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Abstract— The objective of the study is to identify the most
optimal set of hyperparameters for a machine learning (ML) or
deep learning(DL) algorithms that improves its performance on a
certain task.. This study uses five machine learning methods like
Decision Tree(DT), Random Forest(RF), Gradient Boost
Models(XGBoost), Support Vector Machine(SVMs) and K-
Nearest Neighbhor(KNN). The model specific parameters were
applied to all these ML methods to improve the accuracy of the
models. The ML models performance with its hyperparameter
tuning are evaluated for performance using the performance
metrics like accuracy, precision, Recall and F-score. These
findings indicate that XGBoost models performed significantly in
terms of accuracy, precision, recall, and F1-score. Gradient
boosting models are extremely adaptable, but they are also
sensitive to hyperparameters such as the learning rate, number of
estimators, and tree depth. Tuning these parameters can
dramatically improve performance. The optimal model and
tuning method are determined by the dataset, task specifications,
and computing power.. The contribution of the study to suggests
a suitable with right hyperparameter settings to develop a highly
flexible model that can adapt to a variety of datasets. The study
and application of model-specific hyperparameters in ML
continues to evolve, resulting to advances that improve
productivity, durability, and generalization.

Keywords—Machine Learning, Hyperparameter, Optimization,
Decision Tree(DT), Random Forest(RF), Gradient Boost
Models(XGBoost), Support Vector Machine(SVMs) and K-Nearest
Neighbhor(KNN).

|. INTRODUCTION

The hyperparameters of a learning algorithm are the values
that govern the process of learning and decide the final
parameters of the models. The goal of hyperparameter
optimization(HPO) is to find the ideal hyperparameter settings
so that you can receive good results from data as rapidly as
possible. Machine learning(ML) is based on algorithms that
adjust to changing settings and improve their respective
efficiency over time. Hyperparameter adjustment is a vital step
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in enhancing the effectiveness as well as performance of
ML or Deep Learning(DL) models. Considering the enormous
dimensionality of hyperparameter spaces and the
computational cost of training deep models, efficient
optimization strategies are critical. Properly calibrated
hyperparameters have a direct impact on the model's ability to
learn patterns from data, generalize to new data, and meet
specific criteria for real-world applications. Learning rate,
batch size, and regularization strength are all important
hyperparameters that affect a model's capacity to converge to
an optimal solution[1].

A model that is overly sophisticated or lacks proper
regularization works well on training data but poorly on
validation/test data (overfitting). When the model is too
simplistic or hyperparameters such as learning rate or
maximum depth are not properly specified, it fails to reflect
the data's complexity (underfitting).Proper hyperparameter
adjustment ensures that model intricacy and generalization are
balanced. Models with hyperparameters that are optimized can
scale efficiently to huge datasets or high-dimensional issues
without experiencing severe performance deterioration.

Advanced models such as transformers, convolutional
neural networks (CNNs), and gradient boosting machines
(GBMs) frequently rely extensively on hyperparameters for
performance. Some algorithms (e.g., decision trees, random
forests) can be simplified by changing hyperparameters such
as the maximum depth or minimum samples per leaf without
losing performance, hence enhancing interpretability.
Hyperparameters might include model-specific, regularization,
feature selection, and optimization parameters. This research
focuses on assessing the effectiveness of model-specific
hyperparameters (MSHs). MSHs are hyperparameters that are
specific to one type of ML or DL algorithm. Hyperparameters
influence the model's architecture, behavior, and optimization
process, all of which have a substantial impact on
performance. Common hyperparameters for models include
learning rate, number of layers, number of neurons per layer,
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and so on. Hyperparameters have a significant impact on how
well ML models perform with unseen, out-of-sample data.The
study of model-specific hyperparameters is important to
significantly increase the efficacy of the models and to build a
optimized ML models. The major contributions of the study is
to

e Identify and explore the MSH’s for ML models to
improve the performance of the models

e Evaluate the ML models like DT, RF, XGB, SVM and
KNN  with and without hyperparameter settings to
suggest an effective ML model.

Il. LITERATURE SURVEY

Arnold et al., 2024 demonstrate the risks of ignoring model
and tuning transparency when comparing machine learning
models' capacity to forecast electoral violence from tweets.
Hyperparameter tuning and documentation should be included
as normal components of robustness assessments for ML
models[2].

Bakere et al., 2024 discuss the critical relevance of
hyperparameter optimization in complex machine learning
models, specifically image classification tasks. Given the
impracticality of manual tuning in the face of increasing
complexity, the study thoroughly examines eight automated
the optimization methods: grid search, random search,
Gaussian  process Bayesian optimization (BO), Tree
Parzenestimator BO, Hyperband, BO/Hyperband hybrid,
genetic algorithms, and particle swarm optimization.
Assessments consider a variety of model topologies and
performance criteria, including accuracy, mean squared error,
and optimization time[3].

Raiaan et al., 2024 investigate a variety of widely utilized
strategies, including metaheuristic, statistical, sequential, and
numerical approaches, for fine-tuning CNN hyperparameters.
Our study provides a comprehensive classification of these
HPO techniques and explores into the core notions of CNN,
describing the role of hyperparameters and their modifications.
Furthermore, an extensive literature study of HPO methods in
CNN that use the aforementioned algorithms is conducted[4]

Hyperparameters are crucial for measuring prediction
performance in ML models. To avoid extremes, they maintain
a balance between overfitting and underfitting of research-
independent variables. Manual tuning and automated
procedures are used to determine the ideal combination and
permutation for the model's performance. Li et al., 2024
investigates the pursuit of the optimum fit using different
hyperparameters[5].  Fine-tuning hyperparameters for ML
algorithms is a computational difficulty due to the problem
space's vast size. It emphasizes MSH’s as an important topic
of study for both practitioners and scholars[6].

I1l. PROPOSED METHODOLOGY

Model-specific ~ hyperparameters ~ are  variables  or
configurations that are customized to a particular ML or DL
model. unlike generic hyperparameters (such as learning rate
and batch size), these specialized parameters are strongly
related to the model's basic framework or algorithm and have
a direct impact on how the framework learns or acts. Each

type of ML model has distinct hyperparameters that affect its
performance.

A. Decision Trees

Decision trees are a common ML model for classification and
regression tasks. Their efficacy and comprehensibility are
largely dependent on the correct calibration of MSH’s. The
key parameters of DT models are as follows

Maximum depth refers to the maximum number of layers in
the tree. A deeper tree enables for more complicated patterns
to be captured, but it also increases the risk of overfitting. A
smaller depth reduces overfitting but may result in
underfitting. Experiment with different settings to find the
right mix between bias and variance.

Minimum number of samples needed to split an internal node.
Larger values create broader splits, which reduces overfitting
but may miss smaller patterns. Smaller values allow for deeper
growth, but they may lead to overfitting.

Minimum Samples Leaf. The minimal number of samples
necessary for a leaf node. Larger values lead to less splits and
simpler trees. Smaller numbers can capture finer information
but may result in overfitting. It is to be set in proportion to the
dataset's size

Maximum Features: The maximum amount of features used to
determine the optimal split. Lower values have lower
computational cost and the risk of overfitting, but they may
miss significant splits. Larger values offer for greater feature
selection options, but they also raise the risk of overfitting.

Criteria: The criteria used to assess the quality of a split. Gini
impurity is an often used option. Gini impurity, entropy, and
MSE.

Splitter: This approach determines the split at each node. The
options include Best and Random.

The maximum number of leaf nodes in a tree restricts the
number of terminal nodes, preventing overfitting.

Class Weight: Weights connected with classes to manage class
imbalance, which assists in boosting accuracy for minority
classes.[7]

B. Random Forests

Random Forests are learning models that aggregate numerous
decision trees' forecasts to improve accuracy, durability, and

generalizability. A RF model's performance is highly
dependent on its hyperparameters.
Gradient Boosting Models Number of Estimators: It

represents the total number of decision trees and A bigger
number of trees improves performance by lowering variation,
but it also increases training time. Too many trees can lead to
declining benefits and higher computing cost (0 to 1000).

Maximum Depth: The maximum depth of each tree. Deeper
trees allow more complex patterns to be captured but increase
the risk of overfitting(5 to 50)

Minimum Samples Split: The smallest number of samples
necessary to split an internal node. Larger values keep the tree
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from oversplitting, which reduces overfitting. Smaller
numbers allow the tree to grow deeper, potentially overfitting
(2,5, 10).

Minimum Samples Leaf: The minimal number of samples
necessary at each leaf node. Larger values result in simpler
trees and assist in avoiding overfitting. Smaller numbers allow
capturing finer features, but may lead to overfitting. (1-10)

Maximum Features : The maximum amount of features to
evaluate while determining the optimum split. Smaller values
minimize the complexity of models and overfitting, but they
may miss key characteristics. Larger values add complexity
and raise the risk of overfitting.

Bootstrap: Whether to create each tree using bootstrapped
samples. Randomness, when set to True (the default),
increases tree diversity while decreasing overfitting and set to
False, all trees are trained on the same dataset, which reduces
randomness while enhancing correlation.

Class Weights: Weights are allocated to classes to address
class imbalance. It helps to keep the algorithm from being
skewed towards the majority class.

Maximum Leaf Nodes : Reduces the amount of leaf nodes in
each tree. It minimises overfitting by reducing the tree
structure. It may impede the model's capacity to learn intricate
patterns.

Minimum Impurity Decrease : A node will only be divided if
the impurity decrease is at least this value . It reduces
overfitting by discarding splits with insufficient information
gain.

Random State: Description A seed for the random number
generator. It assures that the results are reproducible [8,9].

C. Gradient Boosting Models

Gradient Boosting Models (GBMs) are collaborative methods
that construct decision trees in a sequential order, with each
tree attempting to fix the faults of the preceding one. The
hyperparameters unique to GBMs govern the characteristics of
individual trees, the boosting process, and overall complexity
of the model[10].

Maximum Depth: The maximum depth of a tree. Larger depth
allows for the capture of more complicated patterns, but it also
increases the risk of overfitting. Deeper trees are faster and
less prone to overfitting, but they may also underfit.

Minimum Samples Split / Minimum Data in Leaf: The
minimum amount of samples needed to split a node. Larger
numbers avoid over-splitting and overfitting, whereas smaller
values allow trees to develop deeper and capture more features
(2-20).

Number of Leaves: The maximum number of leaves in a tree.
More leaves complicate the model and increase the danger of
overfitting, whereas fewer leaves simplify the model and
reduce the likelihood of overfitting.

Subsample: The proportion of training data utilized to create
each tree. Values less than 1 introduce randomization to avoid

overfitting, whereas values around 1 employ more data per
tree, boosting accuracy but raising overfitting risk (0.5-1).

Learning Rate: Reduces the impact of each tree. Smaller
values result in slow but more precise learning, while bigger
values cause the model to learn quickly but risk overshooting
(0.01-0.3).

Number of Estimators: The total number of tree and larger
number of trees enhances accuracy but increases training time
and the risk of overfitting, whereas too few trees may underfit
the data (100-1000).

Boosting Type: Gradient Boosting, Dart, and GOSS

L1 and L2 Regularization penalizes leaf weights to prevent
overfitting and bigger values. reduce overfitting, and smaller
numbers give more flexibility but risk overfitting (0-10)

Minimum Loss Reduction: The minimum amount of loss
required to split further. Larger values inhibit splitting nodes
with minimal gain, whereas smaller values encourage finer
splits, which adds complexity.(0-1)

Column subsampling refers to the fraction of features used for
each tree. Smaller numbers introduce unpredictability,
minimizing overfitting, whereas bigger values use more
features, raising the danger of overfitting(0.5-1).

Column Subsampling by Level: The fraction of characteristics
used at each tree level (XGBoost-specific). Adds an extra
layer of unpredictability to tree creation.

Feature Fraction is equivalent to column subsampling for
LightGBM(0.5-1).

Random Seed: Regulates randomness for reproducibility,
ensuring consistent outcome

Objective function is the loss function that is optimized during
training.

Verbosity refers to the level of output logging.It manages
debugging and monitoring while training .

D. Support Vector Machines (SVM)

Support Vector Machines (SVMs) are supervised learning
models commonly used in classification, regression, and
outlier detection. The performance of SVM is heavily
influenced by the hyperparameters used, which govern the
operation of the decision limit, kernel operation, and the
optimization procedure [11].

Regularization Parameter: Specifies the trade-off between
achieving a low error on training data and increasing the
margin (0.0001-1000).

Kernel Type: A function that converts input data to a higher-
dimensional space. The kernel contains linear, poly, rbf, and
sigmoid.

Gamma: Measures the impact of a single training example.

Degree denotes the degree of the polynomial kernel function.
Higher degrees enable collecting more complicated patterns,
but require processing and the danger of overfitting (2-5).
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Class Weight: Changes the penalty for misclassifying classes
to solve class imbalance. The options include none, balanced,
and user-defined.

Probability: Allows for probability estimates by completing
extra calculations during training. It is useful for applications
that require probability values rather than class labels, but it
increases training time.

Tolerance is the terminating criterion for an optimization
process. Smaller values produce accurate outcomes but
increase training time, whereas bigger values accelerate
training at the expense of potentially inferior solutions
(0.0001-0.01).

Shrinking Heuristic: Indicates if the shrinking heuristic is
employed to accelerate training. True indicates faster
convergence, while False indicates somewhat better results but
slower training.

Decision Function: Defines how the decision boundary is
determined for multiclass problems.

Kernel Coefficient: Limits the impact of higher-order terms in
polynomial and sigmoid kernels, with higher values increasing
the model's complexity (0-1).

E. K-Nearest Neighbhor

K-Nearest Neighbors (KNN) is a basic but powerful non-
parametric technique for classification and regression. Its
performance is heavily impacted by hyperparameters that
control how neighbors are chosen and weighted[12].

Number of Neighbors: The number of nearest neighbors to
consider when generating forecasts. For smaller values of
n_neighbors, the model appears sensitive to noise and more
prone to overfitting, whereas for bigger values of n_neighbors,
the model becomes more refined and robust but risks
underfitting (3-20).

Metric: Indicates how distances between points are estimated.
The possibilities include Euclidean, Manhattan, Minkowski,
Hamming, and custom values. Depending on the feature
distribution, alternative distance metrics may represent
relationships in the data more effectively.

Minkowski Power Parameter:
for the Minkowski distance(1-3)

Weights: Determines how much the neighbors contributes to
the prediction. The options are uniform, distance, and user-
defined. The uniform option is suited for equally dispersed
datasets, and in terms of distance, closer neighbors have larger
influence.

Defines the power parameter

Algorithm: The technique used to find the nearest neighbors.
The possibilities are: auto, ball_tree, kd_tree, and brute. The
Ball Tree and KD Tree are faster for large datasets, although
their performance is dimensionally dependent.

Leaf Size: The number of points in a leaf in Ball Tree or KD
Tree algorithms. The smaller values of these parameters are
more exact but slower computations, whilst the bigger values
are faster but may diminish accuracy (20-50). Table 1 lists the

model specific key parameters for the ML models liks dT,
RF, XGB, SVM and KNN

Table 1 Common model specific parameters of ML models
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Objective
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Verbosity | - -

IV. RESULTS AND DISCUSSION

The tests were conducted in Python, and this work used
two datasets (CIC-1DS2017, UNSW-NB15)[13] to assess the
performance of hyperparameter tuning in DT, RF, XGB,
SVM, and KNN. This study used performance metrics
including as accuracy, precision, recall, and the F1-score.To
establish these parameters, data on the distributions of true
positives (TP), false positives (FP), and false negatives (FN)
are required.

e Accuracy refers to the proportion of correctly identified
samples (positive and negative) out of the total number of

samples.
TP+FN
Accuracy = ————— 1)
TP+FP+FN+TN
e Precision: How many anticipated positives are actually
positives?

TP
TP+FP (2)
e Recall (Sensitivity : How many genuine positives were
successfully identified?

Precision =

TP

Table 2 shows the performance measures values of DT, RF,
XGB, SVM and KNN ML models with and without hyper-
parameter settings .The percentage of accuracy, precision ,
recall and f1-Scores is found to be less before the
hyperparameter tuning. Moreover, the XGB models
performance with hyperparameters yields better results than
the RF, SVM and KNN.
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Recall = 3)
TP+FN
e Fl-score: The harmonic mean of precision and recall.
Precision*Recall
F1—Score =2+ Precision+Recall (4)
Table 2 (a) : Performance metrics of the ML models
Methods/M Accuracy Precision
easures Without With Without With
hyperpara | hyperpara | hyperpara | hyperpara
meter meter meter meter
tuning tuning tuning tuning
DT 0.86 0.96 | 0.905263 | 0.974359
RF 0.865 0.905 | 0.910526 | 0.926316
XGB 0.89 0.93 | 0.951872 | 0.952632
SVM 0.85 0.895 | 0.909091 | 0.925134
KNN 0.855 0.9 | 0.919355 | 0.930481
Table 2 (b) : Performance metrics of the ML models
Methods/M Recall F1-Score
easures Without With Without With
hyperpara | hyperpara | hyperpara | hyperpara
meter meter meter meter
tuning tuning tuning tuning
DT 0.971751 | 0.989583 0.93733 | 0.981912
RF 0.97191 | 0.972376 | 0.940217 | 0.948787
XGB 0.962162 | 0.973118 | 0.956989 | 0.962766
SVM 0.965909 | 0.96648 | 0.936639 | 0.945355
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Figure 1. Performance Measures for Decision tree
model(With and Without byperparameters)
Figure 1 depicts a graphical representation of the DT model's
performance in analyzing model efficiency before and after
hyperparameter settings. It is apparent that the effectiveness of
data classification is higher for all evaluation parameters that
include the essential hyperparameters of DT approaches.
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Figure 2. Performance Measures for Random Forests(RF)

model(With and Without byperparameters)
RF  performance can improve dramatically after
hyperparameter tweaking since it is largely reliant on critical
parameters that determine the quantity, depth, variety, and
decision-making of trees in the ensemble. Figure 2 shows the
RFs model's performance in measuring model efficiency
before and after hyperparameter changes. It is clear that the
effectiveness of data categorization is greater for all
assessment factors, including the critical hyperparameters of
the RF technique..
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Figure 3. Performance Measures for XGB model(With and
Without hyperparameters)
Figure 3 depicts the XGB model's performance in estimating
model efficiency before and after hyperparameter adjustments.

Data classification clearly outperforms all assessment
variables, including the XGB technique's crucial
hyperparameters.
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Figure 4. Performance Measures for Support Vector
Machine(SVM) (With and Without byperparameters)
SVM are extremely effective at classification and regression
tasks, but their performance is significantly dependent on
hyperparameter settings. Figure 4 depicts the SVM maodel's
performance in terms of model effectiveness prior to and
following hyperparameter adjustments. All evaluation criteria,
including the critical hyperparameters of the SVM technique,

clearly demonstrate that data classification is more effective.
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Figure 5. Performance Measures for K-Nearest Neigbhor
Model(KNN)(With and Without byperparameters)
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The performance of the KNN algorithms before and after
hyperparameter adjustment frequently varies dramatically due
to the model's sensitivity to its hyperparameters. After
hyperparameter optimization, KNN improves prediction
accuracy and robustness significantly, although these benefits
may come at the expense of slightly lower computational
efficiency during inference. Proper tuning, when combined
with approaches such as dimensionality reduction or efficient
data structures, can successfully balance accuracy and
processing costs. Figure 5 depicts the KNN model's
performance in terms of model effectiveness before and after
hyperparameter changes. All evaluation criteria, including the
essential hyperparameters of the KNN approach, show that
data categorization is more effective.

Gradient boosting models are extremely adaptable, but
they are also sensitive to hyperparameters such as the learning
rate, number of estimators, and tree depth. Tuning these
parameters can dramatically improve performance. These
models feature several hyperparameters (e.g., learning rate,
number of trees, max depth) that affect complexity and
regularization, and their success is frequently closely related to
fine-tuning. Hyperparameter tweaking has the greatest
influence on sophisticated models such as Gradient Boosting
(XGBoost, LightGBM), and Neural Networks. These models
are extremely adaptable and can handle a wide range of
datasets, but their success is greatly dependent on determining
the proper settings. Hyperparameter adjustment has a smaller
influence on simpler models, such as Naive Bayes or Logistic
Regression.

V. CONCLUSION

This study employs five ML techniques: DT, RF, XGB,
SVM and KNN. All of these ML algorithms were given
model-specific parameters in order to increase their accuracy.
The performance of ML models with hyperparameter tuning is
measured using measures such as accuracy, precision, recall,
and F-score.The results suggest that XGBoost models perform
better in terms of accuracy, precision, recall, and F1-score.
Furthermore, the proper model and tuning method are
determined by the dataset, task requirements, and computing
power. HPO is critical for developing efficient, accurate, and
generalizable machine learning models. By methodically
tuning hyperparameters, practitioners may ensure that their
models perform optimally, adapt to varied tasks, and function
within resource restrictions. This phase is essential for
effectiveness in both practical applications and research.
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