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Highlights  

• CNTs, a one-dimensional carbon allotrope, penetrate particular cellular targets, enhancing drug 

molecule pharmacological and therapeutic potential. 

• The study highlights the importance of carbon nanomaterials, in improving targeted medication 

delivery systems, overcoming constraints including low bioavailability and unpleasant side 

effects 

• The study explores novel CNT-based anticancer therapeutics, including photothermal therapy, 

which targets and ablates tumors using near-infrared laser stimulation, resulting in better 

survival rates in experimental mice 

• CNTs can modify genes by introducing DNA molecules into cell nuclei, which is crucial for 

treating chronic or inherited diseases 
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ABSTRACT 

This comprehensive review highlights the potential of carbon nanotubes (CNTs) as versatile 

nanomaterials in medicine by exploring their numerous therapeutic applications. The synthesis 

processes for single-walled and multi-walled carbon nanotubes are explored in detail in this 

article, which includes flame synthesis, arc discharge method, laser ablation, nebulized spray 

pyrolysis, and chemical vapor deposition method. The article focuses on the unique 

physiochemical characteristics of CNTs that make them attractive for a range of biological 

uses, including genetic engineering, infection therapy, antibiotics, antibacterial treatments, and 

anticancer therapies. This article also examines the potential use of CNTs in tissue regeneration 

and artificial implantation, as well as their use as medications and drug delivery vehicles. The 

importance of functionalized carbon nanotubes in improving biological applications- such as 

tissue engineering and infection treatment-is emphasized in the study. Furthermore, it also 

discusses the possible drawbacks and toxicity issues related to the application of CNTs, 

highlighting the need for more studies to guarantee their safety and efficient application in 

therapeutic contexts. 

Keywords: Carbon nanotubes, nanocarriers, antimicrobial activity, Cancer 

 

 

  

                  



Page 4 of 37 

 

1. INTRODUCTION 

Targeted drug delivery, a method designed to deliver medication to specific diseases or organs 

for an extended period, has emerged as a revolutionary approach in medicine. This precision 

targeting minimizes the impact on nontarget cells, ensuring desired therapeutic effects without 

unwanted side effects1. Nanotechnology plays a pivotal role in enabling targeted drug delivery, 

offering significant advancements in global healthcare and various fields, including medicine 

and genomics2. Conventional drug delivery systems face limitations such as poor 

bioavailability, a lack of sustained release, and undesired side effects 3. Carbon nanomaterials, 

a key player among nanomaterials, serve as effective carriers facilitating direct penetration of 

drug moieties into specific targets, and they address these challenges by delivering precise 

amounts of drugs, penetrating specific cell cytoplasm or nuclei 4. This capability enhances the 

pharmacological and therapeutic potential of drug molecules5. Carbon nanotubes are unique 

allotropes of carbon with a 1D structure formed by rolling up carbon nanotube sheets, exhibit 

Sp2 hybridization in the middle, and feature pentagonal and hexagonal rings at the ends.  

Their unique characteristics make them attractive choices for effective medication delivery 

systems. With a wide surface, they can hold a large number of drug molecules, which is 

advantageous for longer-acting or higher-dosage drugs 6. Carbon nanotubes can also be 

modified or functionalized by adding certain substances, such as peptides or antibodies. By 

making it possible for medications to be efficiently delivered to certain cells or tissues, 

increases therapeutic efficacy and reduces adverse impacts on healthy cells 7–12. Additionally, 

hydrophobic drugs are frequently poorly soluble-can be encased in nanotubes, greatly 

increasing the likelihood that they will be administered 13.  

2. SINGLE-WALLED CARBON NANOTUBES 

One of the allotropic forms of carbon is single-walled carbon nanotubes (SWCNTs), a quasi-

1D material. Among one-dimensional nanomaterials, carbon nanotubes are special because 

they can bind a variety of substances, including DNA, fluorescent compounds, and deadly 

poisons. The two main types, including single-walled carbon nanotubes (SWCNT) and multi-

walled carbon nanotubes (MWCNTs), have distinct characteristics 14. Vander Waals 

interactions hold SWCTs together to create a one-dimensional structure that has a diameter of 

1-2 nm and looks like rolled graphene sheets. In contrast, MWCNTs consist of many layers 

with broader interlayer gaps and have inner and outer diameters of 1-3 nm and 1-50 nm, 

respectively 15. Both types have graphene sheet caps at their ends. Graphene is a sheet of carbon 

atoms that varies from 0.4 to 5nm. It may be conceptualized as neatly rolled hollow cylinders. 
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The exceptional mechanical, optical, thermal, electrical, and optical properties of these 

nanostructures have spurred extensive worldwide research. CNTs can have a wide range of 

qualities, depending on how they are assembled from individual carbon atoms. The most 

common approach for characterizing them depends on how the expected graphene sheet is 

folded 16–27.  

3. SYNTHESIS OF SWCNT 

3.1 ARC DISCHARGE TECHNIQUE 

Arc discharge techniques are used to create single-walled CNTs, and graphite rods are 

necessary for these processes. The device consists of a chamber that houses the cathode and 

anode, and two vertically orientated graphite rods. Carbon molecules that originate from rods 

and metal catalysts such as cobalt or nickel evaporate throughout the process. The arching 

process is then started by applying a direct current to the chamber. After that, the chamber is 

heated to around 4000K and then pressurized. Around fifty percent of the evaporated carbon 

solidifies at this phase and forms a deposit on the cathode tip at a rate of 1mm/min. notably, 

the process involves a progressive consumption of the anode28. The arc discharge method may 

be used to generate SWCNTs in two main ways, each of which uses catalyst precursors 

differently. While the second method requires no catalyst precursor at all, the first strategy 

makes use of a variety of catalyst precursors. Several catalyst precursors and a sophisticated 

anode consisting of metal and graphite are utilized in the discharge expansion method to 

generate SWCNTs. More specifically, catalyst precursors are usually not required for the 

synthesis of multi-walled carbon nanotubes. The primary advantage of arc discharge 

technology is its capacity to produce a large number of nanotubes29. The main drawback is the 

use of high temperatures, which produce SWCNTs with fewer defects, but with less alignment 

control. Purification is necessary because of the metallic catalyst used in the process 30.  
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Figure 1: Schematic progress of CNT formation by the arc-discharge method 31,32 

 

3.2 LASER ABLATION METHOD 

Single-walled carbon nanotubes (SWCNTs) can also be formed via laser ablation, which 

involves evaporating a graphite object in a heated, nonreactive environment33. The kind and 

quantity of products that are generated depend on several factors, including the reaction 

temperature. Small amounts of metals such as Ni, Co, or Fe are added to the carbon substrate 

resulting in the formation of SWCNTs34. Some benefits of this technique include decent high-

yield quality SWCNTs and the flexibility to change both the size and distribution of carbon 

nanotubes by adjusting different parameters. However, there are disadvantages, such as the 

possibility of branching and imperfectly straight CNT manufacturing. Even with pure graphite 

rods and strong lasers, laser ablation may produce fewer CNTs than the arc discharge process. 

But still large volumes of SWCNTs with good structure can be produced using both the arc-

discharge and laser-ablation processes, although they both need a lot of energy and specialized 

equipment. Given that they require less CNT purification, gas phase methods, such as chemical 

vapor deposition (CVD), are recommended as more productive options in terms of yield and 

purity. Although MWCNTs can also be produced under specific reaction circumstances, the 

laser ablation process promotes the formation of SWCNTs 35–38.  
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3.3 CHEMICAL VAPOR DEPOSITION TECHNIQUE 

Chemical Vapor Deposition (CVD) is a regular method for the large-scale production of carbon 

nanotubes39. CNTs develop on the outer layer of the catalyst particles as a result of the 

breakdown of the carbon precursor. Thermal CVD and plasma-enhanced CVD constitute two 

of the primary CVD methods used to produce CNTs 40. Additional techniques include 

microwave plasma, hot filament CVS, radio frequency CVD, and water-assisted CVD. We may 

use this technology to produce the necessary types of CNTs34. The production of SWCNTs is 

primarily determined by the growth temperature, catalyst, hydrocarbon supply, and reactor 

environment. MWCNT synthesis usually takes place at temperatures between 600 0C and 900 

0C, whereas SWCNTs evolve at temperatures higher than 700 0C 41.  

 

Figure 2: Diagrammatic progression of the Chemical Vapor Deposition technique for CNT 

production 42 

3.4 FLAME SYNTHESIS METHOD 

A heated-up, carbon-rich environment gives rise to a fuel-rich flame. The system may be 

favorable for the synthesis of nanotubes if transition-metal compounds such as Fe or Ni are 

added. As a result, flame synthesis is a scalable, continuous-flow process that can create 
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nanotubes at a much lower price than competing methods43. By using flame synthesis, carbon 

nanotubes are produced with unique characteristics that are not possible with existing synthetic 

techniques. The flame synthesizing method is particularly remarkable since it yields 

remarkably quick residence times for both catalytic start and nanotube development 40. Rich 

carbon sources, including CO, CH4, C2H4, and C2H6, can be found in the post-flame zones. The 

heat produced by the chemical energy in the flame drives the exothermic reactions that lead to 

the deposition of carbon, and catalysts 44 are also required for supplying reaction areas for the 

accumulation of solid black carbon 34.  

3.5 NEBULIZED SPRAY PYROLYSIS METHOD 

Nebulized spray pyrolysis is a crucial step in this process that involves using a specialized 

ultrasonic atomizer to create a nebulized spray34. This method has been used to develop 

MWCNTs in aligned bundles with somewhat homogeneous diameters 45,46,47state that this 

procedure involves spraying a mixture including the carbon source, solvent, and catalyst into a 

tube furnace at a constant temperature of 800 0C while keeping an argon flow rate of1L/min34,47. 

Ethanol is widely used as a solvent and carbon source due to its low cost, ease of handling, and 

lack of production of toxic byproducts such as carbon monoxide 34. The advantage of utilizing 

a nebulized spray in this process is its ease of scaling up to an industrial size, as reactants are 

continuously delivered into the furnace. With this method, it is possible to produce high growth 

of MWCNTs on a surface 34,48.  

 

Table 1 presents a comparison between the following methods of carbon nanotube 

synthesizing: arc discharge, laser ablation, CVD, flame synthesis, and nebulized spray 

pyrolysis. 

 

FEATURES 

 

ARC 

DISCHARGE 

 

LASER 

ABLATION 

 

CVD 

FLAME 

SYNTHESIS 

NEBULIZED 

SPRAY 

PYROLYSIS 

 

Process type 

 

High-temperature 

arc between 

electrodes 

 

Laser 

evaporation 

in hot 

atmosphere 

 

Gas phase growth 

on the substrate 

 

High-

temperature, 

carbon-rich 

flame 

 

Atomized 

spray injection 

into high-

temperature 

chamber 
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Scale 

 

Scalable for large-

scale production49 

Small-scale 

research and 

development, 

potentially 

scalable 

 

Scalable for large-

scale production49 

 

Scalable and 

continuous- 

flow 

 

Potentially 

scalable for 

industrial 

usage 

 

Cost 

 

Moderate initial 

investment, 

relatively simple 

setup 

 

High initial 

investment 

for 

equipment 

and laser 

expertise 

 

High initial 

investment and 

complex processes 

 

Can be 

significantly 

lower than 

CVD and 

traditional 

methods 

 

 

Relatively low 

cost and 

simple setup 

 

Control over 

SWCNTs 

Moderate control 

over diameter and 

distribution, 

primarily SWCNTs 

with catalyst 

precursors 

High control 

over size, 

distribution, 

and chirality 

High control over 

type, size, and 

distribution 

Less control 

compared to 

CVD, 

primarily 

MWCNTs 

Moderate 

control, 

potential for 

aligned 

MWCNTs 

 

Typical 

temperature 

 

 

Around 4000K 

 

Hot 

atmosphere 

(above 10000 

C) 

 

Above 9000 C for 

SWCNTs 

High- 

temperature 

flame (over 

1000 0 C) 

 

 

800 0 C in 

furnace 

 

Carbon 

precursor 

 

 

Graphite rods 

 

Graphite 

target + 

metal 

catalysts 

 

Various 

hydrocarbons 

 

 

Fuel-rich 

flame 

 

Ethanol and 

ferrocene 

solution 

 

 

Catalyst 

 

Required for 

SWCNTs (Ni, Co, 

etc.) 

 

Optional for 

SWCNTs, 

metal 

catalysts for 

control 

 

Crucial for 

SWCNT growth 

 

Transition 

metals like 

Ni, Fe 

 

Ferrocene 

(catalyst 

precursor) 
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Advantages 

 

 

High yield 

 

High quality 

SWCNTs, 

precise 

control over 

properties, 

flexibility 

 

High purity and 

controlled 

properties, scalable 

 

Low-cost 

continuous 

production, 

unique CNT 

properties 

 

Scalable, 

simple set up, 

potential for 

aligned 

MWCNTs 

 

 

 

Disadvantages 

 

 

High energy 

consumption, less 

control over 

alignment, 

purification 

required 

Lower yield 

compared to 

arc 

discharge, 

requires 

specialized 

equipment, 

may produce 

non- straight 

CNTs 

 

High initial 

investment, 

complex processes, 

less control over 

MWCTNs 

 

Less control 

over 

SWCNTs, 

safety 

concerns with 

flame 

 

 

Moderate 

control, 

limited 

SWCNTs 

types 

 

4. BIOMEDICAL APPLICATIONS OF CNTs 

4.1 CARBON NANOTUBES FOR INFECTION THERAPY 

CNTs have been tested to address issues caused by infectious pathogen resistance to a variety 

of antiviral and antibacterial medications, as well as the body’s inefficiency with some 

vaccines50,51. It has been shown that functionalized CNTs can serve as carriers for antimicrobial 

substances such as antifungal amphotericin B 52,51. Amphotericin B can bind covalently to 

carbon nanotubes and be transported into mammalian cells. When this conjugation is compared 

to the free drug, the antifungal toxicity has been lowered by roughly 40%50. Research indicates 

that the effective combination of amino-MWCNT exhibits significant adsorption, and the 

antibacterial drug pazufloxacin mesylate will be used in experimental testing to treat infections 

53. In addition, functionalized CNTs can be used as a vaccine delivery system53,54. When a 

bacterial or viral antigen is bound to CNTs, the shape of the antigen is preserved, triggering an 

appropriate and specific antibody response55. Functionalized CNTs can be fixed with B and T 

cell peptide epitopes to create a multivalent system that can mount a powerful immunological 

response, making it a promising option for vaccine administration 51 ,56,57.  
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The administration of antisense treatment has been proposed to be a promising approach to the 

treatment of infectious disorders. The lipophilic characteristics of biological membranes pose 

a significant obstacle to gene therapy, as they limit the intracellular transport of foreign 

substances. In fact, SWCNTs can pass through cell membranes. Chemically functionalized 

SWCNTs with poly (diallyl dimethylammonium) chloride (PDDA) and hexamethylenediamine 

(HMDA) to produce a composite material to negatively charged siRNA through electrostatic 

interactions58. In earlier experiments, doses of up to 10mg/L of PDDA-HMDA SWCNTs had 

minimally harmful effects on isolated rat heart cells59, 60–62. Extracellular signal-regulated 

kinase (ERK) siRNA in this drug delivery system, which allowed it to pass through the cell 

membrane and reduce the expression of target ERK protein in primary cardiomyocytes by 

around 75% 63.  

 

Figure 3 Carbon nanotubes demonstrate promising potential for infection therapy by serving 

as carriers for vaccine delivery systems, improving therapeutic efficacy, and reducing adverse 

effects on healthy cells. 

4.2 ANTIFUNGAL DELIVERY 

Amphotericin B is detrimental to the kidneys and liver and is unaltered and excreted, and 

several formulations have been created for this drug. CNTs are an excellent choice for the 

delivery of antifungal medications due to several properties. Amphotericin B retained a very 

high level of antifungal action when transported by CNTs. Conjugated amphotericin B with 

CNT has been proven to be more effective against candida than the medication itself. 

Furthermore, it was demonstrated that there was a dose dependence in the internalization of 
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amphotericin B associated with the nanotubes. Furthermore, it was demonstrated that there was 

a dose dependence in the internalization of amphotericin B associated with the nanotubes 64–67. 

Functionalized CNTs exhibit the behavior of nanoneedles and may cross the cell membrane 

barrier without harming cells, as demonstrated by Wu et al. He has proposed that another 

benefit of CNTs is their ability to avoid the phenomenon of aggregation that amphotericin B 

generally exhibits in solution, which may otherwise exacerbate the drug’s cytotoxic effects on 

cells. Furthermore, it was shown that conjugated amphotericin B in conjugation with CNT was 

not toxic at doses as high as 10 10μg/mL. Through an unknown mechanism, functionalized 

CNTs containing amphotericin B demonstrated efficacy even against strains resistant to the 

drug 68.  

4.3 ANTIMICROBIAL APPLICATION 

The microorganism membrane and cell wall have been impacted by CNTs69. Moreover, CNTs 

can expose a cell to oxidative stress, which ends in biological death. Because the material has 

a higher surface area per unit volume, superior electrical conductivity, high transparency, and 

structural stability, its antibacterial activity rises as it approaches the nanoscale70,71. Physical 

and chemical factors are combined to create the fundamental mechanisms of SWCNT’s 

bactericidal effect72–74. The cell wall and membrane of the microorganism may sustain 

significant structural damage as a result of CNTs75. Furthermore, they possess the ability to 

physiologically isolate cells from their surroundings, which eventually leads to the formation 

of hazardous materials like reactive oxygen species and exposes the cell to oxidative stress, 

ultimately causing its demise76. Determining the length of the nanotubes during their contact 

with the cell membrane is unquestionably crucial77. It is established that the shorter tube 

performs better against bacteria than the longer CNTs78. According to another research 

investigation, CNTs elevate the class II major immunological compatibility complex (MHC) 

to improve the specificity and sensitivity of the antibody-based response79,80. In addition, CNTs 

have been shown to have a significant impact on antibacterial activity by inducing the 

glutathione antioxidant to undergo oxidative stress, which in turn kills infectious pathogens by 

increasing the oxidative stress on bacterial cells81–84. 

4.4 ANTI-BACTERIAL APPLICATION 

Antibiotic-resistant bacterial species are becoming a bigger concern despite recent advances in 

antibacterial treatment. The overuse and abuse of antibiotics, as well as the delay of the 

pharmaceutical industry in presenting new, potent antibacterial medications, were the root 

causes of this problem. In this sense, the combination of CNTs with antibiotics may be a useful 
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way to address these issues and enhance antibacterial treatment85,86. To address these issues 

and improve antibacterial therapy, the use of CNTs in conjugation with antibiotics could serve 

as a promising option 87,88. Multi-walled CNTs treated with vancomycin hydrochloride were 

developed by Lie et al. The intrinsic carboxyl group of multiwalled CNTs along with the 

vancomycin-containing amide group reacted to carry out the synthesis. The newly developed 

CNTs show outstanding antibacterial characteristics that may be used to treat wounds89. One 

well-known antibiotic in the fluoroquinolone class is ciprofloxacin. Gram-positive and Gram-

negative bacterial infections have long been treated with ciprofloxacin. On the other hand, 

ciprofloxacin resistance has been spreading quickly globally90,91. Assali et al. suggested a 

unique type of functionalized single-walled CNTs with packed ciprofloxacin as a solution to 

this challenge92. Transmission electron microscopy (TEM), spectroscopy using Raman 

spectroscopy, thermogravimetric analysis, and microbiological examination have all been used 

to analyse the recently produced CNTs. The study findings showed that, compared to the 

ciprofloxacin-free medication, ciprofloxacin-loaded CNTs significantly increased the 

effectiveness of their antibacterial properties against the three bacterial strains93.  

4.5 ANTICANCER THERAPIES BASED ON CNT 

Using near-infrared (NIR) laser stimulation to activate the photothermal characteristics of 

CNTs has become a sophisticated way to target cancer directly. Burke et al. showed that directly 

injecting MWCNT suspension into tumours and then briefly stimulating the tumours with a 

laser caused tumour ablation in mice, improving their survival 94. On the other hand, Wang et 

al. reported the use of single-walled carbon nanotubes (SWCNT) conjugated with anti-CTLA-

4 in intravenous injection95. This combination of injection and photothermal therapy (PTT) not 

only induced an immune response but also increased cytotoxic activity 96The combination of 

these two methods destroyed any residual nodules or metastases 97.  

There have been suggestions to combine PTT with imaging techniques to treat the main 

tumours and identify associated lymph nodes at the same time98. According to Zhu et al.,99 

there has been a notable advancement in the photothermal conversion of hybrids, including 

MWCNT and gold nanostars, which has enabled a decrease in the duration of laser stimulation 

during therapy. Furthermore, the use of PTT in conjunction with molecule delivery, as reported 

by Wang et al. and also employed by Wells et al., broadens the scope of application for this 

cancer therapeutic approach 100,101 . However, the depth to which laser penetration can penetrate 

tissues limits the efficacy of CNT-assisted PTT, and it still has to show success for thicker 

samples102. The toxicity of carbon nanotubes (CNTs) on cells during their use has been the 

subject of numerous studies in this section; however, the ultimate fate and possible 
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decomposition of these objects have not been fully investigated95. When nanotubes are not 

contained within or on the surface of a device, this issue - which is still debatable - could be a 

major hindrance to the use of CNT in biomedicine102,103 

 

Figure 4 Illustration demonstrates the promising potential for anticancer therapy through the 

destruction of cancer cells and tumour ablation. 

4.6 CNTs for GENETIC ENGINEERING 

CNTs are used to modify genes and atoms in the creation of proteomics, tissue engineering, 

and bioimaging genomes. To replace a damaged gene that contributes to some chronic or 

inherited diseases, gene therapy involves introducing a DNA molecule into the cell nucleus34,104 

The unravelled DNA coils around the SWCNT and changes its electrostatic property by 

connecting its specific nucleotides. Single-stranded DNA has been shown to wrap CNTs in a 

sequence-dependent way, which makes it valuable for DNA analysis. Nanotubes are used as 

gene carriers to cure genetic diseases such as cancer due to their unique cylindrical shape and 

properties105.  Their usefulness as a vector for gene therapy has been proven by their tubular 

structure. It was shown that DNA complexes with nanotubes released DNA before the defense 

mechanism of a cell destroyed it, resulting in a significant increase in transfection. 

Nanostructures have shown an antiviral effect against the respiratory syncytial virus, which 

causes asthma and severe bronchitis. Treatment usually consists of a combination of 

nanoparticles and gene-slicing techniques. RNA snippets wrapped in nanotubes that can inhibit 

a protein are administered via nasal sprays or drops. There are reports of protein helical 

crystallization using nanotubes and rat embryonic brain neuron growth106.A recent study 
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reported a novel CNT-based technology that supports cell development and enables fast, high-

efficiency gene transfection into cells via CNT lumens. Propidium iodide, which has a 

molecular weight of 0.66 kDa, is the smallest biomolecule of the size that this device can 

accommodate. Furthermore,107 reported the presence of tetramethylrhodamine dextran at 3 kDa 

and 6000 bp of plasmid DNA at 3900 kDa. It was also proposed that the usage of nanocarriers 

based on MWCNTs and SWCNTs may be used to carry genetic material to callus cells, leaf 

explants, and mesophyll protoplasts. Consequently, CNTs have been shown to be useful in the 

agricultural alteration of plant genetics 108. 

4.7 USE OF CNT FOR DIAGNOSTIC 

Improving detection methods is particularly crucial, as successful treatment depends on an 

early diagnosis. In vitro biomarker analysis is already possible109 with good accuracy due to 

immune complex detection; however, using classic dosage approaches can be time-consuming 

and require large amounts of biological material. Because of their electrical properties, carbon 

nanotubes (CNTs) have been the subject of much research, leading to the development of 

numerous label-free CNT-based biosensors. Furthermore, CNT can be used as a contrast agent 

in a variety of bioimaging methods109, 110. They provide a comparatively high degree of spatial 

resolution in determining the location and presence of certain cells when functionalized and 

connected to various biomarkers95.  

4.8 BIOSENSORS BASED ON CNT 

Carbon nanotubes (CNTs) have been proposed as a sensing element in the field of biosensors 

to detect and monitor various diseases, specifically diabetes and bacterial infections111. For 

example, Punbusayakul et al. used electrochemical monitoring of immune complexes to 

identify salmonella, which reduced detection time and simplified sample preparation compared 

to earlier methods109,112. To immobilize DWCNTs, directed antibodies were grafted onto their 

surface to create an immunosensor for adiponectin, a biomarker of obesity. During the 

monitoring of cyclic voltammetry, a second antibody conjugated with horseradish peroxidase 

(HRP)-streptavidin binds to adiponectin and interacts with the substrate, enabling quick 

detection and quantification109,113. Field-effect transistor (FET)-based sensors have 

demonstrated excellent sensitivity; in fact, Ramnani et al. have recorded sensitivity as low as 

attomole on occasion95. Resistive sensors, more precisely, differential resistive pulse sensors 

(RPS) based on MWCNT, have recently achieved the single molecule detection threshold, 

highlighting the wide range of applications for these sensors 109. Another recent technique has 

demonstrated the utility of porosity in immobilizing molecules on biosensor electrodes95. 
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Zhang et al. reported on a nonenzymatic glucose detector composed of a porous nickel-based 

metal oxide framework (Ni-MOF) with carbon nanotubes (CNT) added to improve electrical 

conductivity. Given the high selectivity of these electrodes, the method is proposed as a feasible 

replacement for immune complex immobilization detection 109 ,114, 115,116. 

 

4.9 ARTIFICIAL IMPLANTATION AND TISSUE REGENERATION 

Because of their exceptional mechanical, electrical, and thermal capabilities, carbon nanotubes 

(CNTs) are useful for strengthening a variety of materials to improve their overall qualities. 

The goal of tissue engineering is to replace diseased or damaged tissue with biological 

substitutes that can return the tissue to its normal state. Tissue regenerative engineering and 

medicine have shown great promise due to significant advances in this sector117. With standard 

implants, post-administration discomfort and implant rejection are frequent problems. 

However, the distinct characteristics of nanotubes and nano horns, along with their small size, 

allow them to blend in with other amino acids with ease. Because of this, they can be implanted 

into prosthetic joints without causing the host to reject them118. Among many other materials, 

including synthetic and natural polymers, for tissue scaffolds, CNTs may be the best option for 

tissue engineering because they are biocompatible, resistant to biodegradation, and can be 

functionalized with biomolecules to improve organ regeneration51. CNTs can be incorporated 

into the host’s body as additives to strengthen the mechanical strength and conductivity of the 

tissue scaffolding.51,119–122 To be precise, composite nanomaterials utilized as scaffolds in tissue 

regeneration have been effectively created by MacDonald et al.by combining carboxylated 

SWCNTs with a polymer or collagen123. The latest study additionally glanced at other tissue 

engineering uses of CNTs for tissue engineering, including cell tracking and labelling, 

detecting cellular activity, and improving tissue matrices. For example, CNTs have been shown 

to significantly improve the in vitro differentiation of neurogenic cells by embryonic stem cells 

and the regeneration of bone tissue in mice42,58,124,125. 

4.10 CNT AS CARRIER FOR DRUGS AND GENE DELIVERY 

Recently, there has been a lot of interest in using CNTs as nanocarriers because of their 

remarkable ability to facilitate cell transfection. Researcher Liu et al. proved that noncovalent 

bonding allows drugs like doxorubicin to be loaded onto polyethylene glycol coupled with 

SWCNTs126. This makes it possible to provide medications to tumour tissues using the 

enhanced permeability and retention phenomenon. A mesoporous silica coating was employed 

by Wells et al. to load medicines onto CNTs101. The alkaline pH at which doxorubicin was 
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bound to carbon nanotubes reduced its toxicity in healthy body parts, but in the acidic 

environment of tumour tissues, it was easily released. Wells et al. claim that PEG branches 

improved the hydrophilicity of SWCNTs and protected bound doxorubicin, increasing the 

material’s stability in blood collection127. Another example is the covalent attachment of the 

anticancer drug 10-hydroxy camptothecin to MCNTs, which may offer a thermostatic approach 

and exhibit enhanced efficacy95,128,129. Genes, proteins, and drugs can be administered 

intracellularly through carbon nanotubes due to their unique ability to enter cells regardless of 

functional groups present on their surface. Research in gene silencing treatment applications 

has grown significantly, particularly with the delivery of short-interfering RNA (siRNA) 130. 

Ladeira et al. effectively delivered siRNA to cells difficult to transfect using carboxy 

functionalized SECNT, resulting in an amazing 96% silencing efficacy 131. In a separate study, 

Sanz et al. released DNA both within the cell using chloroquine and outside the cell using 

polyethyleneimine to transport DNA plasmids into the cytoplasm and cell nucleus utilizing a 

dual functionalization technique 132. 

5. BIODISTRIBUTION 

Compared to multi-walled carbon nanotubes (MWNTs), single-walled carbon nanotubes 

(SWNTs) have a number of advantages, such as their ability to carry huge loads of medications, 

extend circulation times, and pass-through cell membranes. In addition, SWNTs have inherent 

qualities such as Raman characteristics, photothermal capabilities, fluorescence, and 

photoacoustic impacts. They are better for different applications because of their qualities. 

Biodistribution tests were performed in BALB / c mice with subcutaneously implanted 

hepatocellular carcinoma SMMC-7721 cells to demonstrate this benefit133. Meng et al. used 

saline solution as a control and administered sliced SWNTs, chitosan-coated SWNTs (CHI-

SWNTs), or folic acid-coated CHI-SWNTs (FA-CHI-SWNTs) at a constant dose (around 4 

mg/kg)134,133. Thirty minutes after injection, mice's urine contained considerable amounts of 

SWNTs, as shown by transmission electron microscopy, suggesting quick urine clearance135. 

After two hours, fluorescence scans revealed that with low accumulation in tumour tissue, CHI-

SWNTs, and FA-CHI-SWNTs were found largely in the liver, heart, and other tissues with an 

abundant blood supply. However, the enhanced permeability and retention (EPR) effect was 

shown to be responsible for the strong fluorescence observed in the tumour area after 20 hours, 

since FA-CHI-SWNT demonstrated particular interactions with tumour receptors134,133. CD44 

antibodies were used to functionalize SWNT to evaluate their potential to selectively 

concentrate in breast tumours. In the first few hours after injection, the study found a significant 

build-up of SWNTs in the organs of the reticuloendothelial system. However, a notable increase 
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in tumour uptake for CD44 antibody-conjugated SWNTs was seen after 24 hours136. These 

findings demonstrate conjugated silver nanotubes' promising qualities for a range of biological 

applications, including drug delivery 135. 

6. TOXICITY OF CNT 

Despite its attractive characteristics, CNT toxicity is a major concern. Studies conducted in 

vitro and in vivo have linked the toxicity of CNTs to several variables, including concentration, 

duration of exposure, exposure mode, and even the surfactant employed to disperse the 

nanotubes137. Most of the toxicity features of CNTs are yet unknown, and these discrepancies 

appear to be mostly caused by variations in the experimental procedure. When the actions of 

these CNTs are taken into account, this review seeks to examine the representative data on 

toxicity. A comprehensive assessment of these investigations provides a new understanding of 

the toxicity of CNTs, focusing on topics such as the frequencies of toxic events, the mechanism 

of cell damage, and the biodistribution of CNTs according to the organ. Furthermore, this 

analysis will inspire further investigation into a wide range of topics related to the toxicity of 

nanotubes138. ROS levels in commercial CNTs were higher, increasing oxidative stress and 

reducing the potential of the mitochondrial membrane. Furthermore, MWCNTs were found to 

be hazardous to metal impurities, especially at high concentrations. The biological reactivity 

and toxicity of CNTs are influenced by several physiochemical factors 139,140, such as the 

method of processing, length, diameter, surface-to-volume ratio, concentration, dispersibility 

in solution, aspect ratio, degree of oxidation, structure, presence of a functional group catalyst, 

applied dose, and chemical functionalization 141,142. Moreover, the toxicity of CNTs has been 

linked to the length to which they are exposed and the surface utilized in their dispersion 143,144. 

6.1 CYTOTOXIC EFFECTS 

When carbon nanotubes get inside cells, they lead to oxidative stress, inflammation, and 

cytotoxicity. This results in the foreign body reaction (FBR) and the generation of free 

radicals145. Physicochemical properties, surface functionalization, length, type, and metal 

impurities are some of the factors influencing cytotoxicity139,146. Menezes et al. reported that 

uncontrolled exposure to CNTs can cause cell morphological changes, apoptosis, 

inflammation, oxidative stress, and the development of granulomas147. Studies comparing 

different carbon allotropes reveal that CNTs are more harmful to cells and can trigger immune-

mediated cytotoxicity138,142. 

6.2 PULMONARY TOXICITY 
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Carbon nanotubes, which are used in many products, can be inhaled during production and 

cause respiratory problems 141,148. Concerns regarding chronic inflammation and respiratory 

problems are brought up by their use in food packaging. Pulmonary toxicity is influenced by 

physiochemical characteristics138,149. Research demonstrates that SWCNTs and MWCNTs can 

cause granulomas and acute and chronic inflammatory reactions 145. CNTs have a major effect 

on bacterial clearance, lung function, and the induction of allergic airway inflammation 150. 

 

 

6.3 CARDIOVASCULAR EFFECTS 

Atherosclerosis, cardiac damage, muscle deterioration, and blood flow obstruction are 

outcomes of cardiovascular toxicity caused by the interaction of CNT interaction with heart 

cells 145. The two main factors that induce cardiovascular disease are inflammation and 

oxidative stress 141. Research on animals suggests that CNT toxicity can increase the chance of 

cardiovascular disease by inducing atherogenesis and blood coagulation. Exposure to CNTs 

has been associated with increased oxidative stress, inflammation, and blood pressure 

alterations, all of which suggest toxicity to cardiovascular organs145,148. 

 

Figure 5 Illustrated the toxicity of carbon nanotubes 

7. CONCLUSION 
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This study provides a comprehensive overview of the wide variety of biomedical uses of carbon 

nanotubes (CNTs), highlighting the potential and adaptability of these CNTs to enhance 

multiple aspects of medicine, including cancer treatment, regenerative medicine, and infection 

therapy. In addition, focusing on the distinctive characteristics of CNTs may be attractive for 

the advancement of targeted medication delivery, tissue engineering, gene delivery, and 

antibacterial treatment. This article emphasizes the significant influence of CNTs on these 

important medical concerns by providing a thorough review of the nanocomposite 

synthesis techniques and the processes of antibacterial and anticancer therapy. The current 

study indicates the most effective prevalence of critical applications to determine the safety 

and performance of CNTs in therapeutic settings. 

 

8. FUTURE DIRECTIONS 

Future study avenues to enhance the biomedical uses of carbon nanotubes involve optimizing 

synthesis techniques to enhance their scalability, economy, and property control. It is 

imperative to address toxicity and biodistribution in addition to improving targeted drug 

delivery using innovative functionalization techniques and drug loading mechanisms to 

guarantee safe clinical use.  Important areas of emphasis include infection therapy, tissue 

engineering, regenerative medicine, combination medicine, and clinical and regulatory 

translation. Using the special qualities of carbon nanotubes, the biomedical field will be able 

to create safer, more efficient and more specific treatments, which will eventually lead to better 

patient outcomes in a variety of medical fields. 
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