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Abstract:

Rough Set Theory (RST) is a mathematical approach used for dealing with uncertainty and
vagueness in decision-making and data analysis. It provides a framework for classifying
objects into different equivalence classes based on their attributes or characteristics. In RST,
the concept of different cc bikes can be analyzed based on their attributes or characteristics.

Each bike can be represented as an object with a set of attributes such as engine displacement,
weight, top speed, fuel efficiency and price. Another class may consist of bikes with lower
engine displacement, lighter weight, and better fuel efficiency, which could be more suitable
for daily commuting. By applying RST, we can analyze the relationship between these
attributes and determine the essential and non-essential features of 100 CC bikes. This
analysis can help in decision making processes, such as choosing the right bike based on
specific requirements or preferences. It's important to note that the application of RST t0100
cc hikes is just one example of how this mathematical approach can be used in decision-
making and data analysis. The specific attributes and classes may vary depending on the
context and purpure of the analysis.
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1. Introduction

In decision-making and data analysis, rough set theory provides a mathematical framework for
handling ambiguity and uncertainty. Pawlak first presented it as a method of handling imprecise and
imperfect data in the early 1980s [1]. The concept of approximations is the foundation of rough set
theory. Separating the data into lower and upper approximations offers a formal technique for its
analysis and classification. The lower approximation represents the set of things that unquestionably
belong to one idea, while the higher approximation represents the set of potential concepts.

The lower and higher approximation operators in Pawlak rough set theory [2] are based on equivalence
relations. The need for an equivalence relation in Pawlak rough set models, however, appears to be a
highly rigorous requirement that can constrain the applicability of the rough set models. Based on the
comparable classes produced by the attribute values, rough set theory divides into three regions:
boundary, lower approximation, and upper approximation. According to the data gathered, the upper
approximation comprises all the things that can be classified presumably, while the lower
approximation contains all the objects that are classified with certainty. The boundary is the difference
between the upper and lower approximations [3].
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From the perspective of decision-making, an attained rule results in an optimistic decision. In multi-
granulation rough set theory, this model is known as the optimistic rough set model. Additionally,
Qian [4,5] defines another model known as the pessimistic multi-granulation rough set model.
Equivalence relations are expanded to comparable relations or generic binary relations in the extension
of the classical rough set model to the generalized rough set model [6]. Data distribution-based rough
set models, including the decision-theoretic, the probabilistic, the cloud rough set model, etc [7-9].

It is essential to have a technique for making decisions that will help in identifying and choosing the
best motorized vehicles. There are a number of approaches for creating a decision support system
(DSS), and one method that may be utilized for decision making systems is WP (Weighted Product)
[10]. Although bikes with small engines spend less fuel (per person-kilometer) than cars, the situation
may be the opposite for motorcycles with larger engines that are more potent. Additionally, if short
non-motorized journeys are replaced with longer motorbike excursions, the overall energy efficiency
of the transportation system declines. Pfaffenbichler and Circella [11] analyzed the conditions under
which motorbikes can significantly contribute to the development of an energy-efficient and
sustainable transportation system.

Butalia et al. [12] revealed that two innovative methods are implemented in Java 1.5 to determine, in
light of the relative attribute dependency, the best reductions of condition attributes. The first algorithm
provides a simple reduct, while the second one provides a reduct with minimum attributes. In order to
create the core of the attribute set or the effective reduct set, unnecessary attributes are removed using
Vashist's [13] suggested algorithm. The space complexity and computed time of the suggested
approach is compared to that of other known algorithms. It is proven that the suggested method reduces
computation time and space without sacrificing the efficacy and quality of the output. Wu and Mi [14]
investigated rough sets' mathematical structure in infinite universes of discourse.

Nowadays, there are many various types of motorcycles, including mopeds with a 50 cubic centimeter
engine, scooters with engines between 50 and 250 cubic centimeters, and motorbikes with engines up
to 1,000 centimeters and even more. Based on these characteristics, we may divide bikes into various
equivalence classes in this study using RST. Also, we discover the important and optional aspects of
various CC motorbikes by using RST and examining the relationship between these attributes. The
results of this research can be useful for making decisions, such as selecting the best bike for a
particular set of requirements or desires.

Let's consider that we have a list of bikes with the following attributes:

1. Brand (B): The brand of the bike (e.g., Honda, Yamaha, Suzuki, etc.) as (xq, x5, X3, X4 ...)

2. Engine Displacement (E): The engine displacement in cubic centimeters (e.g., 100 cc, 150 cc,
etc.).

3. Fuel Efficiency (F): The fuel efficiency of the bike in kilometers per litre (e.g., 40 km/I, 50
km/l, etc.).

4. Price (P): The price of the bike in a certain currency (e.g., USD, INR, etc.).

5. Style (S): The style of the bike (e.g., commuter, sport, cruiser, etc.).
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2. Rough Set Analysis
Now, let's apply a simplified rough set analysis with seven types of analysis:
2.1 Lower Approximation (Certain Knowledge)

Identify the bikes that definitely belong to the 100 cc category based on their engine displacement of
a set X with respect to S. The lower approximation is represented by S, (x).

S.(X) ={x:S(x) € X}.
2.2 Upper Approximation (Potential Knowledge)

Identify the bikes that potentially belong to the 100 cc category based on their engine displacement X
with respect to S. The upper approximation is referred by S*(x).

S*(X) = {x:S(x) € X}.
2.3 Negative Region (Contradiction)
Identify attributes of the set of objects that are contradictory to the 100 cc category of the set X.
U —S*(X)
2.4 Boundary Region (Uncertainty)

Identify attributes that are ambiguous and contribute to the uncertainty of bike categorisation of a set
X with respect to S and is denoted by SNg(X).

SNs(X) = S*(X) — S.(X).
2.5 Indiscernibility Relation (Equivalence)

Identify bikes that are indiscernible (indistinguishable) based on the selected attributes.

Let R = (4, B) be an information system, and X < A. A binary relation INDg(X) defined in the
following way

INDg (X) = {(x1,x;) € A% | VaX,a(x;) = a(x;)}

is called a X-indiscernibility relation [x]g. If (x1,x,) € INDgr(X), then x; and x, are indiscernible
(or indistinguishable) by attributes from X.

2.6 Reduct (Minimal Set of Attributes)
Identify the smallest set of attributes that are sufficient to determine the category of a bike.

Using these analyses, you would analyze the attributes of the bikes in your list and determine their
relationships to the 100 cc category in Table 1. This analysis would provide insights into the
characteristics of bikes that belong to the 100 cc category and help in classifying them based on these
attributes.
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Please note that this example is a simplified illustration and may not reflect the full complexity of
applying rough set theory to real-world data. In practice, rough set analysis involves more rigorous
mathematical concepts and techniques.

Table 1. Analysis of engine, power, torque and mileage in 100cc bikes

BIKE Decision

(100 CC) ENGINE (cc) POWER TORQUE MILEAGE Attributes
X1 97.2 8.02 8.05 70 Good
X, 97 8.02 8.05 70 Good
X3 97.2 8.02 8.05 70 Good
Xy 97.2 8.02 8.05 70 Good
Xs 102 7.9 8.3 70 Good
X 109.7 8.29 8.7 70 Good
X7 109.51 8.79 9.3 65 Good
Xg 109.51 8.79 9.3 60 Bad
Xg 109.7 8.19 8.7 83.09 Good
X10 109.7 8.19 8.7 73.68 Good
X11 113.2 9.15 9.79 0 Bad
X12 113.2 9.15 9.89 0 Bad

A ={xy,x,X3,X4, 0., X12}

B = {ENGINE, POWER, TORQUE, MILEAGE}

Xenoing = £97.2,97,102,109.7,109.51,113.2}

Xpower = {8.02,7.9,8.29,8.79,8.19,9.15}

Xtorque = {8.05,8.3,8.7,9.3,9.79,9.89}

Xwmieace = {60, 65,70,73.68,83.09}

Xpecision = {Good, Bad}

Consider P = {ENGINE}

P = elementary sets

p = [Xo]p = [x10]p = {X6, X9, X10}

[X11]p = [x12]p = {11, X212}
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The Equivalence classes are
X1 ={x1, %3, %4}
Xz = {x2}
X3 = {xs}
X4 = {x6, %9, %10}
X5 = {x11, %12}
IND(ENGINE) = {Xy, X3, X3, X4, X5} = {{xx1, x3, x4}, {x2}, {x5}, {x, X9, 10}, {¥11, %12 }}
S.(X) = {x3}
§*(X) = {x7, xs}
SNs(X) = S*(X) = S.(X) = {x7, xg}

U —S5"(X) = {x1, X3, X4, X5, X, Xg, X10, X11, X12}

This scatter plot visually represents the bikes' data points in the "ENGINE (cc)" vs. "POWER"
space. The placement of the data points can give you an idea of how the bikes are distributed in this
attribute space. This concept can be extended to additional attributes or even use advanced
visualization techniques to represent decision boundaries, discernibility, core, and reducts. However,
visualizing rough set theory concepts comprehensively requires advanced data visualization
techniques and tools.

Rough set theory involves mathematical concepts and notations that can be challenging to
represent in a single diagram. However, we can provide you with a simplified algorithm 1 that
illustrates the basic idea of rough set theory and its components: universe of discourse, attributes, and
approximations.

Algorithm 1 (Python)
Stepl: Find the decision attribute.

Step 2: Create the Concept class based on the decision attribute, identify all the tuples associated
with that attribute.

Step 3: Select the Condition attributes. Determine the lower approximation i.e. indiscernible with
respect to the selected attributes.

Step 4: Estimate the upper approximation i.e. the objects in the boundary region are indiscernible.

Step 5: Find the rough set

Step 6: Identify the reduct (minimal subset of relevant attributes)
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3. Implementation of Proposed Algorithm

Consider implementing the aforementioned technique using a table-based information system. The
condition and decision attributes make up the information system's column. The values that the
condition and decision attribute can take from the discourse universe are represented by the rows of
the information system. Table 2 shows that the universe consists of twelve elements in total. The
condition attributes' value sets consist of:

a =X, = {x1,x3 %4}

b =X, = {x,}

c = X3 = {xs}

d = X4 = {X6, X9, X10}

Decision Attribute can take values:

e = X5 = {xg,X11, X12}

Table 2. Information System

U a b c d e
X 1 0 0 0 1
Xy 0 1 0 0 1
X3 1 0 0 0 1
Xy 1 0 0 0 1
X5 0 0 1 0 1
Xe 0 0 0 1 1
Xy 0 0 0 0 1
Xg 0 0 0 0 0
Xq 0 0 0 1 1
X10 0 0 0 1 1
X11 0 0 0 0 0
X12 0 0 0 0 0

Using our approach, the first condition attribute, "a," is removed from table 2 and the consistency of
the remaining table, table 3, is checked. When we have identical options for two or more rows or cases
with the same values of condition characteristics, a table is considered to be consistent; if not, it is

inconsistent.
Table 3. Attribute ' a ' is eliminated

U b c d e
X1 0 0 0 1
Xy 1 0 0 1
X3 0 0 0 1
Xy 0 0 0 1
Xs 0 1 0 1
Xe 0 0 1 1
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X 0 0 0 1
X5 0 0 0 0
Xo 0 0 1 1
X10 0 0 1 1
X11 0 0 0 0
X1 0 0 0 0

Table 3 is created by removing the condition attribute ' a ' from Table 2.

Upon examining table 3, it becomes evident that the removal of attribute ' a ' from table 2 results in
inconsistency since, for each of the following values of the condition attributes: ' b', " ¢ ', " d ' the value
of the decision attribute, ' e ', differs for x;, x5, x, and xg, x11, X15.

X1, X3, X4 bOCOdO - €éq
Xg, X11, X12: boCodo = €

Thus, CORE is used with condition attribute' a .
Table 4 remains after removing characteristic ' b ' from Table 2.

Table 4. Attribute ' b ' is eliminated

U a c d e
Xq 1 0 0 1
Xy 0 0 0 1
X3 1 0 0 1
Xy 1 0 0 1
Xs 0 1 0 1
X 0 0 1 1
Xy 0 0 0 1
Xg 0 0 0 0
Xg 0 0 1 1
X1 0 0 1 1
X11 0 0 0 0
X12 0 0 0 0

Upon examination, Table 4 appears to be devoid of any discrepancies. Eliminating the characteristic '
b ' results in no inconsistency. Hence, according on the information, attribute 'b 'is not a CORE.

Reduct 1 = {a, ¢, d}

Table 5 remains after removing attribute ' ¢ ' from Table 2.
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Table 5. Attribute ' ¢ ' is eliminated

U a b d e
X, 1 0 0 1
Xy 0 1 0 1
X3 1 0 0 1
Xy 1 0 0 1
Xs 0 0 0 1
X 0 0 1 1
X7 0 0 0 1
Xg 0 0 0 0
Xq 0 0 1 1
X10 0 0 1 1
X11 0 0 0 0
X1y 0 0 0 0

The removal of the attribute ' ¢ ' doesn't result in inconsistent data. As a result, condition characteristic
"¢ "is not utilized as the core. However, Table 5's remaining condition attribute is regarded as reduct.

Hence,
Reduct 2 = {a, b, d}

Table 6. Attribute ' d ' is eliminated

U a b c e
X 1 0 0 1
X, 0 1 0 1
X3 1 0 0 1
X4 1 0 0 1
Xs 0 0 1 1
X 0 0 0 1
Xy 0 0 0 1
Xg 0 0 0 0
X 0 0 0 1
X10 0 0 0 1
X11 0 0 0 0
X1 0 0 0 0

There is no inconsistency in the dataset when condition attribute ' d ' is removed from table 6.
As a result of this, attribute ' d ' is not a CORE.
Reduct 3 = {a, b, c}

Characteristic ' a ' is the only essential characteristic. ' a ' also appears in each reduct set.
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Additionally, we understand that

Core =N Reducts

CORE (C) =n {{ Reduct 1}{ Reduct 2}{ Reduct 3}}

and the Reduct sets are

Reduct 1 = {a, c,d}

Reduct 2 = {a, b, d}

Reduct 3 = {a, b, c}

CORE (C) = {a}

This further demonstrates that our algorithm is accurate.

4. Conclusion

The application of rough set theory to the task of finding the best bike in different cubic

centimeters (cc) has provided valuable insights in this paper. By employing rough sets, we can
effectively analyze and categorize bikes based on various attributes and features relevant to different
cc categories. This approach helps us to identify the essential attributes that contribute to the superiority
of a bike within a specific cc range. Through the reduction of redundant information and the extraction
of essential characteristics, rough set theory streamlines the decision-making process for selecting the
optimal bike in each cc category. Overall, utilizing rough set theory enhances our ability to make
informed choices while considering the intricate relationships between attributes and bike performance
in different cubic centimeter ranges.
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