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Abstract

Authorization is essential for handling document assurance and security. Nowadays, it constitutes one
of the top responsibilities for securing information and effectiveness in every domain. Technological
advances have made interactions with machinery more effortless. As a result, the demand for
authentication for various legitimate causes is growing rapidly. Therefore, biometric-based identifica-
tion has dramatically accelerated. This is an improvement over the other approaches. The present
work is intended to apply convolutional neural networks for mining features and supervised machine-
learning techniques to verify handwritten signatures. Raw images of signatures were used to train the
CNN models for feature extraction and data augmentation. In the present work, pre-trained CNN
models, such as VGG16, Inception-v3, ResNet50, and Xception, were used to separate authentic from
fake signatures. Supervised learning methods, including Logistic Regression and SVM, were used to
classify features. The test data were obtained from the ICDAR 2011 Signature Dataset. The results
obtained from the present work showed a clear improvement over traditional methods over 69
different signatures. VGG-16 with RMSProp achieved an impressive validation accuracy of 83%,
demonstrating robustness with minimal overfitting. Compared with existing techniques, the
proposed deep learning approach proved to be more accurate and reliable for signature verification.

1. Introduction

Signature verification and forgery detection are crucial steps for authenticating an individual’s identity and
confirming the legitimacy of their signatures [1]. The authenticity of signatures is a prominent issue in various
sectors, such as finance, legal documents, and contracts. It is accepted as one of the most widely used biometric
authentication approaches. There are two primary types of signature verification: static, offline, dynamic, and
online [2], which are often used. In static verification, signatures are written on paper and scanned for further
testing, capturing only the image of the signature without considering any dynamic characteristic features [2]. In
contrast, dynamic or online verification occurs when a person signs digitally on an electronic gadget, such as an
iPad or tablet [3]. This method captures not only the visual signature but also dynamic traits, such as pressure,
speed, and stroke patterns, adding an extra layer of security and reliability [4] to increase the accuracy of the
signature verification procedure.

Although static verification is one of the basic verification methods and can be sufficient for initial identity
validation, online verification offers a supplementary comprehensive approach, making it ideal for applications
requiring high-level security. The present study focuses on an online signature verification method with the
primary objective of developing a robust real-time signature verification system using advanced deep learning
techniques, leveraging pre-trained Convolutional Neural Networks (CNNs) such as VGG16, Inception-v3,
ResNet50, and Xception, which are optimized to extract unique features from signatures for enhanced
classification [5].
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Figure 1. Overall signature detection survey during the year 1980-present [7].
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Figure 2. Framework of convolutional neural network [9].

The present work also uses optimization algorithms such as Adam, RMSProp, and SGD to improve the
model performance further, ensuring high accuracy in distinguishing between genuine and forged signatures.
These innovations enable the system to adapt to varying signature styles, overcoming the challenges posed by
intrapersonal variations in signing behavior [6]. The present work can solve the problems of online signature
verification in numerous real-world applications in which quick, reliable, and secure identity verification is
paramount, including banking, e-commerce, and legal documentation. By utilizing cutting-edge CNN models
and optimization techniques, this study aims to offer a scalable and efficient solution for real-time online
signature authentication, ensuring both security and ease of use in biometric-based identity systems.

1.1. Problem statement

Since the early 1990 s, significant research has been conducted to address the challenges of offsite handwritten
signature identification using the available techniques. Different methods have been investigated, with notable
contributions made by Jose Lopes et al [ 7], who established multiple approaches to enhance the accuracy of
signature verification. Despite these advancements in techniques for verifying signatures, many challenges
remain in achieving high accuracy and reliability for detecting forgeries [8]. Figure 1 shows an overview of
important milestones and breakthroughs in signature verification practices over the years.

Moreover, Hsin et al [9] used a CNN approach to verify offline signatures. They identified forgery signatures
appropriate for various business circumstances, such as bank check payment sign verification procedures based
on human assessment. The authors developed a CNN framework as shown in figure 2.

These layers, known as Convolutional Girshick [10], use numerous convolution filtering methods (or
convolution kernels) to separate more advanced data from lower-level data, including identifying boundaries,
angles, connecting scores, and numerous other image characteristics. Here, the author employs a pooling layer

2



10P Publishing

Eng. Res. Express 7 (2025) 015230 MR Swamy et al

in the order of Schener et al [11] to lower the characteristic map dimensions, which results in faster convergence
rates for connections, because using numerous filters for convolution significantly increases the overall
dimension of the characteristic image and must be accompanied by tiresome computations [12]. FCClayers
then receive all multifaceted characteristic mappings as feeds in the form of a single-dimensional vector of
features to produce predicted classes for subsequent categorization assignments. An adequately connected layer,
an ordinary perceptron with multiple layers (MLP), was employed in a previous study [13].

Moreover, the Inception v1 and Inception v3 models, along with a CNN, were utilized by Jahandada et al
[14] to verify the offline signatures. In this study, we propose the VGG-16, Inception V3, ResNet 50, and
Xception models in the present experiments because they are well designed, exposing the immense capability of
VGG16 to identify online forgery signatures. Moreover, optimization algorithms include SGD, RMS Prop,
Adagrad, and Adam to obtain an optimal solution for detecting and verifying whether a signature is forgery.

The main intention of this research work is mentioned as follows

+ Establishing a signature authentication approach using the most recent advances in deep-based approaches,
particularly the CNN model.

+ The novel signature dataset is sufficient for training the neural network-based approach for signature-based
authentication.

+ The system accepts a combination of identical fingerprints in the PNG appearance and returns a Boolean
expression of either 1 or 0.

1.2. Feature extraction

In this study, CNNs automated feature extraction by capturing complex hierarchical patterns within signature
images, such as stroke thickness, angles, and curvatures. Unlike traditional manual methods, which require
human-defined features (e.g., texture or shape descriptors), CNNs dynamically learn relevant features directly
from data, enhancing effectiveness by adapting to subtle variations in signatures. This automation reduces
preprocessing time and improves efficiency, especially with complex datasets, by eliminating the need for
handcrafted features. CNN-extracted features generally yield higher accuracy and robustness, particularly in
tasks requiring fine details, making them superior for signature verification [15].

1.3. Research background

Several online and offline investigations have been conducted on signature verification using various techniques
[16]. This survey explains signature verification using deep networks. Alajrami et al [17] applied a CNN
approach for detecting offline signatures with a test accuracy of 99.7%. In contrast, Fayyaz et al [18] used a
Gaussian distribution for finger vein detection by extracting features based on autoencoders. Fayyaz [19] showed
that reducing the error rate also enhanced the accuracy range in online signature verification. Ghosh [20]
compared the evaluation of signature verification usinga CNN and Recurrent Neural Network approach. In
2016, Kim et al[21] found that verifying signatures using a CNN was significantly better. In 2018, signature
verification was performed using a Hidden Markov Model [22]. Signature verification via handwritten/offline
was performed by Soelistio et al using deep learning [23] and Poddar et al [24]. Menotti et al [25] applied CNN
for signature spoofing verification, ANN by Adewole [26], CNN by Zhang et al [27]. Sadkhan et al analyzed
various signatures [28], biometric recognition by sherin et al [29], ISRSAC was determined by yang et al [30], and
Deep Air Segmentation by Malik et al [31], Fully Connected layers are appropriate for detecting signatures using
an FCNN.

2. Proposed method

A scribbled signatory is a cognitive fingerprint because it depends on the behavioral rather than specific
physiological aspects of the person’s signatures. The examination and approval of an autograph might require
quite a while; the signature of someone changes with duration, leading mistakes to occasionally increase.
Increased incorrect rejection percentages resulted from mismatched signatures for signers who were not doing
so consistently.

The selection of VGG16, Inception-v3, ResNet50, and Xception was based on their distinct architecture,
proven performance in feature extraction, and generalizability in image-classification tasks. VGG16 offers
simplicity and depth, capturing intricate details, while Inception-v3’s mixed convolutions improve the
efficiency in handling varied signature features [32]. ResNet50’s skip connections allow deeper learning without
gradient issues, thereby enhancing the complex feature recognition [33]. Xception’s depth-wise separable
convolutions capture finer patterns, which are ideal for distinguishing subtle variations in signatures [34]. The
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Figure 3. Proposed architecture for signature authentication [35].
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Figure 4. (a) Raw input image, (b) forgery signature image [35].

framework of our proposed model is depicted in figure 3, where the signatures are verified using deep-based
optimization techniques.

2.1. Dataset

To build an understanding database for all individual’s, written signatures were gathered, and distinctive
elements were retrieved. A standard database of each person’s signature is required to assess the effectiveness of
the confirmation of the signature system and to compare the results of other approaches to the same database.
Figures 4(a) and (b) illustrate examples of indivisible genuine and fake signatures, respectively. In this study, the
author utilized approximately 600 signature images gathered from 69 subjects, 420 real and 180 forged
signatures per person. These signature image datasets were collected from ICDAR 2011 [36] and are described in
the RGB format.

The image on the left represents the raw input image and original signature signed by an individual. In
contrast, the image on the right corresponds to a forgery signature image signed by unauthorized users. By
comparing the images in figures 4 (a) and (b), the fake/forgery signature can be quickly identified [36], which is
illegally supported in several domains such as cash withdrawals from banks, land registration, and field-based
documents.

2.2. Feature extraction

The crucial phase in the digital signature authentication procedure is feature extraction, which is typically
divided into two categories: manually created characteristic extraction, and pattern systems for learning
Hafemann et al [37]People have developed tools for manually extracting feature strategies according to their
perceptions. Various review publications have examined the handmade extraction and classification of feature
approaches for verifying signatures [38]. Deng et al [39] used a wavelet-based feature extractor to ascertain the
bending features of the fingerprints. Pal et al [40] selected uniform local binary patterns (ULBP) and local binary
patterns (LBP) as their method for texture-based feature extraction.

4



I0OP Publishing Eng. Res. Express7 (2025) 015230 MR Swamy et al

Parametels 138M

m 512 2048 2048 2048

Figure 5. Parameters & features used for detecting signature [35].

However, feature-learning techniques may obtain characteristics that are devoid of human manipulation.
Compared to manually created characteristics, this approach, also known as CNN, along with other deep
learning approaches, has demonstrated outstanding efficacy across a wide range of applications related to
computer vision. To learn the features for author categorization from signature picture pixels, Khalajzadeh et al
presented an extensive CNN approach. A CNN-based technique that can acquire reliable characteristics using
variable-sized signatures was proposed by Hafemann et al [37].

A Conventional Neural Network (CNN) is the most significant architecture applicable for functioning
behind image-based input data. In this study, 16 models were trained to compare the accuracy of the signature
authentication dataset in identifying forgery images. Among the 16 models, four pre-trained models were used
for feature extraction.

+ VGG16 model
+ Inception-v3
* ResNet-50

+ Xception
Moreover, Optimizers used to compile the models are mentioned as

+ Stochastic gradient descent (SGD)

* Root Mean Square Propagation (RMSprop)

+ Adaptive Gradient Algorithm (Adagrad)

+ Active Design and Analysis Modelling (Adam)

2.3. Parameters selection
Here, the parameters for all models, such as VGG16, Inception V3, ResNet-50, and Xception architecture as
138M, 24M, 23M, and 23M, along with the features 512, 2048, 2048, and 2048, as depicted in figure 5.

2.4. Accuracy score in 3-folds

Here, 3-fold Cross-validation was utilized directly to perform model selection using deep learning-based pre-
trained models, and optimizers such as SGD, RMSProp, Adagrad, and Adam were used to obtain the optimal
solution for signature authentication, as shown in figure 6.

As shown in figures 7, 3-fold cross-validation was performed to evaluate the model performance based on
metrics such as validation accuracy and loss, in which VGG16 + RMSProp optimizers had a training accuracy of
96.4%. In contrast, the validation accuracy was 97.17%, and the VGG16 4+ Adam optimizer achieved a training
accuracy of 95.8%; however, the validation accuracy reached 95.56%. Similarly, we compare the training and
validation loss among various models in which the ResNet 50 + RMSProp minimum loss during training is
0.005, whereas losses during validation of signature images are 0.67. The minimum loss during validation of the
signature image dataset in which the VGG16+ RMSProp model reaches 0.07 by evaluating the models.

Based on this evaluation, the VGG-16 model and RMSrop optimizer attained a maximum accuracy of
approximately 97% with the least loss of 0.07 in verifying signature images and classifying them as authentic or
forgery.

In the present work. The deep-learning model employed for training was used to cross the estimator
parameters of the validation function. The actual value is considered parameter X. The target variable is passed
as parameter y. Thus, metrics such as validation accuracy and loss were evaluated and entered into the parameter
score. Finally, the author must launch a set of measures, such as accuracy and loss, that are appropriate for
validating our model.
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Optimizers Optimizers
SGD | RMSprop | Adagrad | Adam SGD | RMSprop | Adagrad | Adam
VGGI16 0.8648 | 0.9645 0.8821 | 0.9584 VGG16 0.7091 | 0.9717 0.5111 | 0.9556
Inception- | 0.8042 | 0.9827 0.9567 | 0.9922 Inception- | 0.5818 | 0.4202 0.6020 | 0.6323
v3 v3
ResNet50 | 0.9515 | 0.9991 0.9991 | 0.9974 ResNet50 | 0.4182 | 0.5879 0.5818 | 0.4182
Xception | 0.7730 | 0.9835 0.8215 | 0.9939 Xception | 0.5697 | 0.5818 0.5657 | 0.5899

Training Accuracy (3-Fold) Validation Accuracy (3-Fold)
Optimizers Optimizers
SGD | RMSprop | Adagrad | Adam SGD | RMSprop | Adagrad | Adam

VGG16 [ 0.4497 | 0.0918 0.3716 | 0.1069 VGG16 [ 0.5971 | 0.0793 0.9206 | 0.1127

Inception- | 0.4485 | 0.0448 0.2218 | 0.0176 Inception- | 0.7371 | 8.5688 0.7872 | 2.3959

v3 v3

ResNet50 [ 0.1561 | 0.0050 0.0324 | 0.0084 ResNet50 | 1.2646 | 0.6738 1.4782 | 0.7494

Xception | 0.5424 | 0.0642 0.4889 | 0.0221 Xception | 0.7339 | 7.0186 0.7754 | 3.2455
Training loss (3-Fold) Validation loss (3-Fold)

Figure 6. 3-Fold cross-validation using deep learning [35].

Figure 7. Signature verification based on feature selection via cross-validation [41].

2.5. Feature selection

In this phase, feature selection or dimensionality reduction was performed on a given signature image dataset.
This selection of features helps enhance the accuracy score and improve the performance of the high-
dimensional signature image dataset. The initial insight obtained from the preceding statistics shows that the
VGG16 layout surpassed any additional designs plus characteristics extracted from algorithms for classification,
with a minimum of 95% precision for training and 60% evaluation performance. Four different designs were
selected to apply our categorization methods to the challenge.

2.5.1. VGG-16 model
The VGG-16 model has 16 layers of a deep convolutional Neural Network (CNN), a pre-trained model in which
signature-based images are trained from the ImageNet database. This pretrained network categorizes the images
into pixels and is fed into various neural network layers to predict the outcome as a single output layer. The
network had an image input size 0of 224 x 224 pixels.

Here, optimization techniques, such as Adam, RMSProp, Adagrad, and SGD, are used to obtain the optimal
solution to verify the signature and identify whether the verified signature is forgery or real.

The architecture of the VGG-16 layers is illustrated in figure 8, and the layers in the VGG-16 model are
described as follows:
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Figure 8. Architecture of VGG-16 layers [42].

Input layer: A 224 x 224 signature image was fed into the VGGNet model. The creators of the model kept the
input image size consistent by removing a 224 x 24 square from the middle of every image submitted for the
ImageNet concurrence.

Convolutional Layer: The VGG algorithm convolutional filters the smallest 3 x 3 reactive surfaces. In
addition, VGG usesa 1 x 1 convolution filter to translate the signature picture data linearly.

Activation layer: This layer contains the function as a Rectified Linear Unit (ReLU), which reduces the
learning time of the network. Moreover, this function is linear, which presents the corresponding outcome for a
positive input image and provides zero for negative input images.

Hidden Stage: Rectified Linear Unit is employed to maintain AlexNet Simultaneous Data Standardization
across the concealed phases of the entire VGG network. The final strategy extends workouts and consumes more
mental capacity but does not result in total efficiency.

Pool Stage: This layer reduces the dimensionality and quantity of features in feature maps built by every stage
of the convolutional layer. Pooling methods are critical, given the sudden rise in the total amount of viable
filtering through 64—128, 256, and 512 in the last three stages.

FCClayers: VGGNet comprises three interlinked tiers. The first and second phases contained 4096 routes,
whereas the third phase contained 1000 channels, one for each type. Finally, the output layer determines
whether the input raw signature image is authenticated as a forgery sign or signed by an authorized person.

2.5.2. Inception V3 model

A complexity-separated convolution layer is used in inception as an addition to the Xception architecture
instead of conventional convolution layers. A neural network called the inception model was used to classify
objects in the signature images. Google Nets is an alternative to inception. The ImageNet dataset was used in the
training phase. The resolution of the inception was 299 x 299 x 3. Inception convolutional neural networks can
produce more efficient computing and deep connections by reducing dimensionality with a stacked 1 x 1
convolution layer. The components were created to address problems such as generalization and computing
complexity [43].

2.5.3. ResNet 50 model

ResNet features multiple parts and sub-module configurations compared to other architectures, setting it apart
from standard subsequent communication networks like VGGNet and Alex Net. Moving to the lowest level and
disregarding level changes could be better. ResNet’s architecture addresses this problem, which increases the
network’s success rate by making it easier to recall the system. The 177-layer neural network used was ResNet.
This model was trained with signature images of dimensions 224 x 224 x 3.

2.5.4. Xception model

The Xception network has gradually replaced the inception network. Extreme inception is referred to as
xception. Instead of the conventional fully connected layers, the Xception architecture uses larger values with
discrete convolutional sections. Numerous spaces, along with parametric connections in which CNN-extracted
features may be completely detached, are accessed by Xception. Convolution in the Xception architecture can be
divided into 14 different alternative paths; however, the fundamental architecture of inception has been
maintained for approximately 36 more years than in Xception. A continuous residue link encircles each level
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Figure 9. Validation accuracy versus loss using optimization approaches.

after deleting the first and last levels. The input image was transformed to determine the chance of collecting
cross-channel correlations across every outcome. Subsequently, a depth-wise 11 convolution method was used.
The interconnections can be depicted as a 2D + 1D projection instead of three-dimensional projections. A two-
dimensional sector correlation sets the stage for emergence, whereas a one-dimensional space correlates first.

3. Introduced methodologies and classification

This section provides the proposed methodology by importing the necessary modules from the Keras API that
binds the TensorFlow backend. Our model was constructed using backend TensorFlow. Initially, Python was
used to train the Neural Network using a distinctive class of genuine and forged signatures. In this study, various
deep learning models were proposed to train the network by splitting the dataset into a train-test ratio of 70:30.

3.1. Network training and validation

Here, the author evaluates the difference between the expected value and the true value of the label throughout
the network training stage using the loss function task, otherwise called the cost function, and the network is
trained to reduce this difference. The anticipated outcome is more closely related to the actual label: the lower
the loss value. As shown in equation (1), the output layer is a sigmoid function that manages binary issues and
produces an S-shaped curve with values between 0 and 1. In addition, the cost function is selected as the binary
cross-entropy (BCE), as illustrated in equation (2), where y denotes the true signing and is the projected
likelihood that the objective is a real identity.

1
Sigmoid (x) = ——— 1
igmoid (x) = )

Binary Cross Entropy = —y log(y) — (1 — y)log(1 — ) 2)

Subsequently, the BSE parameter was used to optimize performance through elimination techniques, we
improved our neural networks using the widely used stochastic gradient descent (SGD) strategy [30]. We chose a
meager amount for e -4 with the velocity factor of 0.9, which is most frequently utilized in SGD because an
excessive learning speed could prevent convergence; 48 photos are in our collection, with two real authors and
eight imposters.

3.2. Results and analysis
In this study, images were binarized and stored appropriately. Then, the images were splitin a ratio of 70:30;
subsequently, file handling and management procedures were performed to divide the batches of signature-
based images. Following the construction of the deep learning models, plots of accuracy and loss were created.
Additional deep learning pre-trained models were built for various data splits, and the training and
validation accuracies were plotted to determine whether there was any overfitting or underfitting. In the
validation part, an optimal resolution of 83% was achieved in detecting and verifying the forgery signature, as
shown in figure 9. Because the accuracies of training and testing are nearly comparable, there is quite a bit of
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Table 1. Obtained results from proposed method and state of the art techniques.

Model 4+ Optimizer Training accuracy (%) Validation accuracy (%) training loss validation loss Remark

VGG-16 + Adam 100 82 ~0.0 6.85 Slight overfitting observed
VGG-16 + RMSProp 100 83 ~0.0 2.55 High generalization performance
Inception-v3 + Adam 100 72.29 ~0.00 2.99 Stable performance
Inception-v3 + Adagrad 98 74.7 ~0.07 ~0.66 Stable performance

Local features [44] NA Equal Error Rate 20 NA NA Lower performance on global features
Global features [44] NA Equal Error Rate 36 NA NA Struggles with disguised signatures
SVM with geometric features [45] NA 67.08 NA NA Lower accuracy

SVM with HOG features [45] NA 76.67 NA NA Lower accuracy
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excess fitting. The evaluation of the training and validation loss, training accuracy, and validation accuracy for
VGG-16, Inception V3, ResNet 50, and Xception, along with four optimizers (Adam, Adagrad, RMSProp, and
SGD) for forgery signature authentication, are depicted in figure 9.

3.2.1. Comparision of results and discussion

In the present comparative analysis of various models and optimizers, VGG-16 with RMSProp emerged as an
efficient modelling technique, achieving a training accuracy of 100% and validation accuracy of 83%, with a
relatively low validation loss of 2.55. This balance between high accuracy and reduced loss indicates an effective
generalization and minimal overfitting. VGG-16 paired with Adam also showed a strong training accuracy of
100%, but a slightly lower validation accuracy of 82% and a higher validation loss of 6.85, suggesting overfitting
despite the model’s high training performance.

By contrast, the Inception-v3 model performed less effectively. Inception-v3 with Adam achieved a
validation accuracy of 72.29% with a validation loss of 2.99, highlighting some issues in generalization.
However, Inception-v3 with Adagrad improved the validation accuracy to 74.7% and maintained a significantly
lower validation loss of ~0.66, indicating greater stability. Overall, VGG-16 with RMSProp demonstrated the
most balanced and reliable performance in forgery signature detection. From figure 9, it is also observed that
slight fluctuations in the validation curves may indicate minor overfitting, likely due to the limited size of the
dataset. These issues may be addressed with applications of advanced data augmentation and further
hyperparameter optimization, providing a clear direction for future work.

The results obtained were also compared with those of traditional methods such as localized and global
features. The SVM methods and their accuracies are listed in table 1. The comparison clearly indicates that the
proposed method outperforms traditional approaches. Table 1 highlights the higher accuracies achieved by our
models, demonstrating their superior effectiveness for signature verification.

4, Conclusion

This study summarizes the verification of online signatures using the ICDAR 2011 Signature Dataset. Several
existing studies have introduced deep learning-based convolutional neural networks and multi-layer
perceptrons to verify digital /handwritten signatures that provide security for land, payments, etc In this study,
datasets of various signatures were collected from an open-source website. Feature extraction was performed to
extract relevant features, and feature selection was executed by building multiple models, such as the VGG-16,
ResNet 50, Inception V3, and Xception models, to identify forgery signatures. To obtain the optimal solution for
signature authentication and classification into either real or forgery, four deep-based optimization methods,
RMSProp, Adam optimizer, SGD, and AdaGrad, were used, and the validation accuracy was approximately 83%
with minimum loss. The proposed method also produced superior results compared with traditional
techniques. This demonstrates the reliability and efficiency of our approach, making it well suited for real-world
applications that require robust signature verification. In addition, the proposed research findings highlight the
potential of deep-learning models to outperform traditional methods in signature authentication, paving the
way for further advancements in secure biometric systems.

5. Limitations and future scope of work

5.1. Limitations

The proposed models in the present work showed strong validation accuracy, but signs of overfitting were
present, particularly with the VGG-16 configuration using the Adam optimizer. This indicates the need for
additional regularization or a more diverse training dataset to improve generalization. Additionally, our study’s
reliance on a relatively small sample size from the ICDAR 2011 Signature Dataset might not fully reflect the
variety found in real-world signature scenarios.

5.2. Future directions

The present work may be extended using attention mechanisms or hybrid models that blend CNNs with RNNss,
which can better capture both the spatial and temporal aspects of signatures. Expanding datasets with more
diverse samples is likely to enhance model robustness by applying advanced data augmentation techniques and
performing further hyperparameter optimization.
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