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Abstract
Authorization is essential for handling document assurance and security. Nowadays, it constitutes one
of the top responsibilities for securing information and effectiveness in every domain. Technological
advances havemade interactions withmachinerymore effortless. As a result, the demand for
authentication for various legitimate causes is growing rapidly. Therefore, biometric-based identifica-
tion has dramatically accelerated. This is an improvement over the other approaches. The present
work is intended to apply convolutional neural networks formining features and supervisedmachine-
learning techniques to verify handwritten signatures. Raw images of signatures were used to train the
CNNmodels for feature extraction and data augmentation. In the present work, pre-trainedCNN
models, such as VGG16, Inception-v3, ResNet50, andXception, were used to separate authentic from
fake signatures. Supervised learningmethods, including Logistic Regression and SVM,were used to
classify features. The test datawere obtained from the ICDAR2011 SignatureDataset. The results
obtained from the present work showed a clear improvement over traditionalmethods over 69
different signatures. VGG-16with RMSProp achieved an impressive validation accuracy of 83%,
demonstrating robustness withminimal overfitting. Comparedwith existing techniques, the
proposed deep learning approach proved to bemore accurate and reliable for signature verification.

1. Introduction

Signature verification and forgery detection are crucial steps for authenticating an individual’s identity and
confirming the legitimacy of their signatures [1]. The authenticity of signatures is a prominent issue in various
sectors, such asfinance, legal documents, and contracts. It is accepted as one of themost widely used biometric
authentication approaches. There are two primary types of signature verification: static, offline, dynamic, and
online [2], which are often used. In static verification, signatures arewritten on paper and scanned for further
testing, capturing only the image of the signature without considering any dynamic characteristic features [2]. In
contrast, dynamic or online verification occurs when a person signs digitally on an electronic gadget, such as an
iPad or tablet [3]. Thismethod captures not only the visual signature but also dynamic traits, such as pressure,
speed, and stroke patterns, adding an extra layer of security and reliability [4] to increase the accuracy of the
signature verification procedure.

Although static verification is one of the basic verificationmethods and can be sufficient for initial identity
validation, online verification offers a supplementary comprehensive approach,making it ideal for applications
requiring high-level security. The present study focuses on an online signature verificationmethodwith the
primary objective of developing a robust real-time signature verification systemusing advanced deep learning
techniques, leveraging pre-trainedConvolutional NeuralNetworks (CNNs) such as VGG16, Inception-v3,
ResNet50, andXception, which are optimized to extract unique features from signatures for enhanced
classification [5].
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The present work also uses optimization algorithms such as Adam, RMSProp, and SGD to improve the
model performance further, ensuring high accuracy in distinguishing between genuine and forged signatures.
These innovations enable the system to adapt to varying signature styles, overcoming the challenges posed by
intrapersonal variations in signing behavior [6]. The present work can solve the problems of online signature
verification in numerous real-world applications inwhich quick, reliable, and secure identity verification is
paramount, including banking, e-commerce, and legal documentation. By utilizing cutting-edge CNNmodels
and optimization techniques, this study aims to offer a scalable and efficient solution for real-time online
signature authentication, ensuring both security and ease of use in biometric-based identity systems.

1.1. Problem statement
Since the early 1990 s, significant research has been conducted to address the challenges of offsite handwritten
signature identification using the available techniques. Differentmethods have been investigated, with notable
contributionsmade by Jose Lopes et al [7], who establishedmultiple approaches to enhance the accuracy of
signature verification. Despite these advancements in techniques for verifying signatures,many challenges
remain in achieving high accuracy and reliability for detecting forgeries [8]. Figure 1 shows an overview of
importantmilestones and breakthroughs in signature verification practices over the years.

Moreover, Hsin et al [9]used aCNNapproach to verify offline signatures. They identified forgery signatures
appropriate for various business circumstances, such as bank check payment sign verification procedures based
on human assessment. The authors developed aCNN framework as shown infigure 2.

These layers, known as Convolutional Girshick [10], use numerous convolutionfilteringmethods (or
convolution kernels) to separatemore advanced data from lower-level data, including identifying boundaries,
angles, connecting scores, and numerous other image characteristics. Here, the author employs a pooling layer

Figure 1.Overall signature detection survey during the year 1980-present [7].

Figure 2. Framework of convolutional neural network [9].
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in the order of Schener et al [11] to lower the characteristicmap dimensions, which results in faster convergence
rates for connections, because using numerous filters for convolution significantly increases the overall
dimension of the characteristic image andmust be accompanied by tiresome computations [12]. FCC layers
then receive allmultifaceted characteristicmappings as feeds in the formof a single-dimensional vector of
features to produce predicted classes for subsequent categorization assignments. An adequately connected layer,
an ordinary perceptronwithmultiple layers (MLP), was employed in a previous study [13].

Moreover, the Inception v1 and Inception v3models, alongwith aCNN,were utilized by Jahandada et al
[14] to verify the offline signatures. In this study, we propose theVGG-16, InceptionV3, ResNet 50, and
Xceptionmodels in the present experiments because they are well designed, exposing the immense capability of
VGG16 to identify online forgery signatures.Moreover, optimization algorithms include SGD, RMSProp,
Adagrad, andAdam to obtain an optimal solution for detecting and verifying whether a signature is forgery.

Themain intention of this researchwork ismentioned as follows

• Establishing a signature authentication approach using themost recent advances in deep-based approaches,
particularly theCNNmodel.

• The novel signature dataset is sufficient for training the neural network-based approach for signature-based
authentication.

• The system accepts a combination of identical fingerprints in the PNG appearance and returns a Boolean
expression of either 1 or 0.

1.2. Feature extraction
In this study, CNNs automated feature extraction by capturing complex hierarchical patternswithin signature
images, such as stroke thickness, angles, and curvatures. Unlike traditionalmanualmethods, which require
human-defined features (e.g., texture or shape descriptors), CNNs dynamically learn relevant features directly
fromdata, enhancing effectiveness by adapting to subtle variations in signatures. This automation reduces
preprocessing time and improves efficiency, especially with complex datasets, by eliminating the need for
handcrafted features. CNN-extracted features generally yield higher accuracy and robustness, particularly in
tasks requiring fine details,making them superior for signature verification [15].

1.3. Research background
Several online and offline investigations have been conducted on signature verification using various techniques
[16]. This survey explains signature verification using deep networks. Alajrami et al [17] applied aCNN
approach for detecting offline signatures with a test accuracy of 99.7%. In contrast, Fayyaz et al [18]used a
Gaussian distribution forfinger vein detection by extracting features based on autoencoders. Fayyaz [19] showed
that reducing the error rate also enhanced the accuracy range in online signature verification. Ghosh [20]
compared the evaluation of signature verification using aCNNandRecurrentNeural Network approach. In
2016, Kim et al [21] found that verifying signatures using a CNNwas significantly better. In 2018, signature
verificationwas performed using aHiddenMarkovModel [22]. Signature verification via handwritten/offline
was performed by Soelistio et al using deep learning [23] and Poddar et al [24].Menotti et al [25] appliedCNN
for signature spoofing verification, ANNbyAdewole [26], CNNbyZhang et al [27]. Sadkhan et al analyzed
various signatures [28], biometric recognition by sherin et al [29], ISRSACwas determined by yang et al [30], and
DeepAir Segmentation byMalik et al [31], Fully Connected layers are appropriate for detecting signatures using
an FCNN.

2. Proposedmethod

A scribbled signatory is a cognitive fingerprint because it depends on the behavioral rather than specific
physiological aspects of the person’s signatures. The examination and approval of an autographmight require
quite awhile; the signature of someone changes with duration, leadingmistakes to occasionally increase.
Increased incorrect rejection percentages resulted frommismatched signatures for signers whowere not doing
so consistently.

The selection of VGG16, Inception-v3, ResNet50, andXceptionwas based on their distinct architecture,
proven performance in feature extraction, and generalizability in image-classification tasks. VGG16 offers
simplicity and depth, capturing intricate details, while Inception-v3’smixed convolutions improve the
efficiency in handling varied signature features [32]. ResNet50’s skip connections allow deeper learningwithout
gradient issues, thereby enhancing the complex feature recognition [33]. Xception’s depth-wise separable
convolutions capturefiner patterns, which are ideal for distinguishing subtle variations in signatures [34]. The
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framework of our proposedmodel is depicted infigure 3, where the signatures are verified using deep-based
optimization techniques.

2.1.Dataset
To build an understanding database for all individual’s, written signatures were gathered, and distinctive
elements were retrieved. A standard database of each person’s signature is required to assess the effectiveness of
the confirmation of the signature system and to compare the results of other approaches to the same database.
Figures 4(a) and (b) illustrate examples of indivisible genuine and fake signatures, respectively. In this study, the
author utilized approximately 600 signature images gathered from69 subjects, 420 real and 180 forged
signatures per person. These signature image datasets were collected from ICDAR2011 [36] and are described in
the RGB format.

The image on the left represents the raw input image and original signature signed by an individual. In
contrast, the image on the right corresponds to a forgery signature image signed by unauthorized users. By
comparing the images infigures 4 (a) and (b), the fake/forgery signature can be quickly identified [36], which is
illegally supported in several domains such as cashwithdrawals frombanks, land registration, and field-based
documents.

2.2. Feature extraction
The crucial phase in the digital signature authentication procedure is feature extraction, which is typically
divided into two categories:manually created characteristic extraction, and pattern systems for learning
Hafemann et al [37]People have developed tools formanually extracting feature strategies according to their
perceptions. Various review publications have examined the handmade extraction and classification of feature
approaches for verifying signatures [38]. Deng et al [39] used awavelet-based feature extractor to ascertain the
bending features of the fingerprints. Pal et al [40] selected uniform local binary patterns (ULBP) and local binary
patterns (LBP) as theirmethod for texture-based feature extraction.

Figure 3.Proposed architecture for signature authentication [35].

Figure 4. (a)Raw input image, (b) forgery signature image [35].

4

Eng. Res. Express 7 (2025) 015230 MRSwamy et al



However, feature-learning techniquesmay obtain characteristics that are devoid of humanmanipulation.
Compared tomanually created characteristics, this approach, also known asCNN, alongwith other deep
learning approaches, has demonstrated outstanding efficacy across awide range of applications related to
computer vision. To learn the features for author categorization from signature picture pixels, Khalajzadeh et al
presented an extensive CNNapproach. ACNN-based technique that can acquire reliable characteristics using
variable-sized signatures was proposed byHafemann et al [37].

AConventional Neural Network (CNN) is themost significant architecture applicable for functioning
behind image-based input data. In this study, 16models were trained to compare the accuracy of the signature
authentication dataset in identifying forgery images. Among the 16models, four pre-trainedmodels were used
for feature extraction.

• VGG16model

• Inception-v3

• ResNet-50

• Xception

Moreover, Optimizers used to compile themodels arementioned as

• Stochastic gradient descent (SGD)

• RootMean Square Propagation (RMSprop)

• Adaptive Gradient Algorithm (Adagrad)

• ActiveDesign andAnalysisModelling (Adam)

2.3. Parameters selection
Here, the parameters for allmodels, such asVGG16, InceptionV3, ResNet-50, andXception architecture as
138M, 24M, 23M, and 23M, alongwith the features 512, 2048, 2048, and 2048, as depicted in figure 5.

2.4. Accuracy score in 3-folds
Here, 3-fold Cross-validationwas utilized directly to performmodel selection using deep learning-based pre-
trainedmodels, and optimizers such as SGD, RMSProp, Adagrad, andAdamwere used to obtain the optimal
solution for signature authentication, as shown infigure 6.

As shown infigures 7, 3-fold cross-validationwas performed to evaluate themodel performance based on
metrics such as validation accuracy and loss, inwhichVGG16+RMSProp optimizers had a training accuracy of
96.4%. In contrast, the validation accuracywas 97.17%, and theVGG16+Adamoptimizer achieved a training
accuracy of 95.8%; however, the validation accuracy reached 95.56%. Similarly, we compare the training and
validation loss among variousmodels inwhich the ResNet 50+RMSPropminimum loss during training is
0.005, whereas losses during validation of signature images are 0.67. Theminimum loss during validation of the
signature image dataset inwhich theVGG16+RMSPropmodel reaches 0.07 by evaluating themodels.

Based on this evaluation, theVGG-16model andRMSrop optimizer attained amaximumaccuracy of
approximately 97%with the least loss of 0.07 in verifying signature images and classifying them as authentic or
forgery.

In the present work. The deep-learningmodel employed for trainingwas used to cross the estimator
parameters of the validation function. The actual value is considered parameter X. The target variable is passed
as parameter y. Thus,metrics such as validation accuracy and loss were evaluated and entered into the parameter
score. Finally, the authormust launch a set ofmeasures, such as accuracy and loss, that are appropriate for
validating ourmodel.

Figure 5.Parameters & features used for detecting signature [35].
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2.5. Feature selection
In this phase, feature selection or dimensionality reductionwas performed on a given signature image dataset.
This selection of features helps enhance the accuracy score and improve the performance of the high-
dimensional signature image dataset. The initial insight obtained from the preceding statistics shows that the
VGG16 layout surpassed any additional designs plus characteristics extracted from algorithms for classification,
with aminimumof 95%precision for training and 60% evaluation performance. Four different designs were
selected to apply our categorizationmethods to the challenge.

2.5.1. VGG-16model
TheVGG-16model has 16 layers of a deep convolutional Neural Network (CNN), a pre-trainedmodel inwhich
signature-based images are trained from the ImageNet database. This pretrained network categorizes the images
into pixels and is fed into various neural network layers to predict the outcome as a single output layer. The
network had an image input size of 224× 224 pixels.

Here, optimization techniques, such as Adam, RMSProp, Adagrad, and SGD, are used to obtain the optimal
solution to verify the signature and identify whether the verified signature is forgery or real.

The architecture of theVGG-16 layers is illustrated infigure 8, and the layers in theVGG-16model are
described as follows:

Figure 7. Signature verification based on feature selection via cross-validation [41].

Figure 6. 3-Fold cross-validation using deep learning [35].
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Input layer: A 224× 224 signature imagewas fed into theVGGNetmodel. The creators of themodel kept the
input image size consistent by removing a 224× 24 square from themiddle of every image submitted for the
ImageNet concurrence.

Convolutional Layer: TheVGGalgorithm convolutionalfilters the smallest 3× 3 reactive surfaces. In
addition, VGGuses a 1× 1 convolutionfilter to translate the signature picture data linearly.

Activation layer: This layer contains the function as a Rectified LinearUnit (ReLU), which reduces the
learning time of the network.Moreover, this function is linear, which presents the corresponding outcome for a
positive input image and provides zero for negative input images.

Hidden Stage: Rectified LinearUnit is employed tomaintain AlexNet SimultaneousData Standardization
across the concealed phases of the entire VGGnetwork. Thefinal strategy extendsworkouts and consumesmore
mental capacity but does not result in total efficiency.

Pool Stage: This layer reduces the dimensionality and quantity of features in featuremaps built by every stage
of the convolutional layer. Poolingmethods are critical, given the sudden rise in the total amount of viable
filtering through 64–128, 256, and 512 in the last three stages.

FCC layers: VGGNet comprises three interlinked tiers. Thefirst and second phases contained 4096 routes,
whereas the third phase contained 1000 channels, one for each type. Finally, the output layer determines
whether the input raw signature image is authenticated as a forgery sign or signed by an authorized person.

2.5.2. Inception V3model
A complexity-separated convolution layer is used in inception as an addition to theXception architecture
instead of conventional convolution layers. A neural network called the inceptionmodel was used to classify
objects in the signature images. GoogleNets is an alternative to inception. The ImageNet dataset was used in the
training phase. The resolution of the inceptionwas 299× 299× 3. Inception convolutional neural networks can
producemore efficient computing and deep connections by reducing dimensionality with a stacked 1× 1
convolution layer. The components were created to address problems such as generalization and computing
complexity [43].

2.5.3. ResNet 50model
ResNet featuresmultiple parts and sub-module configurations compared to other architectures, setting it apart
from standard subsequent communication networks like VGGNet andAlexNet.Moving to the lowest level and
disregarding level changes could be better. ResNet’s architecture addresses this problem,which increases the
network’s success rate bymaking it easier to recall the system. The 177-layer neural network usedwas ResNet.
Thismodel was trainedwith signature images of dimensions 224× 224× 3.

2.5.4. Xceptionmodel
TheXception network has gradually replaced the inception network. Extreme inception is referred to as
xception. Instead of the conventional fully connected layers, theXception architecture uses larger values with
discrete convolutional sections. Numerous spaces, alongwith parametric connections inwhichCNN-extracted
featuresmay be completely detached, are accessed byXception. Convolution in the Xception architecture can be
divided into 14 different alternative paths; however, the fundamental architecture of inception has been
maintained for approximately 36more years than inXception. A continuous residue link encircles each level

Figure 8.Architecture of VGG-16 layers [42].

7

Eng. Res. Express 7 (2025) 015230 MRSwamy et al



after deleting the first and last levels. The input imagewas transformed to determine the chance of collecting
cross-channel correlations across every outcome. Subsequently, a depth-wise 11 convolutionmethodwas used.
The interconnections can be depicted as a 2D+ 1Dprojection instead of three-dimensional projections. A two-
dimensional sector correlation sets the stage for emergence, whereas a one-dimensional space correlates first.

3. Introducedmethodologies and classification

This section provides the proposedmethodology by importing the necessarymodules from theKeras API that
binds the TensorFlow backend.Ourmodel was constructed using backendTensorFlow. Initially, Pythonwas
used to train theNeural Network using a distinctive class of genuine and forged signatures. In this study, various
deep learningmodels were proposed to train the network by splitting the dataset into a train-test ratio of 70:30.

3.1. Network training and validation
Here, the author evaluates the difference between the expected value and the true value of the label throughout
the network training stage using the loss function task, otherwise called the cost function, and the network is
trained to reduce this difference. The anticipated outcome ismore closely related to the actual label: the lower
the loss value. As shown in equation (1), the output layer is a sigmoid function thatmanages binary issues and
produces an S-shaped curvewith values between 0 and 1. In addition, the cost function is selected as the binary
cross-entropy (BCE), as illustrated in equation (2), where y denotes the true signing and is the projected
likelihood that the objective is a real identity.

( ) ( )=
+ -

Sigmoid x
e

1

1
1

x

( ˆ) ( ) ( ˆ) ( )= - - - -Binary Cross Entropy y y y ylog 1 log 1 2

Subsequently, the BSE parameter was used to optimize performance through elimination techniques, we
improved our neural networks using thewidely used stochastic gradient descent (SGD) strategy [30].We chose a
meager amount for e^-4with the velocity factor of 0.9, which ismost frequently utilized in SGDbecause an
excessive learning speed could prevent convergence; 48 photos are in our collection, with two real authors and
eight imposters.

3.2. Results and analysis
In this study, images were binarized and stored appropriately. Then, the images were split in a ratio of 70:30;
subsequently, file handling andmanagement procedures were performed to divide the batches of signature-
based images. Following the construction of the deep learningmodels, plots of accuracy and loss were created.

Additional deep learning pre-trainedmodels were built for various data splits, and the training and
validation accuracies were plotted to determinewhether therewas any overfitting or underfitting. In the
validation part, an optimal resolution of 83%was achieved in detecting and verifying the forgery signature, as
shown infigure 9. Because the accuracies of training and testing are nearly comparable, there is quite a bit of

Figure 9.Validation accuracy versus loss using optimization approaches.
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Table 1.Obtained results fromproposedmethod and state of the art techniques.

Model+Optimizer Training accuracy (%) Validation accuracy (%) training loss validation loss Remark

VGG-16+Adam 100 82 ∼0.0 6.85 Slight overfitting observed

VGG-16+RMSProp 100 83 ∼0.0 2.55 High generalization performance

Inception-v3+Adam 100 72.29 ∼0.00 2.99 Stable performance

Inception-v3+Adagrad 98 74.7 ∼0.07 ∼0.66 Stable performance

Local features [44] NA Equal Error Rate 20 NA NA Lower performance on global features

Global features [44] NA Equal Error Rate 36 NA NA Struggles with disguised signatures

SVMwith geometric features [45] NA 67.08 NA NA Lower accuracy

SVMwithHOG features [45] NA 76.67 NA NA Lower accuracy
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excessfitting. The evaluation of the training and validation loss, training accuracy, and validation accuracy for
VGG-16, InceptionV3, ResNet 50, andXception, alongwith four optimizers (Adam, Adagrad, RMSProp, and
SGD) for forgery signature authentication, are depicted infigure 9.

3.2.1. Comparision of results and discussion
In the present comparative analysis of variousmodels and optimizers, VGG-16with RMSProp emerged as an
efficientmodelling technique, achieving a training accuracy of 100%and validation accuracy of 83%,with a
relatively low validation loss of 2.55. This balance between high accuracy and reduced loss indicates an effective
generalization andminimal overfitting. VGG-16 pairedwith Adam also showed a strong training accuracy of
100%, but a slightly lower validation accuracy of 82% and a higher validation loss of 6.85, suggesting overfitting
despite themodel’s high training performance.

By contrast, the Inception-v3model performed less effectively. Inception-v3withAdam achieved a
validation accuracy of 72.29%with a validation loss of 2.99, highlighting some issues in generalization.
However, Inception-v3withAdagrad improved the validation accuracy to 74.7% andmaintained a significantly
lower validation loss of∼0.66, indicating greater stability. Overall, VGG-16with RMSProp demonstrated the
most balanced and reliable performance in forgery signature detection. Fromfigure 9, it is also observed that
slightfluctuations in the validation curvesmay indicateminor overfitting, likely due to the limited size of the
dataset. These issuesmay be addressedwith applications of advanced data augmentation and further
hyperparameter optimization, providing a clear direction for future work.

The results obtainedwere also comparedwith those of traditionalmethods such as localized and global
features. The SVMmethods and their accuracies are listed in table 1. The comparison clearly indicates that the
proposedmethod outperforms traditional approaches. Table 1 highlights the higher accuracies achieved by our
models, demonstrating their superior effectiveness for signature verification.

4. Conclusion

This study summarizes the verification of online signatures using the ICDAR2011 SignatureDataset. Several
existing studies have introduced deep learning-based convolutional neural networks andmulti-layer
perceptrons to verify digital/handwritten signatures that provide security for land, payments, etc In this study,
datasets of various signatures were collected from an open-source website. Feature extractionwas performed to
extract relevant features, and feature selectionwas executed by buildingmultiplemodels, such as theVGG-16,
ResNet 50, InceptionV3, andXceptionmodels, to identify forgery signatures. To obtain the optimal solution for
signature authentication and classification into either real or forgery, four deep-based optimizationmethods,
RMSProp, Adamoptimizer, SGD, andAdaGrad, were used, and the validation accuracy was approximately 83%
withminimum loss. The proposedmethod also produced superior results comparedwith traditional
techniques. This demonstrates the reliability and efficiency of our approach,making it well suited for real-world
applications that require robust signature verification. In addition, the proposed research findings highlight the
potential of deep-learningmodels to outperform traditionalmethods in signature authentication, paving the
way for further advancements in secure biometric systems.

5. Limitations and future scope ofwork

5.1. Limitations
The proposedmodels in the present work showed strong validation accuracy, but signs of overfittingwere
present, particularly with theVGG-16 configuration using the Adamoptimizer. This indicates the need for
additional regularization or amore diverse training dataset to improve generalization. Additionally, our study’s
reliance on a relatively small sample size from the ICDAR2011 SignatureDatasetmight not fully reflect the
variety found in real-world signature scenarios.

5.2. Future directions
The present workmay be extended using attentionmechanisms or hybridmodels that blendCNNswith RNNs,
which can better capture both the spatial and temporal aspects of signatures. Expanding datasets withmore
diverse samples is likely to enhancemodel robustness by applying advanced data augmentation techniques and
performing further hyperparameter optimization.
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