 15 12 0 1 100.00 93.75 100.00 96.77 96.43
CNN-RBF 41 33 1 2 97.62 95.35 97.06 96.47 96.10
CNN 38 32 2 5 95.00 88.37 94.12 91.57 90.91
RBF 36 31 3 7 92.31 83.72 91.18 87.80 87.01
ANFIS 36 28 6 7 85.71 83.72 82.35 84.71 83.12 A;_“III‘UES;?;SE’
NN 32 28 6 11 84.21 74.42 82.35 79.01 77.92 ?
NB 32 26 8 11 80.00 74.42 76.47 77.11 75.32
SVM 37 30 4 6 90.24 86.05 88.24 88.10 87.01

TABLE 5. Rank based on accuracy metric.

Dataset Cé\g\F" CNN RBF ANFIS NN NB SVM
STARE 1 2 3 4 55 7 55
HRF 1 2 35 5 6 7 35
FFA 15 3 4 5 76 15
ALL 1 2 35 5 6 7 35
AverageRank 1.125 225 35 475 6125 675 3.5

TABLE 6. Rank based on precision metric.

Dataset CRI\];I;I_ CNN RBF ANFIS NN NB SVM
STARE 1 2 3 4 5 7 6
HRF 1 2 3.5 5 6 7 3.5
FFA 2 2 4 5 7 6 2
ALL 1 2 3 5 6 7 4

Average Rank  1.25 2 3375 4.5 6 6.75 3.875

Since VGG16 forms the framework for the CNN-RBF, its
computational cost will be comparable to that of a regular
VGG16 model, with extra estimations needed for the RBF
layer. Both CNN and NN algorithms have time complex-
ity that is associated with matrix multiplications. However,
CNNs often incur larger computational costs due to the
convolutional operations they perform. RBF requires a lot
of computing power because it calculates distance. ANFIS
is commonly regarded as computationally intensive since it
involves the integration of fuzzy logic with neural networks.
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NB is extremely efficient because of its straightforwardness
and lack of dependency on feature computations. SVM can
incur significant computational costs, particularly when deal-
ing with huge datasets and intricate kernels.

Our study stands out by utilizing three distinct public
datasets, which present challenges in dataset complexity and
generalizability that are not commonly addressed in DR
detection. This element of our research highlights the capac-
ity of our technique to adjust and excel in diverse datasets,
a substantial obstacle in medical image analysis that is essen-
tial for practical applications. The primary contribution of our
work is in the innovative methodology that integrates several
preprocessing approaches. The CNN-RBF is employed as
both a feature extractor and a classifier.

CNNs are very good at automatically deriving hierarchi-
cal feature representations from unprocessed input, such as
photographs. The network can further hone these acquired
properties by including RBF layers in CNN designs, pos-
sibly enhancing class discrimination. The capacity of RBF
networks to simulate intricate, nonlinear interactions between
inputs and outputs is well established. Adding RBF lay-
ers to CNNs can improve the network’s ability to model
non-linearly and identify more complex patterns in the data.
RBF networks and CNNs use distinct learning processes and
capacities. Their integration makes Complementary learning
possible, allowing each network node to concentrate on a
distinct part of the input. Compared to using either architec-
ture alone, this may increase overall performance. Since RBF
networks identify nonlinear correlations and CNNs learn the
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TABLE 7. Comparison of the proposed study with previous research based on retina segmentation.

Reference and Models Dataset F-score (%) Sensitivity (%)  Specificity (%)  Accuracy (%)
[20] Fuzzy+ANN+SVM STARE - 70.14 98.46 95.53
[42] ICA STARE - 78.60 98.20 96.70
[37] RBFNN DIARETDBI - 87.00 93.00 -
[38] RV-GAN STARE 83.23 83.56 98.64 97.54
[36] Dense-U-Net DRIVE - 79.31 98.96 96.98
[35] KNN DIARETDBI - 92.60 87.56 95.00
[49] Attention+U-Net STARE 83.94 80.06 98.66 97.96
[34] ResEAD2Net STARE - 90.24 99.01 98.07
[39] U-Net STARE 82.98 78.11 98.80 96.60
STARE - 84.48 98.54 96.13
[40] WS-DMF HRF - 83.78 99.75 95.71
[41] MU-Net STARE - 82.64 98.21 96.93
Our Proposed study, CNN-RBF STARE 97.56 95.24 100.00 97.30
HRF 92.31 100.00 83.33 91.37
FFA 96.77 93.75 100.00 96.43
ALL 96.47 95.35 97.06 96.10
spatial hierarchies of features, their combination can gener-
alize well to previously unknown data. This generalization
capacity is essential for real-world scenarios where the model
must function well on fresh, untested data. The comparison
of previous studies is represented in Table 7. Normal
Figure 8 represents the LIME explanations of the image
classification model, explaining the model’s decision-making
process based on attributes from fundus images. The image
illustrates the beneficial outcomes derived from the predic-
tion. The crucial characteristics affecting the categorization
are readily indicated by the yellow outlines.
Diabetic
A. LIMITATIONS AND FUTURE WORKS Retoopetiy §

The proposed methodology performed well in retinal image
classification with a limited number of features and with
less computational complexity, but it has a few significant
limitations:

o The proposed methodology has been designed and eval-
uated using only three publicly available datasets with a
relatively small number of images. As a result, its robust-
ness may be limited when applied to unseen datasets.
Testing with a broader range of datasets is necessary to
validate and generalize the proposed approach. Addi-
tionally, augmentation techniques could be employed
to generate more samples, enhancing the training and
testing of the DR detection model.

« Future studies might focus on hybrid models combining
the effective learning processes of random vector func-
tional link networks with CNNs.

38910

FIGURE 8. The LIME explanation for the normal and diabetic retinopathy
images.

« A future approach involves employing advanced opti-
mization techniques like Particle Swarm Optimization
or Bayesian Optimization for hyperparameter tuning
to enhance the model’s performance and generalizabil-
ity. These methodologies offer a more systematic and
cost-effective approach for determining ideal hyperpa-
rameter combinations compared to traditional grid or
random search methods.

« Another improvement is the integration of diverse med-
ical data, such as fundus pictures, clinical information,
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and temporal health records, using multi-modal trans-
former networks. This method facilitates thorough, con-
textually enriched learning that integrates cross-modal
interactions within a single framework.

V. CONCLUSION

This study introduces an innovative hybrid classifier that
combines Convolutional Neural Network and Radial Basis
Function (CNN-RBF) models, integrated with Multi-Scale
Discriminative Robust Local Binary Pattern (MS-DRLBP)
features, to improve the detection of diabetic retinopathy in
retinal images. A key aspect of our approach is the deliber-
ate integration of randomization-inspired techniques, which
greatly improve the model’s efficiency, robustness, and flexi-
bility. Our methodology highlights the potential of combining
deep learning with elements of randomness to achieve supe-
rior performance in medical image analysis, particularly in
the challenging domain of retinal disease detection.

Our work contributes to the burgeoning field of
randomization-based learning algorithms by demonstrating
the practical advantages of integrating randomization prin-
ciples within deep learning frameworks. Our approach’s
efficiency gains, and improved generalizability underscore
the value of randomization-inspired methods in addressing
complex biomedical imaging tasks. Furthermore, our com-
parative analysis with traditional and randomization-based
methods highlights the efficacy of our model, marking a
significant step forward in applying randomization principles
to enhance diagnostic accuracy and computational efficiency.

Looking ahead, we envision several promising direc-
tions for future research. First, exploring the application of
our methodology to other medical imaging modalities and
disease detection tasks could further validate its versatil-
ity and impact. Also, investigating deeper integrations of
randomization within the architecture of CNNs and RBF
networks can unlock new levels of performance and effi-
ciency. Finally, developing theoretical models to understand
better the interaction between randomization and deep learn-
ing could provide valuable insights into the design of future
randomization-based learning algorithms.

In conclusion, our study not only contributes a novel and
effective tool for diabetic retinopathy detection but also opens
new avenues for research in randomization-based deep and
shallow learning algorithms. By bridging the gap between
traditional deep learning methods and randomization-based
approaches, we pave the way for the next generation of
efficient, robust, and adaptable models for medical image
analysis and beyond.
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